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1. Introduction

During the past century a lot of literature had been devoted to the problems

of determining the linear operators on the m × n matrix algebra Mm×n(F ) over a

field F that leave certain matrix subsets invariant, see [8]. These problems have been

extended to the m × n matrices over various semirings, see [1], [2].

Marsaglia and Styan [7] studied inequalities for the rank of matrices. Beasley

and Guterman [1] investigated the rank inequalities of matrices over semirings, and

characterized the linear operators that preserve inequalities [2]. The structure of

matrix varieties which arise as extremal cases in the inequalities is far from being

understood over fields as well as over semirings. The investigation of linear preserver

problems of extreme cases for rank inequalities of matrices over fields was obtained

in [4]. Song studied the linear operators that preserve maximal column ranks of

nonnegative integer matrices in [9].

In this paper we characterize linear operators that preserve the sets of matrix pairs

which satisfy equality in the maximal column rank inequalities over semirings.

This work was supported by the research grant of the Cheju National University in 2007.
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2. Preliminaries

Definition 2.1. A semiring S consists of a set and two binary operations, ad-

dition and multiplication, such that

• S is an Abelian monoid under addition (identity denoted by 0);

• S is a semigroup under multiplication (identity, if any, denoted by 1);

• multiplication is distributive over addition on both sides;

• s0 = 0s = 0 for all s ∈ S.

In this paper we will always assume that there is a multiplicative identity 1 in S

which is different from 0.

In particular, a semiring S is called antinegative if the zero element is the only

element with an additive inverse.

Throughout this paper, we will assume that all semirings are antinegative and

have no zero divisors.

Definition 2.2. The Boolean algebra consists of the set B = {0, 1} equipped

with two binary operations, addition and multiplication. The operations are defined

as usual except that 1 + 1 = 1.

Let Mm,n(S) denote the set of m × n matrices with entries from the semiring S.

If m = n, we use the notation Mn(S) instead of Mn,n(S). The matrix In is the n×n

identity matrix, Jm,n is the m×n matrix of all ones, Om,n is the m×n zero matrix.

We omit the subscripts when the order is obvious from the context and we write I,

J , and O, respectively. Let Ri denote the matrix whose ith row is all ones and all

other rows are zero, and Cj the matrix whose jth column is all ones and all other

columns are zero.

The matrix Ei,j , called a cell, is the matrix with 1 in (i, j) position and zero

elsewhere. A weighted cell is any nonzero scalar multiple of a cell, that is, αEi,j is a

weighted cell for any 0 6= α ∈ S.

A line of a matrix A is a row or a column of A. We let Z(S) denote the cen-

ter of the semiring S, |A| the number of nonzero entries in the matrix A, and

A[i1, . . . , ik|j1, . . . , jl] the k × l-submatrix of A which lies in the intersection of the

i1, . . . , ik rows and j1, . . . , jl columns.

Let ∆m,n = {(i, j) : i = 1, . . . , m; j = 1, . . . , n}. If m = n, we use the notation ∆n

instead of ∆n,n.

Definition 2.3. An element in Mn,1(S) is called a vector over S.

A set of vectors with entries from a semiring is called linearly independent if there

is no vector in this set that can be expressed as a nontrivial linear combination of

the others.
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A nonzero matrix A ∈ Mm,n(S) is said to be of maximal column rank k

(mc(A) = k) if k is the maximal number of the columns of A which are linearly

independent.

A nonzero matrix A ∈ Mm,n(S) is said to be of maximal row rank k (mr(A) = k)

if k is the maximal number of the rows of A which are linearly independent.

A matrix A ∈ Mm,n(S) is said to be of factor rank k (rank(A) = k) if there exist

matrices B ∈ Mm,k(S) and C ∈ Mk,n(S) such that A = BC and k is the smallest

positive integer for which such factorization exists. By definition, the only matrix

with factor rank 0 is the zero matrix, O.

Remark 2.4. It follows that

(1.1) 1 6 rank(A) 6 mc(A) 6 n

for every nonzero matrix A ∈ Mm,n(S).

If S is a subsemiring of a real field then there is a real rank function ̺(A) for

any matrix A ∈ Mm,n(S), which is considered as a matrix over the real field. Easy

examples show that over semirings these functions are not equal in general. However,

the inequality mc(A) > ̺(A) always holds.

Theorem 2.5 ([1]). Let S be an antinegative semiring without zero divisors. If

A, B ∈ Mm,n(S) with A 6= O, B 6= O, then

1. 1 6 mc(A + B) 6 n.

If S is a subsemiring of R+, the nonnegative reals, then

2. mc(A + B) > |̺(A) − ̺(B)|.

If A ∈ Mm,n(S), B ∈ Mn,k(S) with A 6= O, B 6= O, then

3. mc(AB) 6 mc(B).

As was proved in [1], these inequalities are sharp and the best possible.

The following example shows that mc(A+B) 
 mc(A)+mc(B), which is different

from the rank inequality for matrices over a real field.

Example 2.6. Let A =





1 1 1

1 1 1

0 0 0



 ∈ M3(Z+), B =





1 2 4

0 0 0

0 0 0



 ∈ M3(Z+),

where Z+ is the semiring of nonnegative integers. Then mc(A) = 1, mc(B) = 1, and

mc(A + B) = 3 over Z+.

Definition 2.7. For matrices X = [xi,j ] and Y = [yi,j ] in Mm,n(S), the matrix

X ◦ Y denotes the Hadamard or Schur product, i.e., the (i, j)th entry of X ◦ Y is

xi,jyi,j .

We say that a matrix A dominates a matrix B if and only if bi,j 6= 0 implies that

ai,j 6= 0, and we write A > B or B 6 A in this case.
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Definition 2.8. Let S be a semiring, not necessary commutative. An operator

T : Mm,n(S) → Mm,n(S) is called linear if T (αX) = αT (X), T (Xβ) = T (X)β, and

T (X + Y ) = T (X) + T (Y ) for all X, Y ∈ Mm,n(S), α, β ∈ S.

We say that an operator T preserves a set P if X ∈ P implies that T (X) ∈ P,

or, if P is a set of ordered pairs, that (X, Y ) ∈ P implies (T (X), T (Y )) ∈ P .

An operator T onMm,n(S) is called a (P, Q, B)-operator if there exist permutation

matrices P ∈ Mm(S) and Q ∈ Mn(S) and a matrix B ∈ Mm,n(S) with B > J such

that

(2.1) T (X) = P (X ◦ B)Q

for all X ∈ Mm,n(S), or m = n and

(2.2) T (X) = P (X ◦ B)tQ

for all X ∈ Mn(S), where Xt denotes the transpose of X . Operators of the form (2.1)

are called non-transposing (P, Q, B)-operators ; operators of the form (2.2) are trans-

posing (P, Q, B)-operators.

An operator T is called a (U, V )-operator if there exist invertible matrices U ∈

Mm(S) and V ∈ Mn(S) such that

(2.3) T (X) = UXV

for all X ∈ Mm,n(S), or m = n and

(2.4) T (X) = UXtV

for all X ∈ Mn(S). Operators of the form (2.3) are called non-transposing (U, V )-

operators ; operators of the form (2.4) are transposing (U, V )-operators.

Lemma 2.9. Let T be a (P, Q, B)-operator on Mm,n(S), where mc(B) = 1 and

all entries of B are units in Z (S). If S is commutative, then T is a (U, V )-operator.

P r o o f. Since T is a (P, Q, B)-operator, so there exist permutation matrices P ∈

Mm(S) and Q ∈ Mn(S) such that T (X) = P (X ◦B)Q, or m = n and T (X) = P (X ◦

B)tQ for all X ∈ Mm,n(S). Since mc(B) = 1, so it follows from (1.1) that rank(B) =

1, or equivalently, there exist vectors d = (d1, . . . , dm) ∈ Sm and e = (e1, . . . , en) ∈

Sn such that B = d
t
e. Since bi,j are units, di and ej are invertible elements in S for all

(i, j) ∈ ∆m,n. Let D = diag(d1, . . . , dm) ∈ Mm(S) and E = diag(e1, . . . , en) ∈ Mn(S)

be diagonal matrices. Since S is commutative, it is straightforward to check that

X ◦ B = DXE for all X ∈ Mm,n(S). For the case of T (X) = P (X ◦ B)Q, if we let

U = PD and V = EQ, then T (X) = UXV for all X ∈ Mm,n(S). If T is of the form

T (X) = P (X ◦ B)tQ, then U = PE and V = DQ shows that T (X) = UXtV for all

X ∈ Mm,n(S). Thus the lemma follows. �
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If A and B are matrices and A > B we denote by A \ B the matrix C = [ci,j ]

where

ci,j =

{

0 if bi,j 6= 0;

ai,j otherwise.

We recall some results proved in [2] for later use.

Theorem 2.10 ([2, Theorem 2.14]). Let S be an antinegative semiring without

zero divisors and T : Mm,n(S) → Mm,n(S) a linear operator. Then the following

assertions are equivalent:

(1) T is bijective.

(2) T is surjective.

(3) There exists a permutation σ on∆m,n and units bi,j ∈ Z (S) such that T (Ei,j) =

bi,jEσ(i,j) for all (i, j) ∈ ∆m,n.

Lemma 2.11 ([2, Lemma 2.16]). Let S be an antinegative semiring without

zero divisors, T : Mm,n(S) → Mm,n(S) an operator which maps lines to lines and is

defined by T (Ei,j) = bi,jEσ(i,j), where σ is a permutation on ∆m,n and bi,j ∈ Z (S)

are nonzero entries. Then T is a (P, Q, B)-operator.

Remark 2.12. One can easily check that if m = 1 or n = 1 then all operators

under consideration are (P, Q, B)-operators, if m = n = 1 then all operators under

consideration are (P, P t, B)-operators.

Henceforth we will always assume that m, n > 2.

Lemma 2.13. Let B be a matrix in Mm,n(S) with mc(B) = 1. If all entries

of B are units in Z (S), then mc(X) = mc(P (X ◦B)Q) for all permutation matrices

P ∈ Mm(S) and Q ∈ Mn(S).

P r o o f. Let X be any matrix in Mm,n(S). Obviously, mc(X) = mc(XQ) for all

permutation matrices Q ∈ Mn(S). Let P be any permutation matrix inMn(S). Then

mc(X) = mc((P )tPXQ) 6 mc(PXQ) 6 mc(XQ) = mc(X), and hence mc(X) =

mc(PXQ) for all permutation matrices P ∈ Mm(S) and Q ∈ Mn(S). Thus, it suffices

to claim that mc(X) = mc(X ◦ B).

Since mc(B) = 1, so there exists a column bk of B = [b1,b2, . . . ,bn] such that

B = bk[α1, . . . , αk−1, 1, αk+1, . . . , αn] where αi are units. Thus, for any matrix X =

[x1,x2, . . . ,xn] ∈ Mm,n(S) we have X ◦B = [x1 ◦bkα1,x2 ◦bkα2, . . . ,xn ◦bkαn] =

[bkα1 ◦ x1,bkα2 ◦ x2, . . . ,bkαn ◦ xn] = [α1(x1 ◦ bk), α2(x2 ◦ bk), . . . , αn(xn ◦ bk)].

Thus the lemma follows. �
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Let X =

[

2

3

]

be a matrix in M2,1(Z+). Then we have that mc(X) = 1, but

mc(Xt) = 2. Thus, in general, it is not true that for a matrix X ∈ Mm,n(S),

mc(X) = 1 if and only if mc(Xt) = 1. Nonetheless, the following lemma is obvious:

Lemma 2.14. Let B be a matrix in Mm,n(S) all of whose entries are units

in Z (S). Then mc(B) = 1 if and only if mc(Bt) = 1.

Remark 2.15. Let

(2.5) Ω =









0 0 1 1

1 0 0 1

0 1 1 0

0 0 0 0









be a matrix inM4(S). Then we can easily show that the first three rows (as well as the

four columns) are linearly independent. Thus we have mc(Ω) = 4 and mc(Ωt) = 3.

Now we consider the following sets of matrices that arise as extremal cases in the

inequalities listed in Theorem 2.5.

A1(S) = {(X, Y ) ∈ Mm,n(S)2 : mc(X + Y ) = n};

A2N (S) = {(X, Y ) ∈ Mm,n(S)2 : mc(X + Y ) = 1};

A2R(S) = {(X, Y ) ∈ Mm,n(S)2 : mc(X + Y ) = |̺(X) − ̺(Y )|}.

In the next sections we characterize the linear operators that preserve the sets A1,

A2N , A2R.

3. Linear operators that preserve the extreme set A1(S)

In this section we investigate the linear operators that preserve the set A1(S).

Definition 3.1. We say thatMm,n(S) is fully maximal if for each k 6 min{m, n},

Mm−k,n−k(S) contains a matrix of maximal column rank n − k.

If m > n, then we can easily show that Mm,n(S) is fully maximal. However, for

m < n, Mm,n(S) may be fully maximal or not depending on the given semiring S.

For example, M2,3(Z+) is fully maximal, while M2,3(B) is not.

Recall that

A1(S) = {(X, Y ) ∈ Mm,n(S)2 : mc(X + Y ) = n}.
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Lemma 3.2. LetMm,n(S) be fully maximal, let σ be a permutation of ∆m,n, and

let T be defined by T (Ei,j) = bi,jEσ(i,j) for all (i, j) ∈ ∆m,n, where all bi,j are units

in Z (S). If T preserves A1, then T preserves lines.

P r o o f. Suppose that T−1 does not map lines to lines. Then there are two

non collinear cells which are mapped to a line. There are two cases, either they are

mapped to two weighted cells in a column or to two weighted cells in a row.

If two non collinear cells are mapped to two weighted cells in a column, we may

assume without loss of generality that T (E1,1 + E2,2) = b1,1E1,1 + b2,2E2,1.

If n 6 m it suffices to consider A = E1,1 +E2,2 + . . .+En,n. In this case, T (A) has

the maximal column rank at most n − 1, that is, (O, A) ∈ A1, (O, T (A)) /∈ A1, a

contradiction.

Let us consider the case m 6 n. Since Mm,n(S) is fully maximal there exists

a matrix A′ ∈ Mm−2,n−2(S) such that mc(A′) = n − 2. Let us choose A′ with

the minimal number of non-zero entries. Let O2 ⊕ A′ ∈ Mm,n(S). Thus mc(A) =

mc(A′) = n − 2. Hence (E1,1 + E2,2, A) ∈ A1. Since T preserves A1, it follows

that (b1,1E1,1 + b2,2E2,1, T (A)) ∈ A1, that is, mc((b1,1E1,1 + b2,2E2,1 + T (A)) = n.

Therefore mc(T (A)[1, . . . , m; 3, . . . , n]) > n−2. Since the column rank of any matrix

cannot exceed the number of columns, mc(T (A)[1, . . . , m; 3, . . . , n]) = n − 2.

Further, |T (A)[1, . . . , m; 3, . . . , n]| < |A| = |A′| since T transforms cells to weighted

cells and at least one cell has to be mapped in the second column. Thus we have an

(m − 2) × (n − 2) submatrix of T (A)[1, . . . , m; 3, . . . , n] whose column rank is n − 2

and the number of whose nonzero entries is less than that of A′. This contradicts

the choice of A′.

If two non-collinear cells are mapped to two cells in a row, we may assume without

loss of generality that T (E1,1 + E2,2) = b1,1E1,1 + b2,2E1,2. In this case, by consid-

ering the matrices b−1
1,1E1,1 + b−1

2,2E2,2 and A chosen above, the result follows. Thus,

T preserves lines. �

Theorem 3.3. Let T be a surjective linear operator on Mm,n(S), where m 6= n

or m = n > 4. If Mm,n(S) is fully maximal, then T preserves A1 if and only if T is a

non-transposing (P, Q, B)-operator, where mc(B) = 1 and all entries of B are units

in Z (S).

P r o o f. By Lemma 2.13 we have that all non-transposing (P, Q, B)-operators

with mc(B) = 1 preserve A1.

Suppose that T preserves A1. By Lemma 3.2 we have that T preserves lines and

applying Theorem 2.10 to Lemma 2.11 we obtain that T is a (P, Q, B)-operator.

Suppose that mc(B) > 2. Without loss of generality we may assume that the

first two rows as well as the first two columns of B are linearly independent. Since
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Mm,n(S) is fully maximal, there exists a matrix Y ′ ∈ Mm−2,n−2(S) such that

mc(Y ′) = n − 2. Consider matrices X =
m
∑

i=1

b−1
i,1 Ei,1 + b−1

i,2Ei,2 and Y = O2 ⊕ Y ′

in Mm,n(S). Then all columns of X + Y are linearly independent and hence

(X, Y ) ∈ A1. But the first two columns of T (X) + T (Y ) are equal and hence

mc(T (X), T (Y )) 6 n − 1, a contradiction. Thus mc(B) = 1.

Since all non-transposing (P, Q, B)-operators with mc(B) = 1 preserve A1, it only

remains to show that if m = n then transposition does not preserve A1. Let A =
[

Ω O

O In−4

]

. Then, by Remark 2.15, we have that mc(A) = n and mc(At) = n − 1,

so that (A, O) ∈ A1 while (At, O) /∈ A1. Thus T is a non-transposing (P, Q, B)-

operator with mc(B) = 1. �

Corollary 3.4. Let T be a surjective linear operator on Mm,n(S), where m 6= n

or m = n > 4, and Mm,n(S) is fully maximal. If S is commutative, then T preserves

A1 (if and) only if T is a non-transposing (U, V )-operator.

P r o o f. Suppose T preserves A1. By Theorem 3.3, T is a non-transposing

(P, Q, B)-operator on Mm,n(S), where mc(B) = 1 and all entries of B are units

in Z (S). Since S is commutative, it follows from Lemma 2.9 that T is a non-

transposing (U, V )-operator. �

4. Linear operators that preserve the extreme set A2N (S)

In this section we investigate the linear operators that preserve the set A2N (S).

Recall that

A2N(S) = {(X, Y ) ∈ Mm,n(S)2 : mc(X + Y ) = 1}.

Theorem 4.1. If T is a surjective linear operator onMm,n(S) that preservesA2N ,

then T is a (P, Q, B)-operator, where mc(B) = 1 and all entries of B are units

in Z (S). In particular, if S is commutative, then T is a (U, V )-operator.

P r o o f. Suppose that T does not preserve lines. Then, without loss of generality,

we may assume that either T (E1,1 + E1,2) = b1,1E1,1 + b1,2E2,2 or T (E1,1 + E2,1) =

b1,1E1,1+b2,1E2,2. In either case, let Y = O andX be either E1,1+E1,2 or E1,1+E2,1,

so that (X, Y ) ∈ A2N while (T (X), T (Y )) /∈ A2N , a contradiction. Thus T preserves

lines.

Applying Theorem 2.10 to Lemma 2.11 we obtain that T is a (P, Q, B)-operator.

Suppose that mc(B) > 2, T preserves A2N . Since mc(T (J)) = mc(B), we have

(J, O) ∈ A2N while (T (J), T (O)) /∈ A2N , a contradiction.

By Lemma 2.9, T is a (U, V )-operator since S is commutative. �
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In general, the converse of Theorem 4.1 may be true or not depending on the

given semiring S. Obviously, by Lemma 2.13, all non-transposing (P, Q, B)-operators

with mc(B) = 1 (all entries of B are units in (ZS) preserve A2N . However, the

following example shows that transposing (P, Q, B)-operators may preserve A2N or

not depending on the given semirings S.

Example 4.2. (1) Consider the semiring Z+ of all nonnegative integers. Let

X =

[

2 0

3 0

]

⊕ On−2 ∈ Mn(Z+). Then we can easily show that (X, O) ∈ A2N while

(Xt, Ot) /∈ A2N . So, the converse of Theorem 4.1 is not true in this case.

(2) Consider the binary Boolean semiring B = {0, 1}. Then it is straightforward

that for a matrix A ∈ Mn(B), mc(A) = 1 if and only if all non-zero columns of A

are the same. Thus all non-zero rows of A are the same and mc(At) = 1. That is,

for any permutation matrices P, Q ∈ Mn(B) we have that mc(A) = 1 if and only if

mc(PAtQ) = 1. This shows that the converse of Theorem 4.1 is true in this case.

5. Linear operators that preserve the extreme set A2R(S)

In this section we investigate the linear operators that preserve the set A2R(S).

Recall that for S ⊆ R+

A2R(S) = {(X, Y ) ∈ Mm,n(S)2 : mc(X + Y ) = |̺(X) − ̺(Y )|}.

Lemma 5.1. Let S be any subsemiring of R+, let σ be a permutation of ∆m,n,

and let T be defined by T (Ei,j) = bi,jEσ(i,j) for all (i, j) ∈ ∆m,n, where all bi,j are

units and min{m, n} > 3. If T preserves A2R, then T preserves lines.

P r o o f. The sum of three distinct weighted cells has maximal column rank at

most 3. Thus T (E1,1 + E1,2 + E2,1) is either the sum of 3 collinear cells, and hence

has real rank 1, or is contained in two lines, and hence has real rank 2, or is the sum

of three cells of maximal column rank 3, and hence has real rank 3.

Now, for X = E1,1 + E1,2 + E2,1 and Y = E2,2 we have that (X, Y ) ∈ A2R

and the image of Y is a single weighted cell, and hence ̺(T (Y )) = 1. Now, if

̺(T (X)) = 3, then T (X + Y ) must have maximal column rank 3 or 4, and hence

(T (X), T (Y )) /∈ A2R, a contradiction. If ̺(T (X)) = 1, then (T (X), T (Y )) /∈ A2R

since T (X + Y ) 6= O. Thus ̺(T (X)) = 2 and mc(T (X + Y )) = 1.

However, it is straightforward to see that the sum of four weighted cells has max-

imal column rank 1 if and only if they lie either in a line or in the intersection of

two rows and two columns. The matrix T (X + Y ) is the sum of four weighted cells.
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These cells do not lie in a line since ̺(T (X)) = 2. Thus T (X + Y ) must be the sum

of four weighted cells which lie in the intersection of two rows and two columns.

Similarly, for any i, j, k, l, T (Ei,j +Ei,l +Ek,j +Ek,l) lies in the intersection of two

rows and two columns. It follows that any two rows must be mapped to two lines.

By the bijectivity of T , if a pair of two rows is mapped to two rows (columns), then

any pair of two rows is mapped to two rows (columns). Similarly, if a pair of two

columns is mapped to two rows (columns), then any pair of two columns is mapped

to two rows (columns).

Now, the image of three rows is contained in three lines, two of which are the

image of two rows, thus, every row is mapped to a line. Similarly for columns. Thus

T preserves lines. �

Theorem 5.2. Let S be any subsemiring of R+, m 6= n or m = n > 4, and let

T be a surjective linear operator on Mm,n(S). Then T preserves A2R if and only if

T is a non-transposing (P, Q, B)-operator.

P r o o f. By Lemma 2.13 we have that all non-transposing (P, Q, B)-operators

with mc(B) = 1 preserve A2R.

Applying Lemma 5.1 and Theorem 2.10 to Lemma 2.11 we obtain that if T pre-

serves A2R, then T is a (P, Q, B)-operator.

Suppose that mc(B) > 2, S ⊆ R+ and T preserves A2R. Without loss of generality

assume that n 6 m. Consider

X =

(

∑

16j6i6n

Ei,j

)

⊕ Om−n,n, Y =

(

∑

16i<j6n

Ei,j

)

⊕ Om−n,n.

Then ̺(X) = n = ̺(T (X)), ̺(Y ) = n − 1 = ̺(T (Y )) and mc(X + Y ) = 1 =

̺(X) − ̺(Y ). That is, (X, Y ) ∈ A2R. But mc(T (X) + T (Y )) = mc(T (J)) =

mc(B) > 2 > 1 = ̺(T (X)) − ̺(T (Y )), a contradiction. Thus mc(B) = 1.

Since all non-transposing (P, Q, B)-operators with mc(B) = 1 preserve A2R it

remains to show that in the case m = n the operator X → Xt does not preserve

A2R. Let X = Ω ⊕ On−4 and Y = On. Then (X, Y ) ∈ A2R while (Xt, Y t) /∈ A2R.

�
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