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A GENERALIZATION OF BAER’S LEMMA
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Abstract. There is a classical result known as Baer’s Lemma that states that an R-module
E is injective if it is injective for R. This means that if a map from a submodule of R, that
is, from a left ideal L of R to E can always be extended to R, then a map to E from a
submodule A of any R-module B can be extended to B; in other words, E is injective. In
this paper, we generalize this result to the category qω consisting of the representations of
an infinite line quiver. This generalization of Baer’s Lemma is useful in proving that torsion
free covers exist for qω.
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1. Introduction

One of the most fruitful concepts in the theory of modules and homological algebra

is that of an injective object. Recall that a module is defined in the same way as an

abstract vector space except that the scalars are permitted to be elements of a ring

instead of a field. All rings considered here have a multiplicative identity. They are

associative, but not necessarily commutative. Henceforth, the ring R is considered

fixed, and modules are unital left R-modules.

By a map ϕ from one module to another we mean a linear homomorphism, that

is, ϕ(x + y) = ϕ(x) + ϕ(y) and ϕ(cx) = cϕ(x) when c is a scalar. The standard

definition of an injective R-module is that an R-module E is injective if any map

from an R-module A into E can be extended to a map from B into E whenever B

is an R-module containing A. This condition can also be stated by saying that the
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following diagram commutes:

A //

ϕ

��

B
φ

��~
~

~

~

E

By its very nature, the criterion in the definition of an injective module can be

exhaustive to verify since it requires a verification for all modules B and submodules

A. However, Reinhold Baer [1] succeeded in reducing the criterion to a special case

that is much more manageable. The result is widely known as Baer’s Lemma [1].

Baer’s Lemma. An R-module E is injective if (and only if) every map from a

left ideal L of R to E can be extended to R.

We sometimes refer to Baer’s Lemma by saying that an R-module E is injective

if it is injective for R. This should be interpreted to mean that E is injective if every

map from any R-submodule (that is, any left ideal) of R into E can be extended to

R itself.

2. The category qω

Define qω to be the category of representations of the quiver

• → • → • → . . .

Specifically, objects in qω have the form

A1

f1
−→ A2

f2
−→ A3

f3
−→ . . .

where for all i, it is understood that Ai is an R-module and fi : Ai → Ai+1 is a map

in R-Mod. A sequence (ϕ1, ϕ2, ϕ3, . . .) of maps in R-Mod is a map in the category

qω from the object

A1

f1
−→ A2

f2
−→ A3

f3
−→ . . .

to the object

B1

g1
−→ B2

g2
−→ B3

g3
−→ . . .

provided that ϕi : Ai → Bi is a map in R-Mod for which the equations ϕi+1 ◦ fi =

gi ◦ ϕi are satisfied for each i. In other words, the following diagram commutes:

A1

f1
//

φ1

��

A2

f2
//

φ2

��

A3

f3
//

φ3

��

. . .

B1

g1
// B2

g2
// B3

g3
// . . .
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We say that the object

A1

f1
−→ A2

f2
−→ A3

f3
−→ . . .

is a subobject of

B1

g1
−→ B2

g2
−→ B3

g3
−→ . . .

if Ai is a submodule of Bi and the following diagram commutes where j : Ai → Bi

denotes the inclusion map:

A1

f1
//

j

��

A2

f2
//

j

��

A3

f3
//

j

��

. . .

B1

g1
// B2

g2
// B3

g3
// . . .

When the meaning is clear, we will denote the generic object

A1

f1
−→ A2

f2
−→ A3

f3
−→ . . .

in qω simply by A. Similarly,

B1

g1
−→ B2

g2
−→ B3

g3
−→ . . .

is denoted by B.

By definition, an object

E = E1

δ1−→ E2

δ2−→ E3

δ3−→ . . .

is injective in the category qω if every map from A into E can be extended to a map

from B to E whenever A is a subobject of B.

3. The generalization of Baer’s lemma

The object

R
j

−→ R
j

−→ R
j

−→ . . .

in qω, where j is the identity map, is denoted by R. As in the case of R-Mod, we say

that an object E in qω is injective for R if each mapping from a subobject S of R

to E can be extended to R.
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Theorem 3.1. Let

E = E1

δ1−→ E2

δ2−→ E3

δ3−→ . . .

be an object in the category qω. Then E is injective in the category qω if and only

if E is injective for R.

P r o o f. Clearly the condition is necessary since it is a special case of the criterion

stated in the definition of an injective object in qω. Conversely, assume now that E

is injective for R. That is, assume that whenever

L = L1 ⊆ L2 ⊆ L3 ⊆ . . .

is an ascending sequence of left ideals of the ring R, any map in qω from L into E

can be extended to R.

To verify that E is injective, let

B = B1

f1
−→ B2

f2
−→ B3

f3
−→ . . .

be an arbitrary object in qω and let let

A = A1

f1
−→ A2

f2
−→ A3

f3
−→ . . .

be a subobject of B. Let π be a map in qω from A to E. We want to show that π

can be extended to a map in qω from B to E. Toward this end, suppose that π has

been extended to a maximal subobject

C = C1

f1
−→ C2

f2
−→ C3

f3
−→ . . .

of

B = B1

f1
−→ B2

f2
−→ B3

f3
−→ . . .

that contains

A = A1

f1
−→ A2

f2
−→ A3

f3
−→ . . . .

It suffices to prove that C = B.

Assume, by way of contradiction, that C 6= B. Then there must be a k > 0 such

that Ck is a proper submodule of Bk. Choose an element bk ∈ Bk not in Ck. We

will use this element bk to construct another subobject of

B = B1

f1
−→ B2

f2
−→ B3

f3
−→ . . . .
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Specifically, the object is

D = 0 → . . .→ 0 → Rbk → Rfk(bk) → Rfk+1(bk+1) → . . .

where bn+1 = fn(bn) for all n > k. For each n, define a submodule Sn of R by

Sn = Rbn + Cn and consider the subobject

S = S1

f1
−→ S2

f2
−→ S3

f3
−→ . . . .

The proof will be completed if we can show that π can be extended to S since S is

a subobject of B properly containing C, which was chosen maximal. We will show

that indeed π can be extended to S by finding a mapping γ = {γn} in qω from the

subobject D of B to E that agrees with π on C. Let Ln = {r ∈ R : rbn ∈ Cn}.

Observe that if rbn = cn ∈ Cn, then rbn+1 = rfn(bn) = fn(rbn) = fn(cn) ∈ Cn+1.

So Ln ⊆ Ln+1. Define φn : Ln → En by φn(x) = πn(xbn) if x ∈ Ln. Then we

have a map φ = {φn} in qω from

L = L1 ⊆ L2 ⊆ L3 ⊆ . . .

to

E = E1

δ1−→ E2

δ2−→ E3

δ3−→ . . .

represented by the following commutative diagram with j denoting the inclusion

map:

L1

j
//

φ1

��

L2

j
//

φ2

��

L3

j
//

φ3

��

. . .

E1

δ1
// E2

δ2
// E3

δ3
// . . .

To see that the diagram is commutative and that φ is actually a map in qω, observe

that for every x ∈ Ln we have

δnφn(x) = δnπn(xbn) = πn+1fn(xbn) = πn+1(xbn+1) = φn+1(x) = φn+1(j(x))

because π = {πn} is a map in qω from A to E.

By hypothesis, the map φ = {φn} in qω from

L = L1 ⊆ L2 ⊆ L3 ⊆ . . .

to E can be extended to a map from R to E since we are assuming that E is injective

for R. Therefore, we can now define a map γ = {γn} where γn : Rbn → En is defined

by γn(rbn) = φn(r) for every r ∈ R.
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It is crucial to our argument that γn agrees with πn on Rbn ∩ Cn. Suppose x ∈

Rbn ∩ Cn and let rbn = x = cn, where r ∈ R and cn ∈ Cn. Then

γn(x) = γn(rbn) = φn(r) = π(cn).

Because of the agreement of γn and πn, it follows that the mapping ̺n from Sn to

En defined by

̺n(cn + rbn) = πn(cn) + γn(rbn)

is well defined. Therefore, the mapping ̺ = {̺n} from

S = S1

f1
−→ S2

f2
−→ S3

f3
−→ . . .

extends π = {πn} in qω from C to E to a mapping in qω from S to E. Since C was

chosen as a maximal extension, we conclude that S = B, and we have shown that E

is an injective object in qω. �

4. An application

For an R-module M , a morphism φ : C → M where C is torsion free is called a

torsion free precover of M if for any ψ : C′ →M where C′ is torsion free, there is a

map f : C′ → C such that φ ◦ f = ψ. That is, the following diagram commutes:

C′

f

~~}
}

}

}

ψ

��

C
φ

// M

If φ : C →M is a torsion free precover and if every f : C → C such that φ◦ f = φ

is an automorphism, then φ is a torsion free cover of M :

C′

f

~~}
}

}

}

φ

��

C
φ

// M

In [2], E. Enochs proved that torsion free covers exist for integral domains. That

is, he showed that any module over an integral domain has a torsion free cover.

Enochs’ proof uses injectives and their properties in R-Mod in a fundamental way,

and therefore Baer’s Lemma for R-Mod comes into play. For example, Enochs uses

the well-known fact that every torsion-free module over an integral domain can be

imbedded in a torsion free injective module.

In [3], the question was raised whether objects in the category qω have torsion

free covers. By using the above generalization of Baer’s Lemma, we will show in a

forthcoming paper that torsion free covers exist for the category qω.
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