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Abstract. Let G be a connected simple graph on n vertices. The Laplacian index of G,
namely, the greatest Laplacian eigenvalue of G, is well known to be bounded above by n.
In this paper, we give structural characterizations for graphs G with the largest Laplacian
index n. Regular graphs, Hamiltonian graphs and planar graphs with the largest Laplacian
index are investigated. We present a necessary and sufficient condition on n and k for the
existence of a k-regular graph G of order n with the largest Laplacian index n. We prove
that for a graph G of order n > 3 with the largest Laplacian index n, G is Hamiltonian if
G is regular or its maximum vertex degree is ∆(G) = n/2. Moreover, we obtain some useful
inequalities concerning the Laplacian index and the algebraic connectivity which produce
miscellaneous related results.

Keywords: eigenvalue, Laplacian index, algebraic connectivity, semi-regular graph, reg-
ular graph, Hamiltonian graph, planar graph
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1. Introduction

Throughout the paper, G denotes a connected simple graph on n vertices, unless

specified otherwise. The spectrum of a graph G is the sequence of eigenvalues of the

adjacency matrix A(G), denoted by λ1 > λ2 > . . . > λn. The Laplacian matrix of G

is L(G) = D(G)−A(G), whereD(G) is the diagonal matrix of vertex degrees. L(G) is

singular and positive semidefinite with eigenvalues µn > µn−1 > . . . > µ2 > µ1 = 0,

which are called Laplacian eigenvalues. The multiplicity of a Laplacian eigenvalue µ
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of G is denoted by mG(µ). The greatest Laplacian eigenvalue (µn) of G is called the

Laplacian index of G.

Characterizing graphs with a certain spectrum is an interesting topic, and many

results have been reported (see [2]). For the Laplacian spectrum, the known works

seem to be focused on the Laplacian index (see [8]). Here we recall the following

important result, where G denotes the complement of the graph G and ω(G) the

number of connected components of G.

Theorem A ([8]). For any graph G of order n we have µn 6 n, and mG(n) =

ω(G) − 1.

It is well known (see [3]) that G has the second smallest Laplacian value µ2 = 0

if and only if G is a disconnected graph. So µ2 is called the algebraic connectivity

of G. The following corollary is an immediate consequence of Theorem A.

Corollary 1.1. G has the largest Laplacian eigenvalue n ⇔ mG(n) > 1 ⇔ G is

disconnected ⇔ µ2(G) = 0 ⇔ mG(0) > 2.

In [5], Gutman shows that among all trees with a fixed number of vertices, the

star, and only the star, has the largest Laplacian index equaling its order.

In this paper, we will give structural characterizations for graphs on n vertices with

the largest Laplacian index n. We will also investigate special classes of graphs, such

as regular graphs, Hamiltonian graphs and planar graphs, with the largest Laplacian

index n. Moreover, we will present some useful inequalities involving the Laplacian

index and the algebraic connectivity, and then obtain miscellaneous related results.

We follow the standard terminology. The degree of a vertex u of a graph G

is denoted by d(u), and the maximum degree and the minimum degree of G are

denoted by ∆(G) and δ(G), respectively. G is said to be semi-regular if the degree of

any vertex is either ∆(G) or δ(G). If ∆(G) = δ(G) = k, then G is k-regular. Clearly,

µi = k − λi for k-regular graphs. Note that the set of semi-regular graphs includes

the set of regular graphs.

A subgraph of G is a graph whose vertices and edges belong to G. A spanning

subgraph of G is a subgraph containing all vertices of G. For any subset S of vertices

of G, the induced subgraph 〈S〉 is the maximal subgraph with the vertex set S. A

cycle in G is called a Hamiltonian cycle if it passes through every vertex of G exactly

once. A graph that contains a Hamiltonian cycle is a Hamiltonian graph. If G can

be embedded in the plane so that no two edges intersect at an inner point of any

edge, then G is called a planar graph. Further, if G has such a plane embedding

with all vertices lying on the exterior boundary, then G is called an outerplanar

graph. An outerplanar graph is called a maximal outerplanar graph if no edge can
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be added without losing outerplanarity. Two graphs are homeomorphic if they can

both be obtained from the same graph by inserting new vertices of degree two into

some edges. The symbols Pn, Cn and Ks,r denote the path of order n, the cycle of

order n, and the complete bipartite graph with s vertices in one part and r vertices in

another part, respectively. For terminology and notation not defined here, we refer

the readers to [1–7].

2. Characterizations for graphs with the largest Laplacian index

From Theorem A it is easy to see that 0 6 mG(n) 6 n− 1 and that mG(n) = 0 if

and only if G is connected. Below we first give a necessary and sufficient condition

for G to have mG(n) = k when 1 6 k 6 n − 1.

Theorem 2.1. For 1 6 k 6 n − 1, mG(n) = k if and only if G has a spanning

subgraph that is a complete (k + 1)-partite graph.

P r o o f. Suppose that mG(n) = k. By Theorem A, G has k + 1 connected

components, say G1, G2, . . . , Gk+1. Thus G contains a subgraph H = (V, E), where

V = V (G1) ∪ V (G2) ∪ . . . ∪ V (Gk+1), E = {{u, v} | u ∈ V (Gi), v ∈ V (Gj), i 6= j}.

Clearly, H is a spanning subgraph that is a complete (k + 1)-partite graph. Con-

versely, if G has a complete (k + 1)-partite graph as a spanning subgraph, then

G contains k + 1 connected components. By Theorem A, mG(n) = k. �

From Theorem 2.1, we can easily obtain the following results.

Corollary 2.1. IfmG(n) = k, then G containsKk+1 as a subgraph. In particular,

mG(n) = n − 1 if and only if G ∼= Kn.

Corollary 2.2. The chromatic number χ(G) satisfies χ(G) > mG(n) + 1.

Corollary 2.3. If G is a bipartite graph, then mG(n) 6 1. The equality holds if

and only if G is complete.

We recall that the join of two graphs G1 and G2, denoted by G1 ∨ G2, is the

graph obtained from the disjoint union of G1 and G2 by adding the edges joining

every vertex of G1 with every vertex of G2. We will use this graph operation to

give a structural characterization for graphs on n vertices with the largest Laplacian

index n in the next theorem.
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Theorem 2.2. The following statements are equivalent:

(1) µn(G) = n.

(2) G has a spanning subgraph that is a complete bipartite graph.

(3) G = G1 ∨ G2, where each Gi is a graph with at least one vertex.

P r o o f. By Theorem 2.1 we see the equivalence of (1) and (2). So we only need

to prove the equivalence of (2) and (3). Suppose that G has a spanning subgraph H

that is a complete bipartite graph. Denote the two parts of H as V1 and V2. Let G1

and G2 be the two corresponding subgraphs of G induced by V1 and V2, respectively.

Then G = G1 ∨ G2. Thus we have proved that (2) implies (3). Conversely, suppose

(3) is true. Letting V1 and V2 be the vertex sets of G1 and G2, respectively, then (2)

immediately follows, since the complete bipartite graph with V1 and V2 as its two

parts is a spanning subgraph of G. �

From the above theorem we easily see that the complete graphKn and all complete

bipartite graphs on n vertices have the largest Laplacian index n.

Considering the maximum degree of G, we immediately get the following

Corollary 2.4. If µn(G) = n, then ∆(G) > 1
2n.

In fact, it is well known (see [5]) that if δ(G) > 1
2 (n − 2) then G is connected. So

we can obtain Corollary 2.4 also by Corollary 1.1.

Applying Theorem 2.2 to trees and cycles, we can easily get the following results.

Corollary 2.5 (Gutman [5]). For trees G, µn(G) = n if and only if G is a star.

In particular, for paths G, µn(G) = n if and only if G ∼= P1, P2 or P3.

Corollary 2.6. For cycles G, µn(G) = n if and only if G ∼= C3 or C4.

Let S(n, i) denote a graph obtained by adding i edges to pendants of K1,n−1.

Corollary 2.7. For unicylic graph G of order n, µn(G) = n if and only if G is

isomorphic to S(n, 1) or C4.

Corollary 2.8. For bicylic graph G of order n, µn(G) = n if and only if G is

isomorphic to S(n, 2) or K2,3.

Corollary 2.9. For tricylic graph G of order n, µn(G) = n if and only if G is

isomorphic to S(n, 3) or K2,3 + e or K2,4.

In the next corollary, we present a method of constructing graphs G with the

largest Laplacian index n, with ∆(G) running over [⌈ 1
2n⌉, n − 1].
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Corollary 2.10. For any positive integers n and k with 1
2n 6 k 6 n − 1, there

exists a graph G with µn(G) = n and ∆(G) = k.

P r o o f. Consider G = Kk,n−k. Then ∆(G) = k. By Theorem 2.2 we have

µn(G) = n. �

By virtue of Theorem 2.2 we can also easily give a structural characterization for

regular graphs with the largest Laplacian index n as follows.

Corollary 2.11. For n > 2, G is a regular graph with µn(G) = n if and only if

G = G1 ∨ G2, where Gi is an ri-regular graph with ni vertices, ni > 0, ri > 0 for

i = 1, 2; n1 + n2 = n, and n1 + r2 = n2 + r1.

Now, it is natural to consider the following question: Is it true that there exists a

k-regular graph G with µn(G) = n whenever 1
2n 6 k 6 n − 1?

The answer is negative in general, since it is a well known fact that the number

of vertices of odd degrees cannot be odd in any graph. However, we have obtained a

necessary and sufficient condition on n and k for the existence of a k-regular graph G

with µn(G) = n, as follows.

Theorem 2.3. There is a k-regular graph G with µn(G) = n if and only if nk is

even and 1
2n 6 k 6 n − 1.

Our proof of Theorem 2.3 needs the following lemma which has interest in its own

right.

Lemma 2.1. Let p > 0 be an even integer. For any integer k with 0 6 k 6 p− 1,

there is a k-regular simple graph G of order p.

P r o o f. It is a well known fact that the complete graph Kp is 1-factorable (see

p. 71 of [1]), i.e., there are edge-disjoint 1-regular spanning subgraphs H1, H2, . . . ,

Hp−1 such that G = H1 ∪ H2 ∪ . . . ∪ Hp−1. Then, the desired graph is obtained by

letting G = H1 ∪ H2 ∪ . . . ∪ Hk. �

Now the proof for Theorem 2.3 goes as follows.

P r o o f of Theorem 2.3. Necessity is directly seen from Corollary 2.4 and the fact

we pointed out before Theorem 2.3. So we only need to show sufficiency. Assume

that nk is even and 1
2n 6 k 6 n− 1. We may distinguish two cases according to the

parity of k.

Case 1. k is even. Note that 0 6 2k − n 6 k − 1. Then by Lemma 2.1, there

is a (2k − n)-regular graph G1 of order k. Let G2 be the graph with n − k isolated

vertices. It is easy to check that G = G1 ∨ G2 is k-regular. Hence G is a desired

graph by Corollary 2.11.
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Case 2. k is odd. Since nk is even, n must be even. If k = 1
2n, then G = Kk,k is

the desired graph. So we may assume that k > 1
2n + 1. Then 2k − n − 1 > 1. It is

also clear that 2k − n− 1 < k − 1. So by Lemma 2.1, there is a (2k − n− 1)-regular

graph G1 of order k − 1, because k − 1 is even. Note that n − k + 1 is even. Hence

we may let G2 be the 1-regular graph consisting of
1
2 (n− k + 1) isolated graphs K2.

Then, G = G1 ∨G2 is a k-regular graph of order n. By Corollary 2.11, G is a graph

as desired. �

We know that for k-regular graphs G of order n, λi = k − µi. So the smallest of

their least eigenvalues is k−n. Then Corollary 2.11 and Theorem 2.3 can be restated

as follows.

Corollary 2.12. For n > 2, G is a k-regular graph with the smallest eigen-

value k−n if and only if G = G1∨G2, where Gi is an ri-regular graph with ni (> 0)

vertices, n1 + n2 = n, and n1 + r2 = n2 + r1 = k.

Corollary 2.13. There is a k-regular graph G with the smallest eigenvalue k−n

if and only if nk is even and 1
2n 6 k 6 n − 1.

3. Laplacian index and algebraic connectivity

Lemma 3.1 ([6]). For a symmetric partitioned matrix A, the eigenvalues of the

quotient matrix QA interlace the eigenvalues of A. Moreover, if the interlacing is

tight, then the partition is regular.

It is obvious that 0 6 mG(n) 6 n − 1 for any graph G of order n.

Theorem 3.1. Let n and k be integers with 0 6 k 6 n − 1. If mG(n) = k, then

G has k + 1 vertices, say v1, v2, . . . , vk+1, such that

k+1
∑

i=1

d(vi) >
(k + 1)(n − k − 1)

n
µ2(G) + k(k + 1),(3.0)

k+1
∑

i=1

d(vi) > −
(k + 1)(n − k − 1)

n
µn(G) + (n − 1)(k + 1).(3.1)

The equality in (3.0) holds if and only if the equality in (3.1) holds, and then G is

semi-regular.

P r o o f. First, we consider the case k = n − 1. By Theorem A, G has n

connected components so that G is the complete graph Kn. Then it is easy to verify
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that the equalities in (3.0) and (3.1) hold. Next, we assume that 0 6 k 6 n − 2.

Since mG(n) = k, then by Theorem A, G has at least k + 1 connected components,

from which we can get an independent set X consisting of k + 1 vertices of G. Let

Y = V (G)−X . Then neither X nor Y is empty since 0 6 k 6 n−2. So, (X,Y) gives

rise to a partition of L(G) with the quotient matrix

QL(G) =

















k+1
∑

i=1

(n − 1 − d(vi))

k + 1
−

k+1
∑

i=1

(n − 1 − d(vi))

k + 1

−

k+1
∑

i=1

(n − 1 − d(vi))

n − k − 1

k+1
∑

i=1

(n − 1 − d(vi))

n − k − 1

















.

By easy calculation one can see that QL(G) has two eigenvalues

δ1 =
n(n − 1)

n − k − 1
−

n

(k + 1)(n − k − 1)

k+1
∑

i=1

d(vi), δ2 = 0,

and that δ1 > δ2. Then by using the Interlacing Lemma (Lemma 3.1) we obtain

the inequality (3.1). We have µ2(G) + µn(G) = n, and so it is easy to see that the

equality in (3.0) holds if and only if the equality in (3.1) holds.

Moreover, if the equality in (3.1) holds, then µ1(G) = 0 = δ2 and µn(G) = δ1.

Thus, the interlacing is tight and so the partition is regular. It follows that d(v1) =

d(v2) = . . . = d(vk+1) and d(vk+2) = . . . = d(vn), i.e., G is semi-regular. �

Applying Theorem 3.1 to regular graphs, we have the following corollaries.

Corollary 3.1. If G is r-regular and mG(n) = k, then

µ2(G) 6
n(r − k)

n − k − 1
,(3.2)

µn(G) >
n(n − r − 1)

n − k − 1
.(3.3)

The equality holds in (3.2) if and only if the equality holds in (3.3).

Moreover, we have another interesting result for regular graphs.
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Corollary 3.2. If G is r-regular, then mG(n) 6 r. The equality holds if and only

if G ∼= Kn.

P r o o f. Since µ2(G) > µ1(G) = 0, the inequality mG(n) 6 r follows from

Corollary 3.2. If G ∼= Kn, then mG(n) = n − 1 = r. If mG(n) = r, then by

Theorem 2.1 G has a spanning subgraph G1 which is a complete (r+1) partite graph.

Let Vi denote the ith partite vertex of G1, then |Vi| = 1 holds for 1 6 i 6 r + 1.

Otherwise, we would have d(v0) > r + 1 for some vertex v0 ∈ V (G), a contradiction.

Hence r = n − 1 and G ∼= Kn. �

Let α(G), or α for short, denote the independence number of G, which is the

largest number of vertices in a coclique (independent set of vertices) of G.

Theorem 3.2. Let {v1, v2, . . . , vα} be a largest coclique of G. Then

µn(G) >
n

α(n − α)

α
∑

i=1

d(vi).

If G has a coclique that meets this bound, then G is semi-regular.

P r o o f. The coclique {v1, v2, . . . , vα} gives rise to a partition of L(G) with the

quotient matrix

QL(G) =















α
∑

i=1

d(vi)

α
−

α
∑

i=1

d(vi)

α

−

α
∑

i=1

d(vi)

n − α

α
∑

i=1

d(vi)

n − α















.

Then QL(G) has two eigenvalues δ1 = n(α(n − α))−1
α
∑

i=1

d(vi), δ2 = 0 with δ1 > δ2.

Then by Lemma 3.2, the inequality follows. Moreover, if G has a coclique that meets

this bound, then µ1(G) = 0 = δ2 and µn(G) = δ1. The interlacing is tight and hence

the partition is regular. So d(v1) = d(v2) = . . . = d(vα) and d(vα+1) = . . . = d(vn),

this implies that G is semi-regular. �

Applying Theorem 3.2 to regular graphs, we obtain the following simple upper

bound for the independence number of a regular graph.

Corollary 3.3. Let G be an r-regular graph and α its independence number.

Then α 6 n − r. If the equality holds then µn(G) = n.

P r o o f. Since G is r-regular, we have µn(G) > nr(n − α)−1 by Theorem 3.2.

From Theorem A we immediately have n > µn(G) > nr(n − α)−1. Then the desired

conclusion follows. �
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Let β(G), or β for short, denote the largest number of vertices in a clique of G.

Theorem 3.3. Let {v1, v2, . . . , vβ} be a largest clique of G. Then

µ2(G) 6
n

β(n − β)

( β
∑

i=1

d(vi) + β(1 − β)

)

.

If G has a clique that meets this bound, then G is semi-regular.

P r o o f. Note that β(G) = α(G), by Theorem 3.2 and Lemma 3.1, µ2(G) = n−

µn(G) 6 n−n(β(n − β))−1
β
∑

i=1

(n−1−d(vi)) = n(β(n − β))−1
( β

∑

i=1

d(vi)+β(1−β)
)

.

If G has a clique that meets this bound, then G is semi-regular by Theorem 3.2

and so G is semi-regular. �

Corollary 3.4. If G is r-regular, then

µ2(G) 6
n

n − β
(r + 1 − β).

4. Hamiltonian graphs with the largest Laplacian index

In order to obtain the results of this section we first recall the well-known Dirac’s

theorem that gives a simple sufficient condition for Hamiltonian graphs.

Theorem 4.1 (Dirac, see [7]). For a simple graph G with n (n > 3) vertices, if

d(u) > 1
2n for every vertex u, then G is Hamiltonian.

We prove the existence of Hamiltonian graphs G with the largest Laplacian index

n in the next theorem.

Theorem 4.2. For any integers n, k with n > 3 and ⌈ 1
2n⌉ 6 k 6 n − 1, there

exists a Hamiltonian graph G with µn(G) = n and ∆(G) = k.

P r o o f. When nk is even, by Theorem 2.3 there is a k-regular graph G of

order n with µn(G) = n. Then by Dirac’s theorem (Theorem 4.1), G is Hamiltonian.

When nk is odd, then we can construct the desired graph G by adding some edges

to the complete bipartite graph Kk,n−k with bipartition (A, B), where |A| = k and

|B| = n − k. Let A = {a1, . . . , an−k, . . . , ak} and B = {b1, . . . , bn−k}. (Note that

k > n−k since k > ⌈ 1
2n⌉ and n is odd.) By adding the new edges joining ai and ai+1
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for all i = n − k, . . . , k − 1, the resulting graph G is Hamiltonian since it contains a

Hamiltonian cycle a1b1akak−1 . . . an−kbn−kan−k−1bn−k−1 . . . b2a1.

To show that ∆(G) = k, we only need to show that d(ai) 6 k for all ai ∈ A, since

every bj ∈ B has the same degree k. We proceed by distinguishing whether k = ⌈ 1
2n⌉

or not. If k = ⌈ 1
2n⌉, then k = 1

2 (n + 1) since n is odd. Then k = (n − k) + 1 and

d(ai) 6 (n− k) + 1 = k for all ai ∈ A. If k > ⌈ 1
2n⌉, then k > 1

2 (n + 1) + 1, and then

k > n − k + 3, hence d(ai) 6 (n − k) + 2 < k for all ai ∈ A. Thus we have proved

∆(G) = k. Hence G is a desired graph by Theorem 2.2. �

Next we give some conditions for graphs to be Hamiltonian in terms of the largest

Laplacian index.

Proposition 4.1. Let n > 3 be an even number and let G be a graph of order n

with ∆(G) = 1
2n. If µn(G) = n then G is Hamiltonian.

P r o o f. If µn(G) = n, then by Theorem 2.2 G contains a spanning sub-

graph Ka,b. Since ∆(G) = 1
2n (n even), a = b = 1

2n. Then by Dirac’s theorem,

G is Hamiltonian. �

Proposition 4.2. Let G be a regular graph of order n > 3. If µn(G) = n then

G is Hamiltonian.

P r o o f. If µn(G) = n, then by Theorem 2.2 G contains a spanning sub-

graph Ka,b. Let G be k-regular. Then k > max{a, b} > ⌈ 1
2n⌉. By Dirac’s theorem

G is Hamiltonian. �

Summarizing Propositions 4.1 and 4.2, we get the following result.

Theorem 4.3. For graphs G of order n > 3 with the largest Laplacian index n,

G is Hamiltonian if G is regular or its maximum vertex degree satisfies ∆(G) = 1
2n.

Note that for k-regular graphs G, the condition µn(G) = n in Proposition 4.2 can

be replaced by λn(G) = k − n. Then we can give a sufficient condition, in terms of

eigenvalues, for a regular graph to be Hamiltonian.

Theorem 4.4. For k-regular graphs G of order n > 3, if k − n is an eigenvalue

of G, then G is Hamiltonian.

5. Planar graphs with the largest Laplacian index

Considering connected graphs of order n, we denote by Pn, OPn, MOPn the sets

of planar graphs, outerplanar graphs, and maximal outerplanar graphs, respectively.

To prove our results, we need the following well known theorems for planar graphs.
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Theorem 5.1 (Kuratowski, see [7]). G ∈ Pn if and only if G contains no subgraph

homeomorphic to K5 or K3,3.

Theorem 5.2 (see [7]). G ∈ OPn if and only if G contains no subgraph homeo-

morphic to K4 or K2,3.

Now we establish the following theorems.

Theorem 5.3. For G ∈ Pn, µn(G) = n if and only if either ∆(G) = n − 1, or

∆(G) = n−2 and G has at least two vertices of degree n−2, which are not adjacent.

P r o o f. Since G ∈ Pn, G contains no K3,3 by Theorem 5.1. Hence by Theo-

rem 2.2, µn(G) = n if and only if G contains either K1,n−1 or K2,n−2. Then the

conclusion of Theorem 5.3 is easily obtained. �

Theorem 5.4. For G ∈ OPn (n > 5), µn(G) = n if and only if ∆(G) = n − 1.

P r o o f. Since G ∈ OPn and n > 5, by Theorem 5.2 G contains no K2,3. Hence

by Theorem 2.2, µn(G) = n if and only if G contains a spanning subgraph Ka,b with

min{a, b} = 1. Then the theorem immediately follows. �

Now we give the following corollary of Theorem 5.3 without a proof, since it can

be easily seen by contradiction.

Corollary 5.1. Let G be a graph of order n with ∆(G) < n − 2. If µn(G) = n,

then G /∈ Pn.

Similarly we have the following corollary of Theorem 5.4.

Corollary 5.2. Let G be a graph of order n with ∆(G) < n − 1 (n > 5). If

µn(G) = n, then G /∈ OPn.

Note thatMOPn ⊂ OPn and that the maximum degree of the maximal outerplanar

graph of order 4 is 3. We obtain the following corollary easily from Theorem 5.4.

Corollary 5.3. For G ∈ MOPn, µn(G) = n if and only if ∆(G) = n − 1.
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