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THE DIAMETER OF PAIRED-DOMINATION

VERTEX CRITICAL GRAPHS

Michael A. Henning, Pietermaritzburg, Christina M. Mynhardt, Victoria

(Received August 1, 2006)

Abstract. In this paper we continue the study of paired-domination in graphs introduced
by Haynes and Slater (Networks 32 (1998), 199–206). A paired-dominating set of a graph G

with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect
matching. The paired-domination number of G, denoted by γpr(G), is the minimum cardi-
nality of a paired-dominating set of G. The graph G is paired-domination vertex critical if
for every vertex v of G that is not adjacent to a vertex of degree one, γpr(G− v) < γpr(G).
We characterize the connected graphs with minimum degree one that are paired-domination
vertex critical and we obtain sharp bounds on their maximum diameter. We provide an
example which shows that the maximum diameter of a paired-domination vertex critical
graph is at least 3

2
(γpr(G)− 2). For γpr(G) 6 8, we show that this lower bound is precisely

the maximum diameter of a paired-domination vertex critical graph.
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1. Introduction

Domination and its variations in graphs are now well studied. The literature on

this subject has been surveyed and detailed in the two books by Haynes, Hedetniemi,

and Slater [11], [12]. Brigham, Chinn, and Dutton [1] began the study of vertex

domination critical graphs where the domination number decreases by the removal

of any vertex. Further properties of these graphs were explored in [7], [8], [21],

[22], [23], [24], but they have not been characterized. In [10] the same concept was

introduced for total domination. In this paper we investigate paired-domination

vertex critical graphs first studied by Edwards [5].

The first author was supported in part by the South African National Research Foun-
dation and the University of KwaZulu-Natal, the second author was supported by the
Natural Sciences and Engineering Research Council of Canada.
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A matching M in a graph G is a set of independent edges in G. The number of

edges in a maximum matching of G is called the matching number of G which we

denote by α′(G). A vertex of G incident with an edge of the matchingM is said to be

matched byM , or simplyM -matched. The matching M is called a perfect matching

in G if every vertex of G is M -matched. A paired-dominating set, abbreviated PDS,

of a graph G is a set S of vertices of G such that every vertex is adjacent to some

vertex in S and the subgraph G[S] induced by S contains a perfect matchingM (not

necessarily induced). Two vertices joined by an edge of M are said to be paired and

are also called partners in S. Every graph without isolated vertices has a PDS since

the end-vertices of any maximal matching form such a set. The paired-domination

number of G, denoted by γpr(G), is the minimum cardinality of a PDS. A PDS of

cardinality γpr(G) we call a γpr(G)-set. Paired-domination was introduced by Haynes

and Slater [14], [15] as a model for assigning backups to guards for security purposes,

and is studied, for example, in [2], [3], [4], [6], [9], [13], [16], [17], [18], [19], [20] and

elsewhere.

For notation and graph theory terminology we in general follow [11]. Specifically,

let G = (V, E) be a graph with vertex set V of order n and edge set E. The open

neighborhood of v ∈ V is N(v) = {u ∈ V : uv ∈ E} and the closed neighborhood of v

is N [v] = {v}∪N(v). For a set S ⊆ V , N(S) =
⋃

v∈S

N(v) and N [S] = N(S)∪S. For

sets S, T ⊆ V , we say that S dominates T if T ⊆ N [S] and that S paired-dominates T

if S dominates T in G and G[S] contains a perfect matching.

We denote the degree of a vertex v in G by dG(v), or simply by d(v) if the

graph G is clear from context. The minimum and maximum degrees of the graph G

are denoted by δ(G) and ∆(G), respectively. An end-vertex is a vertex of degree one

and a support vertex is one that is adjacent to an end-vertex. The set of support

vertices in G is denoted by S(G), while the complement of G is denoted by G. Two

vertices at maximum distance apart in G are called diametrical vertices of G.

We call a vertex v ∈ V paired-critical if γpr(G − v) < γpr(G). Since paired-

domination is undefined for a graph with isolated vertices, we say that a graph G is

paired-domination-vertex-critical, or γpr-vertex-critical, if every vertex of V \ S(G)

is paired-critical. If G is γpr-vertex-critical and γpr(G) = k, then we say that G is

k-γpr-vertex-critical. For example, the 5-cycle is 4-γpr-vertex-critical. A graph is

γpr-vertex-critical if and only if each of its components is γpr-vertex-critical. Also,

K2 is trivially 2-γpr-vertex-critical. So henceforth we consider only connected graphs

of order at least 3. The removal of a vertex can decrease the paired-domination

number by at most two. Hence:

Observation 1. If G is a γpr-vertex-critical graph, then γpr(G− v) = γpr(G)− 2

for every v ∈ V (G)\S(G). Furthermore, a γpr(G−v)-set contains no neighbour of v.
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In Section 2 we characterize the connected γpr-vertex-critical graphs that have an

end-vertex, and we obtain sharp bounds on their maximum diameter. In Section 3 we

show that the maximum diameter of a k-γpr-vertex-critical graph is at least
3
2
(k−2).

For k 6 8 we show in Section 4 that this maximum diameter is achieved.

2. Graphs with end-vertices

We can readily characterize the γpr-vertex-critical graphs with end-vertices. For

this purpose, we recall that the corona cor(H) of a graph H (also denoted H ◦ K1

in [11]) is the graph obtained from H by adding a pendant edge to each vertex of H .

Theorem 2. Let G be a connected graph of order at least 3 with at least one end-

vertex. Then G is γpr-vertex-critical if and only if G = cor(H) for some connected

graph H satisfying α′(H) = α′(H − v) for every v ∈ V (H).

P r o o f. First we consider sufficiency. Suppose G = cor(H) for some connected

graph H satisfying α′(H) = α′(H−v) for every v ∈ V (H). Since every minimal PDS

contains every support vertex in the graph, and since S(G) = V (H),

(1) γpr(G) = 2α′(H) + 2(|V (H)| − 2α′(H)) = 2(|V (H)| − α′(H)).

To show that G is γpr-vertex-critical, let u ∈ V (G) − S(G). Then dG(u) = 1

and u is adjacent to a unique vertex v of H . Let Mv be a maximum matching

in H − v. Then |Mv| = α′(H − v) = α′(H). Let V1 be the set of vertices in H

incident with an edge of Mv and let V2 = V (H) \ (V1 ∪ {v}). Then |V1| = 2α′(H),

|V2| = |V (H)| − 2α′(H) − 1 and V2 is an independent set. Let V ′

2 be the set of end-

vertices of G dominated by V2; thus, |V
′

2 | = |V2|. Notice that since H is a connected

graph, v is adjacent to at least one other vertex of H . Therefore, (V (H) \ {v}) ∪ V ′

2

is a PDS of G − u, so that

(2) γpr(G−u) 6 |V (H)|−1+|V2| = 2(|V (H)|−α′(H))−2 = γpr(G)−2 6 γpr(G−u).

Hence equality holds throughout the inequality chain (2) and by Observation 1, G is

γpr-vertex-critical. This establishes sufficiency.

Next we consider necessity. Suppose that G is a γpr-vertex-critical graph that

contains an end-vertex. Let v′ be an end-vertex and let v be its neighbor. Suppose

there exists w ∈ N(v) \ {v′} with w /∈ S(G). Then by Observation 1, there is a

γpr(G−w)-set not containing v, but since v is a support vertex in G−w, the vertex v

belongs to every γpr(G− w)-set, a contradiction. Thus each vertex in N(v) \ {v′} is
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a support vertex. It follows that G = cor(H) for some connected graph H . Thus, as

in (1), γpr(G) = 2(|V (H)| − α′(H)).

It remains for us to show that α′(H) = α′(H − v) for every v ∈ V (H). Let

v ∈ V (H) and let u be the end-vertex adjacent to v. Let Mv be a maximum

matching in H − v. Then |Mv| = α′(H − v). Let V1 be the set of vertices in H

incident with an edge ofMv and let V2 = V (H)\ (V1∪{v}). Then |V1| = 2α′(H−v),

|V2| = |V (H)| − 2α′(H − v) − 1 and V2 is an independent set. Let V ′

2 be the set

of end-vertices dominated by V2; thus, |V ′

2 | = |V2|. Let S = (V (H) \ {v}) ∪ V ′

2 .

Then S is a minimum PDS of G − u. Hence, γpr(G − u) = |S| = |V (H)| − 1 +

|V2| = 2(|V (H)| − α′(H − v)) − 2. However, since G is a γpr-vertex-critical graph,

γpr(G−u) = γpr(G)−2 = 2(|V (H)|−α′(H))−2. Consequently, α′(H) = α′(H −v),

as desired. �

We remark that there are infinite families of connected graphs H satisfying

α′(H) = α′(H − v) for every v ∈ V (H). For example, let H be any hamiltonian

graph of odd order. We observe further that the diameter of such graphs H cannot

be too large.

Proposition 3. If H is a connected graph satisfying α′(H) = α′(H −v) for every

v ∈ V (H), then every maximum matching in H − v matches every neighbor of v. In

particular, H is a 2-edge-connected graph.

P r o o f. Suppose that H − v contains a maximum matching M that does not

match a neighbor u of v. Then M ∪ {uv} is a matching in H , and so α′(H) >

|M |+ 1 = α′(H − v) + 1, a contradiction. Hence every maximum matching in H − v

matches every neighbor of v.

Suppose that H has a bridge e = uv. Let Hu and Hv be the two components of

H−e, where u ∈ V (Hu) and v ∈ V (Hv). Then α′(H) > α′(Hu)+α′(Hv). Since every

maximum matching of H−u matches every neighbor of u, the vertex v is matched in

every maximum matching of H −u. This implies that α′(Hv − v) = α′(Hv)− 1. But

then α′(H) = α′(H − v) = α′(Hu) + α′(Hv − v) = α′(Hu) + α′(Hv) − 1, producing

a contradiction. Hence, H is 2-edge-connected. �

Proposition 4. If H is a connected graph of order n satisfying α′(H) = α′(H−v)

for every v ∈ V (H), then diam(H) 6 1
2
(n − 1).

P r o o f. We proceed by induction on the number of blocks b(H) in H . Suppose

b(H) = 1. Let u and v be two diametrical vertices in H , and so diam(H) = d(u, v).

Since H is 2-connected, every two vertices of H lie on a common cycle of H . In

particular, there is a cycle C containing u and v. Hence, |V (C)| > 2d(u, v) =

2 diam(H). On the one hand, if |V (C)| > 2 diam(H) + 1, then n > |V (C)| >
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2 diam(H) + 1. On the other hand, suppose |V (C)| = 2 diam(H). Since α′(H) =

α′(H−w) for every w ∈ V (H), the graphH is not a hamiltonian graph of even order.

Thus H contains at least one vertex not on C, implying that n > |V (C)| + 1 =

2 diam(H) + 1. In both cases, n > 2 diam(H) + 1, or, equivalently, diam(H) 6
1
2
(n − 1). This establishes the base case.

Assume that b > 1 and that if H ′ is a connected graph of order n′ satisfying

b(H ′) 6 b and α′(H ′) = α′(H ′ − v) for every v ∈ V (H ′), then diam(H ′) 6 1
2
(n′ − 1).

Let H be a connected graph of order n satisfying b(H) = b+1 and α′(H) = α′(H−v)

for every v ∈ V (H). Let B be an end-block of H and v the unique cut-vertex of H

contained in B. Let F = H − (V (B) \ {v}). Then F is a connected graph satisfying

b(F ) = b. We proceed further with three claims.

Claim 1. α′(H) = α′(B) + α′(F ).

P r o o f. We show first that α′(B) = α′(B − v). Suppose α′(B) > α′(B − v).

Then α′(B) = α′(B−v)+1 and every maximum matching of B matches the vertex v.

Let e = uv be an edge of such a maximum matching MB of B. Then MB \ {e} is a

maximum matching of B−v that does not match the vertex u. But every maximum

matching of B − v can be extended to a maximum matching of H − v by adding to

it the edges of a maximum matching of F − v. Hence we have shown that there is a

maximum matching of H − v that does not match the neighbor u of v, contradicting

Proposition 3. Hence, α′(B) = α′(B − v). Similarly, α′(F ) = α′(F − v). Thus since

the graph H is γpr-vertex-critical, α
′(H) = α′(H − v) = α′(B − v) + α′(F − v) =

α′(B) + α′(F ), as claimed. �

Claim 2. diam(F ) 6 1
2
(|V (F )| − 1).

P r o o f. Let w ∈ V (F ). Then, by Claim 1, α′(B)+α′(F ) = α′(H) = α′(H−w) 6

α′(B)+α′(F −w), and so α′(F ) 6 α′(F −w). Consequently, F is a connected graph

with b(F ) = b such that α′(F ) = α′(F − w) for every vertex w ∈ V (F ). Applying

the inductive hypothesis to F , we conclude that diam(F ) 6 1
2
(|V (F )| − 1). �

The proof of the following claim is similar to the proof of Claim 2 and is omitted.

Claim 3. diam(B) 6 1
2
(|V (B)| − 1).

The desired upper bound on the diameter of H now follows readily from Claims 2

and 3 and the observations that diam(H) 6 diam(B) + diam(F ) and |V (B)| +

|V (F )| = n + 1. This completes the proof of Proposition 4. �

As a consequence of Theorem 2 and Propositions 3 and 4, we have the following

results.
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Theorem 5. No tree is γpr-vertex-critical.

Theorem 6. If G is a connected γpr-vertex-critical graph with at least one end-

vertex, then diam(G) 6 1
2
(γpr(G) + 2), and this bound is sharp.

P r o o f. By Theorem 2, G = cor(H) for some connected graph H satisfying

α′(H) = α′(H − v) for every v ∈ V (H). Hence, diam(G) = 2 + diam(H). Suppose

γpr(G) = k. Since H does not have a perfect matching, |V (H)| 6 k − 1. By

Proposition 4, diam(H) 6 1
2
(|V (H)| − 1) 6 1

2
(k − 2). Hence, diam(G) = 2 +

diam(H) 6 2+ 1
2
(k−2) = 1

2
(k+2). To see that this bound is sharp, take H = Ck−1.

�

3. γpr-vertex-critical graphs with large diameter

In this section we provide a construction of γpr-vertex-critical graphs with large

diameter. First we give a way of constructing a γpr-vertex-critical graph from two

smaller γpr-vertex-critical graphs.

Lemma 7. Let F and H be a j-γpr-vertex-critical and a k-γpr-vertex-critical

graph, respectively, with minimum degrees at least two, and let G be a graph formed

by identifying a vertex of F with a vertex of H . If γpr(G) = j + k − 2, then G is

γpr-vertex-critical.

P r o o f. Note that since δ(F ) > 2 and δ(H) > 2, S(G) = ∅. Label the

identified vertex v. Let u ∈ V (G). Without loss of generality, u ∈ V (F ). Since

F is j-γpr-vertex-critical, γpr(F − u) = j − 2. If u 6= v, then every γpr(F − u)-set

dominates v and can be extended to a PDS of G−u by adding to it γpr(H−v) = k−2

vertices from H − v. Hence, γpr(G − u) 6 j − 2 + k − 2 = γpr(G) − 2. If u = v,

then γpr(G − v) = γpr(F − v) + γpr(H − v) = j − 2 + k − 2 = γpr(G) − 2. Thus,

γpr(G − u) < γpr(G) and G is γpr-vertex-critical. �

Next we establish a lower bound on the maximum diameter of a k-γpr-vertex-

critical graph. For this purpose, following the notation of Goddard et al. [10] we

define a graph as pointed if there are two designated diametrical vertices called left

and right. Then, for two pointed graphs G and H , we define G ◦H as the pointed

graph obtained by identifying and undesignating the right-vertex from G and the

left-vertex from H . Note that the operator ◦ is associative.

For a graph G = (V, E) with diam(G) = d we also define the following subsets

of V , and use this notation throughout the rest of the paper. Fix a diametrical
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vertex v of G. For i = 0, 1, . . . , d, define

(3) Vi = {u ∈ V : d(u, v) = i}, V6i =

i⋃

j=0

Vj and V>i =

d⋃

j=i

Vj .

Note that V0 = {v} and V1 = N(v).

Theorem 8. For every even integer k > 4 there exists a connected k-γpr-vertex-

critical graph of diameter 3
2
(k − 2).

P r o o f. We begin by constructing a 4-γpr-vertex-critical graph with diameter 3.

Let H1 be a copy of P4 and let H2 be a copy of H1. Let F be the pointed graph

obtained from H1 ∪H2 by adding all edges between H1 and H2 except for a perfect

matching between the corresponding vertices of H1 and H2, and then adding two

new vertices, left and right, such that left is joined to every vertex in H1 and

right is joined to every vertex in H2. The graph F is shown in Fig. 1 where for

clarity we omit the edges between H1 and H2. Then F is 4-γpr-vertex-critical with

diameter 3.

Figure 1. The 4-γpr-vertex-critical graph F of diameter 3

For q > 1 define the pointed graph Gq = F ◦ F ◦ . . . ◦ F for q copies of F .

Then diam(Gq) = 3q. We show that Gq is a 2(q + 1)-γpr-vertex-critical graph. We

proceed by induction on q. When q = 1, then Gq = F which is a 4-γpr-vertex-critical

graph. This establishes the base case. Assume then that q > 2 and that Gq′ is a

2(q′ + 1)-γpr-vertex-critical graph for 1 6 q′ < q. We now consider the graph Gq.

The graph Gq is the pointed graph obtained from the pointed graphs F and Gq−1;

that is, Gq = F ◦ Gq−1, where F is a 4-γpr-vertex-critical graph and, by induction,

Gq−1 is a 2q-γpr-vertex-critical graph. Let F1 denote the first copy of F in Gq, and

let v and w denote the left-vertex and right-vertex from F1.

The vertex v is a diametrical vertex of Gq. Let d = diam(Gq) = 3q. As in (3),

V0 = {v} and V1 = N(v). Further, V3 = {w}, while V2 is the neighborhood of w

in F1 and V4 is the neighborhood of w in Gq−1.

Among all γpr(Gq)-sets, let S be one which contains as few vertices of V62 as

possible. To dominate V0, we have that |S ∩ V62| > 2. Suppose that |S ∩ V62| > 3.
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Then |S∩V63| > 4. Note that V4 6⊆ S, otherwise, if x, x′ ∈ V4 are partners in S, then

S\{x, x′} is a PDS ofGq of smaller cardinality than S, which is impossible. Replacing

the vertices in S∩V63 by the two central vertices of the P4 in Gq[V1] and the vertex w,

and then adding to the resulting set a neighbor of w from V4 (to serve as a partner

of w) produces a new γpr(Gq)-set that contains fewer vertices from V62 than does S,

contradicting our choice of S. Hence, |S ∩V62| = 2. If follows that S ∩V>3 is a PDS

of Gq−1 and that |S ∩ V>3| = γpr(Gq) − 2. Hence, γpr(Gq−1) 6 γpr(Gq) − 2. Every

γpr(Gq−1)-set can easily be extended to a PDS of Gq by adding to it two vertices

(namely, the two central vertices of the P4 in Gq[V1]), and so γpr(Gq) 6 γpr(Gq−1)+2.

Consequently, γpr(Gq) = γpr(Gq−1)+2 = γpr(F )+γpr(Gq−1)−2. Hence, by Lemma 7,

Gq is γpr-vertex-critical. By induction, γpr(Gq−1) = 2q, and so Gq is a k-γpr-vertex-

critical graph where k = 2(q + 1) with diam(Gq) = 3q = 3
2
(k − 2). �

4. Bounds on the Diameter

In this section we establish bounds on the diameter of a connected k-γpr-vertex-

critical graph. First we mention a sufficient condition for a graph not to be γpr-

vertex-critical. (We assume in what follows that G has no end-vertex, for otherwise

we have the upper bound given in Theorem 6.)

Proposition 9 ([5, Proposition 5.4]). If a graph G has nonadjacent vertices u

and v with N(u) ⊆ N(v), then G is not a γpr-vertex-critical graph.

We provide next a trivial upper bound on the diameter of a k-γpr-vertex-critical

graph. Throughout this section, for a graph G = (V, E) and a vertex x ∈ V , we let

Sx denote a γpr(G − x)-set.

Proposition 10. The diameter of a connected k-γpr-vertex-critical G graph with

diam(G) = d is at most 2k − 8 + (d mod 4).

P r o o f. Let v be a diametrical vertex of G and let d = diam(G). As in (3),

V0 = {v} and V1 = N(v). By Observation 1, |Sv| = k − 2 and Sv ∩ V1 = ∅. Hence

to dominate V1, |Sv ∩ V2| > 1. In fact, by Proposition 9, |Sv ∩ V2| > 2. Thus,

S = Sv ∪{v, v1} is a γpr(G)-set for any v1 ∈ V1 and |S ∩ (V0 ∪V1 ∪ V2)| > 4. For any

i > 3, |S ∩ (Vi ∪ . . . ∪ Vi+3)| > 2. It follows that if d = 2 + 4j + r where 0 6 r 6 3,

then k = |S| > 4 + 2j if r ∈ {0, 1} while k > 4 + 2j + 2 if r ∈ {2, 3}. The desired

result now follows from simple algebra. �

Since d mod 4 ∈ {0, 1, 2, 3}, as an immediate consequence of Proposition 10 we

have the following result.
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Corollary 11. The diameter of a connected k-γpr-vertex-critical graph G is at

most 2k − 5 with inequality if diam(G) 6≡ 3 (mod 4).

As an immediate consequence of Theorem 8, we have the following result.

Corollary 12. The maximum diameter of a connected k-γpr-vertex-critical graph

is at least 3
2
(k − 2).

Next we establish a sharp upper bound on the diameter of a connected k-γpr-

vertex-critical graph for small k. Recall that for a graph G = (V, E) and sets

S, T ⊆ V , we say that S paired-dominates T if S dominates T in G and G[S] contains

a perfect matching.

Theorem 13. For k 6 8, the diameter of a connected k-γpr-vertex-critical graph

is at most 3
2
(k − 2).

P r o o f. Let G = (V, E) be a connected k-γpr-vertex-critical graph. If δ(G) = 1,

then the upper bounds follow from Theorem 6. Hence we may assume in what follows

that δ(G) > 2. We will show that the diameter of G is at most the value given in

Tab. 1.

k 4 6 8
diam(G) 3 6 9

Table 1. The maximum value od diam(G) for k 6 8.

If k = 4, then the upper bound follows from Corollary 11. Hence we may assume

δ(G) > 2 and k > 6. Let v be a diametrical vertex of G and let d = diam(G). For

S, T ⊆ V we write S ≻pr T if S paired-dominates T in G. Furthermore, we write

S 7→pr T if S ∩ T ≻pr T . As before, for x ∈ V , let Sx be a γpr(G − x)-set.

Suppose that k = 6 and assume that d > 7. Again using the notation defined

in (3), let u ∈ V1; then |Su| = 4. To paired-dominate V0∪V3∪V4∪V7, it follows that

d = 7 and |Su ∩ Vj | = 1 for j ∈ {1, 2, 5, 6}. Thus, |Su ∩ V>4| = 2 and Su 7→pr V>4.

By symmetry, for w ∈ V6 it follows that |Sw ∩V63| = 2 and Sw 7→pr V63. Therefore,

(Su ∩V>4)∪ (Sw ∩V63) is a PDS of G of cardinality 4, which contradicts γpr(G) = 6.

Hence, if k = 6, then d 6 6, as desired.

Suppose that k = 8 and assume that d > 10. Let u ∈ V1; then |Su| = 6. To

paired-dominate V62, we must have |Su ∩ V62| > 2, while to paired-dominate V>8,

we must have |Su ∩ V>8| > 2. Hence, to paired-dominate V4 ∪ V5 ∪ V6, we must have

|Su ∩ V5| > 1 and |Su ∩ (V4 ∪ V5 ∪ V6)| > 2. Hence, |Su ∩ V62| = 2, |Su ∩ V>8| = 2,

|Su ∩ V5| > 1 and |Su ∩ (V4 ∪ V5 ∪ V6)| = 2. In particular, |Su ∩ V>4| = 4 and

Su 7→pr V>4.

Let w ∈ V9. By symmetry, |Sw ∩ V62| = 2, |Sw ∩ V>8| = 2, |Sw ∩ V5| > 1 and

|Sw∩(V4∪V5∪V6)| = 2. In particular, |Sw∩V66| = 4 and Sw 7→pr V66. If Su∩V6 = ∅,
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then Su 7→pr V>7, and (Sw ∩ V66)∪ (Su ∩ V>8) is a PDS of G of cardinality 6, which

contradicts γpr(G) = 8. Thus we may assume that |Su∩V6| = 1, and so |Su∩V5| = 1;

similarly, |Sw ∩ V4| = |Sw ∩ V5| = 1.

Let x ∈ V5. Then, as before, |Sx ∩ V62| = 2 and |Sx ∩ V>8| = 2. Suppose there is

another vertex in V5. Then |Sx∩V5| > 1 and |Sx∩(V4∪V5∪V6)| = 2. Without loss of

generality, Sx∩V4 = ∅, and so Sx 7→pr V63. Therefore (Sx∩V62)∪(Su∩V>4) ≻pr V ,

which contradicts γpr(G) = 8. Hence there is no other vertex in V5. But then

Sx contains at least one vertex in each of the sets V0 ∪ V1 (to dominate V0), V3 ∪ V4

(to dominate V4), V6 ∪ V7 (to dominate V6), and V9 ∪ V10 (to dominate V10). Thus,

Sx contains four vertices that are pairwise nonadjacent, implying that |Sx| > 8, a

contradiction. Hence, if k = 8, then d 6 9, as desired. �

We close with the following question about the maximum diameter of a connected

γpr-vertex-critical graph.

Question 1. If G is a connected γpr-vertex-critical graph, then is it true that

diam(G) 6
3

2
(γpr(G) − 2)?

Note that by Theorem 13, Question 1 is true for γpr(G) 6 8. By Corollary 12, if

Question 1 is true, then this bound is sharp.

References

[1] R.C. Brigham, P. Z. Chinn, R.D. Dutton: Vertex domination-critical graphs. Networks
18 (1988), 173–179.

[2] M. Chellali, T.W. Haynes: Trees with unique minimum paired-dominating sets. Ars
Combin. 73 (2004), 3–12.

[3] M. Chellali, T.W. Haynes: Total and paired-domination numbers of a tree. AKCE Int.
J. Graphs Comb. 1 (2004), 69–75.

[4] M. Chellali, T.W. Haynes: On paired and double domination in graphs. Util. Math. 67
(2005), 161–171.

[5] M. Edwards: Criticality concepts for paired domination in graphs. Master Thesis. Uni-
versity of Victoria, 2006.

[6] O. Favaron, M.A. Henning: Paired domination in claw-free cubic graphs. Graphs Comb.
20 (2004), 447–456.

[7] O. Favaron, D. Sumner, E. Wojcicka: The diameter of domination k-critical graphs.
J. Graph Theory 18 (1994), 723–734.

[8] J. Fulman, D. Hanson, G. MacGillivray: Vertex domination-critical graphs. Networks
25 (1995), 41–43.

[9] S. Fitzpatrick, B. Hartnell: Paired-domination. Discuss. Math. Graph Theory 18 (1998),
63–72.

[10] W. Goddard, T.W. Haynes, M.A. Henning, L. C. van der Merwe: The diameter of total
domination vertex critical graphs. Discrete Math. 286 (2004), 255–261.

[11] T.W. Haynes, S. T. Hedetniemi, P. J. Slater: Fundamentals of Domination in Graphs.
Marcel Dekker, New York, 1998.

896



[12] Domination in Graphs. Advanced Topics (T.W. Haynes, S. T. Hedetniemi, P. J. Slater,
eds.). Marcel Dekker, New York, 1998.

[13] T.W. Haynes, M.A. Henning: Trees with large paired-domination number. Util. Math.
71 (2006), 3–12.

[14] T.W. Haynes, P. J. Slater: Paired-domination in graphs. Networks 32 (1998), 199–206.
[15] T.W. Haynes, P. J. Slater: Paired-domination and the paired-domatic number. Congr.

Numerantium 109 (1995), 65–72.
[16] M.A. Henning: Trees with equal total domination and paired-domination numbers. Util.

Math. 69 (2006), 207–218.
[17] M.A. Henning: Graphs with large paired-domination number. J. Comb. Optim. 13

(2007), 61–78.
[18] M.A. Henning, M.D. Plummer: Vertices contained in all or in no minimum paired-

dominating set of a tree. J. Comb. Optim. 10 (2005), 283–294.
[19] K.E. Proffitt, T.W. Haynes, P. J. Slater: Paired-domination in grid graphs. Congr.

Numerantium 150 (2001), 161–172.
[20] H. Qiao, L. Kang, M. Cardei, Ding-Zhu Du: Paired-domination of trees. J. Glob. Optim.

25 (2003), 43–54.
[21] D.P. Sumner: Critical concepts in domination. Discrete Math. 86 (1990), 33–46.
[22] D.P. Sumner, P. Blitch: Domination critical graphs. J. Comb. Theory Ser. B 34 (1983),

65–76.
[23] D.P. Sumner, E. Wojcicka: Graphs critical with respect to the domination number.

Domination in Graphs: Advanced Topics (Chapter 16) (T.W. Haynes, S.T. Hedetniemi,
P. J. Slater, eds.). Marcel Dekker, New York, 1998, pp. 439–469.

[24] E. Wojcicka: Hamiltonian properties of domination-critical graphs. J. Graph Theory 14
(1990), 205–215.

Authors’ addresses: M . A . H e n n i n g, School of Mathematical Sciences, University of
KwaZulu-Natal, Pietermaritzburg, 3209 South Africa; C . M . My n h a r d t, Department of
Mathematics and Statistics, University of Victoria, Victoria, BC Canada V8W 3P4.

897


		webmaster@dml.cz
	2020-07-03T17:36:33+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




