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Abstract. Due to the fact that in the case q > 1 the q-Bernstein polynomials are no longer
positive linear operators on C[0, 1], the study of their convergence properties turns out to
be essentially more difficult than that for q < 1. In this paper, new saturation theorems
related to the convergence of q-Bernstein polynomials in the case q > 1 are proved.
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1. Introduction

Given q > 0, n ∈ Z+, the q-integer [n]q is defined by

[n]q := 1 + q + . . . + qk−1(n ∈ N), [0]q := 0;

and the q-factorial [n]q! by

[n]q! := [1]q[2]q . . . [n]q(n ∈ N), [0]q! := 1.

For integers k, n with 0 6 k 6 n, the q-binomial coefficient is defined by

[n

k

]

q
:=

[n]q!

[k]q![n − k]q!
.

Definition 1.1. Let f : [0, 1] → C. The q-Bernstein polynomials of f are given

by

Bn,q(f ; z) :=
n

∑

k=0

f
( [k]q

[n]q

)

pnk(q; z), n ∈ N,
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where

(1.1) pnk(q; z) :=
[n

k

]

q
zk

n−k−1
∏

j=0

(

1 − qjz
)

, k = 0, 1, . . . n.

When q = 1, we recover the classical Bernstein polynomials:

Bn,1(f ; z) = Bn(f ; z) =

n
∑

k=0

f
(k

n

)

(

n

k

)

zk(1 − z)n−k.

A comprehensive review of the results on q-Bernstein polynomials along with ex-

tensive bibliography on the subject is given in [15].

We would like to mention that a great number of various extensions and general-

izations of the Bernstein polynomials have been introduced due to their high degree

of importance, see e.g. [1], [3], [6], [9], [12], [13], [17]. A two-parametric generaliza-

tion of q-Bernstein polynomials, as well as two versions of the Bernstein-Durrmeyer

operator related to those polynomials have been considered in [23], and [5], [7] and [8].

The q-Bernstein polynomials inherit some properties of the classical Bernstein

polynomials. Among those properties we mention the end-point interpolation prop-

erty, the shape-preserving properties in the case 0 < q < 1, and the representation

via divided differences. Like the classical Bernstein polynomials, the q-Bernstein

polynomials reproduce linear functions, and they are degree-reducing on the set of

polynomials.

On the other hand, the examination of the convergence properties of the q-

Bernstein polynomials reveals that these properties are essentially different from

those of the classical ones. What is more, the cases 0 < q < 1 and q > 1 are not

similar to each other. This difference is caused by the fact that, for 0 < q < 1, Bn,q

are positive linear operators on C[0, 1] while for q > 1, the positivity fails. The lack

of positivity makes the investigation of convergence in the case q > 1 essentially more

difficult than that for 0 < q < 1. As a result, the convergence of q-Bernstein poly-

nomials in the case 0 < q < 1 has been investigated in detail, including a Korovkin

type theorem, the properties of the limit operator, the rate of convergence, and the

saturation phenomenon (cf. [10], [15], [16], [18] - [21]). In contrast, there are only

two papers, namely [14] and [22], dealing systematically with the convergence in the

case q > 1. The results of [14] show, however, that for q > 1 the approximation with

q-Bernstein polynomials may be faster than with the classical ones. The following

respective result can be cited.
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Theorem A ([14], Theorem 6). Let q > 1 be fixed. If a function f is analytic in

{z : |z| < R}, R > q, then

(1.2) |Bn,q(f ; z) − f(z)| 6
Cf,q

[n]q
for |z| 6 1, n ∈ N.

That is, for functions analytic in {z : |z| < R}, R > q, the rate of approximation

by the q-Bernstein polynomials (q > 1) is of order q−n versus 1/n for the classical

Bernstein polynomials.

In this paper we discuss the sharpness of estimate (1.2). It is shown that

max
|z|61

|Bn,q(f ; z) − f(z)| = o(1/[n]q), n → ∞,

if and only if f is a linear function. Furthermore, estimate (1.2) is not possible for

a function analytic in {z : |z| < R}, 1 < R < q, which does not admit an analytic

continuation to {z : |z| < R1} with R1 > R. These results show that, in general,

the estimate of Theorem A cannot be improved. We would like to mention that the

problems of the impossibility of certain estimates for Bernstein-type operators have

been considered in [2].

For functions analytic in a disc {z : |z| < R}, R > 1, the following statement has

been known.

Theorem B ([14], Theorem 7). If a function f is analytic in {z : |z| > R}, R > 1,

then the following estimate holds:

(1.3) |Bn,q(f ; z) − f(z)| 6
Cf

n
for |z| 6 1, n ∈ N.

In this paper we generalize estimate (1.3) showing that for functions analytic in

{z : |z| < R}, R > 1, the rate of approximation by the q-Bernstein polynomials in

the closed unit disc is also exponential, but slower than that in (1.2).

The saturation phenomenon plays an important role in the approximation by

positive linear operators, in particular by Bernstein polynomials. For the q-Bernstein

polynomials it has been studied by H.Wang ([21]) in the case 0 < q < 1; by H.Wang

and X. Z.Wu ([22]) in the case q > 1. It is worth pointing out that [22] contains a

new saturation result for the classical Bernstein polynomials in a complex domain.

The present paper exhibits new results related to the saturation of convergence for

the q-Bernstein polynomials in the case q > 1.
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2. Statement of results

We start with the following statement showing the sharpness of estimate (1.2).

Theorem 2.1. If

(2.1) max
|z|61

|Bn,q(f ; z) − f(z)| = o
( 1

[n]q

)

, n → ∞,

then f is a linear function.

The next theorem shows that estimate (1.3) is not possible for functions analytic

in a narrower disc than the one stated by Theorem A.

Theorem 2.2. Let f(z) be analytic in a disc {z : |z| < R}, 1 < R < q. Then, for

any ε > 0 and 1 6 |z| < R − ε, we have

(2.2) |Bn,q(f ; z) − f(z)| 6 C
|z|n

(R − ε)n
,

where C = Cf,q,R,ε.

If f does not admit an analytic continuation into a disc {z : |z| < R1}, R1 > R,

then (2.2) ceases to be true if one replaces R − ε by R + ε.

Corollary 2.3. If f(z) is analytic in {z : |z| < R}, 1 < R < q, and does not

admit an analytic continuation into a disc {z : |z| < R1}, R1 > R, then estimate

(1.2) is not possible.

3. Proofs of the theorems

It has been proved in Lemma 2 of [14] that for n > m, one has

(3.1) Bn,q(t
m; z) = α(n)

m,mzm + α
(n)
m−1,mzm−1 + . . . + α

(n)
1,mz,

where α
(n)
i,m > 0, i = 1, . . . , m with

m
∑

i=1

α
(n)
i,m = 1 and

(3.2) α
(n)
0,0 = α

(n)
1,1 = 1, α(n)

m,m =
(

1 −
1

[n]q

)(

1 −
[2]q
[n]q

)

. . .
(

1 −
[m − 1]q

[n]q

)

=: λmn.

Remark 3.1. We notice that λmn are the eigenvalues of the q-Bernstein operator

(cf. [14], Lemma 5). For q = 1, the numbers λmn, 0 6 m 6 n, are the eigenvalues

of the Bernstein operator, see [4]. The latter result has been extended to the case

q 6= 1 in [14].
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The q-Bernstein polynomials admit the following representation via the divided

differences of f (see [14], formulae (6) and (7)):

(3.3) Bn(f, q; x) =

n
∑

k=0

λknf

[

0;
1

[n]q
; . . . ;

[k]q
[n]q

]

xk,

where λkn are given by (3.2).

Note that

(3.4) λ0n = λ1n = 1,

and it is clear from (3.2) that

(3.5) 0 6 λkn 6 1, k = 0, 1, . . . , n.

When q = 1, we get the known representation for the classical Bernstein polynomials,

see [11], Chapter 4, §4.1.

If is known (cf. e.g. [11], §2.7, p. 44) that the divided differences of an analytic

function f can be expressed by

(3.6) f [x0; x1; . . . ; xk] =
1

2πi

∮

L

f(ζ) dζ

(ζ − x0) . . . (ζ − xk)
,

where L is a contour encircling x0, . . . , xk and f is assumed to be analytic on and

within L .

We start with a saturation-type result for analytic functions with non-negative

coefficients.

Lemma 3.1. Let f(z) =
∞
∑

k=0

ckzk with ck > 0 and
∞
∑

k=0

ck < ∞. Then for any

m > 2, n > m, one has

(3.7) max
x∈[0,1]

|Bn,q(f ; x) − f(x)| >
cm

me[n]q
.

P r o o f of Lemma 3.1. Due to the fact that Bn,q is a bounded linear operator on

C[0, 1], we have

Bn,q(f ; x) =

∞
∑

k=0

ckBn,q(t
k; x).

Since Bn,q leaves invariant linear functions, it follows that

Bn,q(f ; x) − f(x) =
∞
∑

k=2

ck{Bn,q(t
k; x) − xk}.
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We fix m > 2. By virtue of (3.1), for n > m,

Bn,q(t
m; x) − xm = (α(n)

m,m − 1)xm + α
(n)
m−1,mxm−1 + . . . + α

(n)
1,mx

> (α(n)
m,m − 1)xm + (α

(n)
m−1,m + . . . + α

(n)
1,m)xm−1

= (1 − α(n)
m,m)xm−1(1 − x).

Therefore,

|Bn,q(f ; x) − f(x)| > cm(1 − α(n)
m,m)xm−1(1 − x).

For m > 2, (3.2) implies that α
(n)
m,m 6 (1 − 1/[n]q) and we have

max
x∈[0,1]

|Bn,q(f ; x) − f(x)| >
cm

[n]q
max

x∈[0,1]
xm−1(1 − x)

=
cm

m[n]q

(

1 −
1

m

)m−1

>
cm

me
·

1

[n]q
.

�

P r o o f of Theorem 2.1. By condition (2.1), a function f is analytic in {z : |z| <

1}, that is f(z) =
∞
∑

k=0

ckzk. By virtue of (3.3), the Cauchy estimates together with

(2.1) imply that for each fixed k > 2, we have

λknf

[

0;
1

[n]q
; . . . ;

[k]q
[n]q

]

−
f (k)(0)

k!
= o

( 1

[n]q

)

, n → ∞

or

λkn

{

f

[

0;
1

[n]q
; . . . ;

[k]q
[n]q

]

−
f (k)(0)

k!

}

+ (λkn − 1)
f (k)(0)

k!
= o

( 1

[n]q

)

, n → ∞.

Using the Cauchy Theorem and (3.6), we obtain

lim
n→∞

λkn[n]q
2πi

∮

|ζ|=1

{

1

ζ(ζ − 1/[n]q) . . . (ζ − [k]q/[n]q)
− 1/ζk+1

}

f(ζ) dζ

= lim
n→∞

λkn[n]q
2πi

∮

|ζ|=1

{

ζk − (ζ − 1/[n]q) . . . (ζ − [k]q/[n]q)

ζk+1(ζ − 1/[n]q) . . . (ζ − [k]q/[n]q)

}

f(ζ) dζ

=
1

2πi

∮

|ζ|=1

ζk−1(1 + [2]q + . . . + [k]q)

ζ2k+1
f(ζ) dζ

=
1 + [2]q + . . . + [k]q

(k + 1)!
f (k+1)(0) = (1 + [2]q + . . . + [k]q)ck+1.
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On the other hand,

lim
n→∞

[n]q (1 − λkn) = 1 + [2]q + . . . + [k − 1]q.

As a result, we obtain

ck+1 (1 + [2]q + . . . + [k]q) = ck(1 + [2]q + . . . + [k − 1]q), k > 2,

whence

ck+1 =
c2

1 + [2]q + . . . + [k]q
, k > 2.

Therefore, if (2.1) is true, then arg ck = arg c2 for all k > 2. Without loss of gener-

ality, we may assume that all ck > 0. Applying Lemma 3.1, we derive the required

statement. �

Now we prove a technical lemma needed for the proof of Theorem 2.2.

Lemma 3.2. Let q > 1. Then

lim
n→∞

n−1
∏

k=1

(

1 −
[k]q

a[n − k]q

)

=

∞
∏

k=1

(

1 −
1

aqk

)

.

P r o o f of Lemma 3.2. Consider

∣

∣

∣

∣

ln

n−1
∏

k=1

(

1 −
[k]q

a[n − k]q

)

∣

∣

∣

∣

=

n−1
∑

k=1

∣

∣

∣
ln

(

1 −
[n − k]q
a[n]q

)∣

∣

∣
=:

∞
∑

k=0

dkn,

where

dkn =







∣

∣

∣
ln

(

1 −
[n − k]q
a[n]q

)
∣

∣

∣
if 1 6 k 6 n − 1,

0 otherwise.

Clearly

0 6 dkn 6

∣

∣

∣
ln

(

1 −
1

aqk

)∣

∣

∣
for all k, n ∈ N

and

lim
n→∞

dkn =
∣

∣

∣
ln

(

1 −
1

aqk

)∣

∣

∣
for each k ∈ N.

Since
∞
∑

k=1

|ln(1 − 1/aqk)| < ∞, we may apply the Lebesgue Dominated Convergence

Theorem to obtain

lim
n→∞

∞
∑

k=1

dkn =
∞
∑

k=1

( lim
n→∞

dkn) =
∞
∑

k=1

∣

∣

∣
ln

(

1 −
1

aqk

)∣

∣

∣
.
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Equivalently,

lim
n→∞

∣

∣

∣

∣

ln

n−1
∏

k=1

(

1 −
[n − k]q
a[n]q

)

∣

∣

∣

∣

=

∣

∣

∣

∣

ln

∞
∏

k=1

(

1 −
1

aqk

)

∣

∣

∣

∣

.

The statement now follows. �

In the sequel, we use either the letter C or the abbreviation Const to denote posi-

tive constants whose value may not be specified explicitly. We notice that constants

denoted by the same symbol need not be equal to each other.

P r o o f of Theorem 2.2. Let

f(z) =

∞
∑

k=0

ckzk, Bn,q(f ; z) =

∞
∑

k=0

cknzk.

Then, for 1 6 |z| < R − ε,

(3.8) |Bn,q(f ; z)− f(z)| 6 |z|n
n

∑

k=0

|ckn − ck| +

∞
∑

k=n+1

|ck| · |z|
k =: σ1 + σ2.

To estimate σ1, we write using (3.6) and (3.3):

ck − ckn =
1

2πi

∮

|ζ|=R−ε1

{ 1

ζk+1
−

λkn

ζ(ζ − 1/[n]q) . . . (ζ − [k]q/[n]q)

}

f(ζ) dζ,

where 1 < R − ε < R − ε1 < q. Hence

|ck − ckn| 6
1

2π

∣

∣

∣

∣

∮

|ζ|=R−ε1

1 − λkn

ζ(ζ − 1/[n]q) . . . (ζ − [k]q/[n]q)
f(ζ) dζ

∣

∣

∣

∣

+
1

2π

∣

∣

∣

∣

∮

|ζ|=R−ε1

{ 1

ζk+1
−

1

ζ(ζ − 1/[n]q) . . . (ζ − [k]q/[n]q)

}

f(ζ) dζ

∣

∣

∣

∣

=: Ikn + Jkn.

We set

Mf (r) := max
|z|6r

|f(z)|.

With this notation, we write

Ikn 6
(1 − λkn)Mf (R − ε1)

(R − ε1)
k
(1 − ((R − ε1)[n]q)−1) . . . (1 − [k]q((R − ε1)[n]q)−1)

.
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Consider the product in the denominator. Evidently, for n large enough, we have

(

1−
1

(R − ε1)[n]q

)

. . .
(

1−
[k]q

(R − ε1)[n]q

)

>

(

1−
1

(R − ε1)[n]q

)

. . .
(

1−
[n − 1]q

(R − ε1)[n]q

)

.

By virtue of Lemma 3.2,

lim
n→∞

n−1
∏

j=1

(

1 −
[j]q

(R − ε1)[n]q

)

=

∞
∏

j=1

(

1 −
1

(R − ε1)qj

)

6= 0.

Therefore,

(3.9)
(

1 −
1

(R − ε1)[n]q

)

. . .
(

1 −
[k]q

(R − ε1)[n]q

)

> C > 0.

As a result, we obtain

Ikn 6
Const(1 − λ

(n)
k )

(R − ε1)k
6

Const(1 + [2]q + . . . + [k − 1]q)

[n]q(R − ε1)k

=
Const(qk − k)

(R − ε1)k · [n]q · (q − 1)
6

Const qk

(R − ε1)kqn
=

C

(R − ε1)

(R − ε1

q

)n−k

.

Hence

(3.10) |z|n
n

∑

k=0

Ikn 6 Const
|z|n

(R − ε1)n

∞
∑

k=0

(R − ε1

q

)k

=: Const
|z|n

(R − ε1)n
.

Now, we estimate the second term

Jkn =
1

2π

∮

|ζ|=R−ε1

∣

∣

∣

∣

(ζ − 1/[n]q) . . . (ζ − 1/[n]q) − ζk

ζk+1(ζ − 1/[n]q) . . . (ζ − 1/[n]q)
f(ζ) dζ

∣

∣

∣

∣

6
Mf (R − ε1)

2π(R − ε1)k+1

∮

|ζ|=R−ε1

|(1 − 1/ζ[n]q) . . . (1 − [k]q/ζ[n]q) − 1|

|(1 − 1/ζ[n]q) . . . (1 − [k]q/[n]q)|
|dζ|

6
Const

(R − ε)k
max

|ζ|=R−ε1

|(1 − 1/ζ[n]q) . . . (1 − [k]q/ζ[n]q) − 1|

|(1 − 1/ζ[n]q) . . . (1 − [k]q/[n]q)|

6
Const

(R − ε)k
max

|ζ|=R−ε1

∣

∣

∣

(

1 −
1

ζ[n]q

)

. . .
(

1 −
[k]q
ζ[n]q

)

− 1
∣

∣

∣
,

by virtue of (3.9).

Setting

u(ζ) := ln

k
∏

j=1

(

1 −
[j]q
ζ[n]q

)

,
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we obtain

|u(ζ)| 6

k
∑

j=1

∣

∣

∣
ln

(

1 −
[j]q
ζ[n]q

)∣

∣

∣
6

k
∑

j=1

[j]q/(R − ε1)[n]q
1 − [j]q/(R − ε1)[n]q

=

k
∑

j=1

[j]q
(R − ε1)[n]q − [j]q

=
1

[n]q

k
∑

j=1

[j]q
(R − ε1) − [j]q/[n]q

6
1

[n]q

k
∑

j=1

[j]q
(R − ε1) − 1

=: Const
[k + 1]q − (k + 1)

[n]q(q − 1)

6 Const qk−n.

Using the inequality |eu − 1| 6 |u|e|u|, we derive

∣

∣

∣

(

1 −
1

ζ[n]q

)

. . .
(

1 −
[k]q
ζ[n]q

)

− 1
∣

∣

∣
6 Cq · q

k−n.

Therefore,

Jkn 6
Const

(R − ε1)n

( q

(R − ε1)

)k−n

and

(3.11) σ1 6
Const

(R − ε1)n
.

On the other hand, the Cauchy estimates imply that

|ck| 6
Mf(R − ε1)

(R − ε1)k
,

whence

(3.12) σ2 6 Mf (R − ε1)
( |z|

R − ε1

)n+1 ∞
∑

k=0

( R − ε

R − ε1

)k

6 Const
( |z|

R − ε1

)n

.

Substituting estimates (3.11) and (3.12) with ε1 = ε/2 into (3.8), we derive (2.2).

Now, we assume that for 1 6 |z| < R − ε, the following estimate holds for some

ε > 0:

|Bn,q(f ; z) − f(z)| 6
|z|n

(R + ε)n
, n ∈ N.

With the Cauchy Theorem this implies that the Taylor coefficients of f satisfy

|cn+1| 6
Const

(R + ε)n
, n ∈ N.

Consequently, f(z) admits an analytic continuation into {z : |z| < R + ε}, contrary

to the condition of the theorem. �
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