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Abstract. In this paper, the evolution equations with nonlinear term describing the
resonance interaction between the long wave and the short wave are studied. The semi-
discrete and fully discrete Crank-Nicholson Fourier spectral schemes are given. An energy
estimation method is used to obtain error estimates for the approximate solutions. The
numerical results obtained are compared with exact solution and found to be in good
agreement.
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1. Introduction

The interaction phenomena between long waves and short waves has been studied

in various physical situations. This phenomena are of interest in several fields of

physics and fluid dynamics: an electron-plasma, ion-field interaction [8], diatomic

lattice systems [13], and water wave theory [4]. The short wave is usually described

by the Schrödinger type equation and the long wave is described by some sort of

wave equation accompanied with dispersive term. In the theory of capillary-gravity

waves, Kawahara et al. [5] studied the coupled system

i∂tS + ics∂xS + ∂2
xS − αLS = 0,(1.1)

∂tL+ cl∂xL+ ∂3
xL+ ∂x(L2) + β∂x(|S|2) = 0,(1.2)

*This work was supported by Higher Education Commission, Pakistan, under Grant
No. 380.
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where L and S describe long and short water waves, respectively, and α, β, cs, and

cl are real constants. When the resonance condition cs = cl holds, this equation is

known as the coupled Schrödinger-KdV equation. The physical significance of (1.1)–

(1.2) is that the dispersion of the short waves is balanced by the nonlinear interaction

of the long waves with the short waves, while the evolution of the long waves is

driven by the self interaction of the short waves. Here ∂x = ∂/∂x, ∂2
x = ∂2/∂x2,

∂3
x = ∂3/∂x3, and ∂t = ∂/∂t.

One of the closely related resonant interactions is described by the following sys-

tem:

i∂tu(x, t) + ∂2
xu(x, t) − αu(x, t)v(x, t) = 0, t > 0, x ∈ R,(1.3)

∂tv(x, t) + β∂x(|u(x, t)|2) = 0,(1.4)

u(x, 0) = u0(x), v(x, 0) = v0(x),

which was introduced by Benney [2] (see also Yajima-Oikawa [12] and Funakoshi-

Oikawa [4]) and both the inverse scattering method ([12], [7]) and the theory of

evolution equations ([1], [6], [10]) have been applied. Zhang Fayong and Xiang

Xinmin [14] investigated the pseudospectral method for (1.3)–(1.4).

In this paper we consider a subclass of long-short wave interactions described by

Benney’s equation (1.3)–(1.4), namely the periodic initial boundary-value problem

i∂tu(x, t) + ∂2
xu(x, t) − αu(x, t)v(x, t) = 0, t > 0, x ∈ [−L,L],(1.5)

∂tv(x, t) + β∂x(|u(x, t)|2) = 0, t > 0, x ∈ [−L,L],(1.6)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ [−L,L],(1.7)

u(x− L, t) = u(x+ L, t), v(x+ L, t) = v(x− L, t), t > 0, x ∈ [−L,L].(1.8)

We investigate the first order finite difference approximation in time, combined

with Crank-Nicholson Fourier spectral scheme in space, for solving (1.5)–(1.8). Both

the semi-discrete and the fully discrete schemes are analyzed and error estimations

for both are found. The numerical results are presented, which checks the theoretical

results. The rates of convergence of the resulting schemes are O(N−S) and O(τ +

N−S), where N is the number of spatial Fourier modes, τ is the discrete mesh spacing

of the time variable t, and S depends only on the smoothness of the exact solution.
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2. Notation

Let Ω = [−L,L], the inner product and the norm are defined by (u, v) =
∫

Ω u(x)v(x) dx and ‖u‖2 = (u, u), respectively. Let ‖u‖∞ = ess sup
x∈Ω

|u(x)| and

let the periodic Sobolev spaces HS
p be defined by

HS
p (Ω) = {u ∈ HS(R) : u(x− L) = u(x+ L)}.

For any positive integer S, the Sobolev norm and semi-norm are defined by

‖u‖S =

( S
∑

j=0

∥

∥

∥

∥

∂ju

∂xj

∥

∥

∥

∥

2)1/2

, |u|j =

∥

∥

∥

∥

∂ju

∂xj

∥

∥

∥

∥

2

.

We define

L∞(0, T ;HS
p (Ω)) = {u(·, t) ∈ HS

p (Ω): sup
06t<T

‖u(·, t)‖S <∞}.

For any even integer N , set SN = Span
{

ϕl = (1/
√

2π)eiπlx/L : |l| 6 N
}

. By PN

we denote the L2 orthogonal projection operator of HS
p (Ω) onto SN . We define

xl = −L+ lh with h = 2L/N , where N is an even number of grid points.

For the discretization in the time variable t, let τ be the mesh spacing of t and

Rτ = {t = mτ : 0 6 m 6 [T/τ ]}, um = u(x,mτ). We use the following notation:

um
Nt =

1

τ
[um+1

N − um
N ], vm

Nt =
1

τ
[vm+1

N − vm
N ], ûm

N =
1

2
[um+1

N + um
N ].

Lemma 1 ([9]). For any periodic discrete function um,

(um
t , 2û

m) =
1

τ
(‖um+1‖2 − ‖um‖2).

Lemma 2 ([3]). Assume that u ∈ HS
p (Ω). For any 0 6 µ 6 S, there exists C

independent of u and N such that

‖u− PNu‖µ 6 CNµ−S |u|S .
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Lemma 3 ([3], Inverse property). Assume that u ∈ SN . For any 0 6 µ 6 σ,

there exists C independent of u and N such that

‖u‖σ 6 CNσ−µ‖u‖µ.

3. Error estimation of semi-discrete spectral scheme

The semi-discrete spectral approximation of the problem (1.5)–(1.8) consists in

finding uN , vN ∈ SN , satisfying, for any ψ ∈ SN ,

(i∂tuN + ∂2
xuN − αuNvN , ψ) = 0,(3.1)

(∂tvN + β∂x(|uN |2), ψ) = 0,(3.2)

uN(x, 0) = PNu0, vN (x, 0) = PNv0.(3.3)

Suppose that (u, v) are the solutions of (1.5)–(1.8) and (uN , vN ) are the solutions

of (3.1)–(3.3). Set

e1 = u− uN = (u − PNu) + (PNu− uN) = ξ1 + η1,

e2 = v − vN = (v − PNv) + (PNv − vN ) = ξ2 + η2.

By Lemma 2 and using (ξl, ψ) = 0, l = 1, 2, for all ψ ∈ SN , we have

(3.4) ‖el‖ 6 ‖ξl‖ + ‖ηl‖ 6 CN−S + ‖ηl‖, l = 1, 2.

Taking the inner product of (1.5) with ψ ∈ SN implies that

(3.5) (i∂tu+ ∂2
xu− αuv, ψ) = 0.

Subtracting (3.5) from (3.1) yields

(3.6) (i∂te1 + ∂2
xe1 − α(uv − uNvN ), ψ) = 0.

Note that

(∂2
xe1, ψ) = −(∂xe1, ∂xψ).

Setting ψ = η1 in (3.6) and taking the imaginary part, we get

(3.7)
1

2

d

dt
‖η1‖2 = α Im(uv − uNvN , η1),
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where Im denotes the imaginary part. Throughout this paper, we shall use C to

denote a general positive constant independent of τ and N . It can be of different

values in different cases. We have

|α Im(uv − uNvN , η1)| 6 |α|(‖uv − uNvN‖2 + ‖η1‖2).

By applying Lemma 2, we obtain

‖uv − uNvN‖ = ‖u(v − vN ) + vN (u− uN )‖
6 ‖u‖∞‖v − vN‖ + ‖vN‖∞‖u− uN‖
6 C(N−S + ‖η2‖ + ‖η1‖).

Substituting the above estimate into (3.7), we obtain

(3.8)
1

2

d

dt
‖η1‖2

6 C(N−2S + ‖η1‖2 + ‖η2‖2).

On the other hand, taking the inner product of (1.6) with ψ ∈ SN implies that

(3.9) (∂tv + β∂x(|u|2), ψ) = 0.

Subtracting (3.2) from (3.9) implies that

(3.10) (∂te2 + β∂x(|u|2 − |uN |2), ψ) = 0.

Setting ψ = η2 in (3.10), we obtain

(3.11)
1

2

d

dt
‖η2‖2 + (β∂x(|u|2 − |uN |2), η2) = 0.

The second term of (3.11) can be estimated as follows:

|β(∂x(|u|2 − |uN |2), η2)| 6 |β|(‖∂x(|u|2 − |uN |2)‖2 + ‖η2‖2).

By applying Lemma 2, we obtain the following result

‖∂x(|u|2 − |uN |2)‖ 6 (‖u‖∞‖∂xu− ∂xuN‖ + ‖∂xu‖∞‖u− uN‖
+ ‖∂xuN‖∞‖u− uN‖ + ‖uN‖∞‖∂xu− ∂xuN‖)

6 C(N−S + ‖η1‖ + ‖∂xη1‖),

where u is the conjugate of u. Substituting the above estimate into (3.11), we get

(3.12)
1

2

d

dt
‖η2‖2

6 C(N−2S + ‖∂xη1‖2 + ‖η1‖2 + ‖η2‖2).
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Setting ψ = ∂tη1 in (3.6) and taking the imaginary parts yields

(3.13) (∂te1, ∂tη1) = α Im(uv − uNvN , ∂tη1).

Using the Cauchy-Schwarz inequality and the algebraic inequality ab 6 εa2 +

(1/4ε)b2, we get

(3.14) ‖∂tη1‖2
6 C(N−2S + ‖η1‖2 + ‖η2‖2).

Now taking ψ = ∂tη1 in (3.6) and taking the real parts

(3.15)
1

2

d

dt
‖∂xη1‖2 = αRe(uv − uNvN , ∂tη1),

where Re denotes the real part, the equation (3.15) implies that

(3.16)
1

2

d

dt
‖∂xη1‖2

6 C(N−2S + ‖η1‖2 + ‖∂tη1‖2 + ‖η2‖2).

Using (3.14), we can rewrite (3.16) as follows:

(3.17)
1

2

d

dt
‖∂xη1‖2

6 C(N−2S + ‖η1‖2 + ‖η2‖2).

Combining (3.8), (3.12), and (3.17), we get

(3.18)
1

2

d

dt
(‖η1‖2 + ‖∂xη1‖2 + ‖η2‖2) 6 C(N−2S + ‖η1‖2 + ‖∂xη1‖2 + ‖η2‖2).

Using the definition of Sobolev norm, we can rewrite (3.18) as follows:

(3.19)
1

2

d

dt
(‖η1‖2

1 + ‖η2‖2) 6 C(N−2S + ‖η1‖2
1 + ‖η2‖2).

Note that ‖η1(0)‖1 = ‖η2(0)‖ = 0, and by applying Gronwall’s lemma, we obtain

‖η1‖2
1 + ‖η2‖2

6 CN−2S .
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Theorem 1. Suppose that u0(x), v0(x) ∈ HS(Ω), S > 1. Assume that u and v

are a solution of the equations (1.5)–(1.7). Then there exists a unique solution uN ,

vN of the spectral scheme (3.1)–(3.3). Moreover there exists a positive constant C

independent of τ and N such that the following error estimate holds

‖u− uN‖1 + ‖v − vN‖ 6 CN−S .

4. Error estimation of fully discrete spectral scheme

The fully discrete Crank-Nicholson spectral scheme of the problem (1.5)–(1.8)

consists in finding um
N , v

m
N ∈ SN , satisfying for any ψ ∈ SN ,

(ium
Nt + ∂2

xû
m
N − αûm

N v̂
m
N , ψ) = 0,(4.1)

(vm
Nt + β∂x(|ûm

N |2), ψ) = 0,(4.2)

um
N (x, 0) = PNu

m
0 , vm

N (x, 0) = PNv
m
0 .(4.3)

Set
em
1 = um − um

N = (um − PNu
m) + (PNu

m − um
N ) = ξm

1 + ηm
1 ,

em
2 = vm − vm

N = (vm − PNv
m) + (PNv

m − vm
N ) = ξm

2 + ηm
2 .

By Lemma 2 and using (ξm
l , ψ) = 0, l = 1, 2 for all ψ ∈ SN , we have

(4.4) ‖em
l ‖ 6 ‖ξm

l ‖ + ‖ηm
l ‖ 6 CN−S + ‖ηm

l ‖, l = 1, 2.

Substituting the solution u(tm), v(tm) into (1.5)–(1.6), and subtracting (4.1)

from (1.5) and (4.2) from (1.6), respectively, we have

(iem
1t + ∂2

xê
m
1 − α(umvm − ûm

N v̂
m
N ), ψ) = (τm

1 , ψ),(4.5)

(em
2t + β∂x(|um|2 − |ûm

N |2), ψ) = (τm
2 , ψ),(4.6)

where τm
1 and τ

m
2 are truncation errors given below

τm
1 = i(um

t − ∂tu
m) + (∂2

xû
m − ∂2

xu
m) =

τ

2
∂2

t u(t
m
1 ) +

τ

2
∂t∂

2
xu(t

m
2 ),

t 6 tm1 , t
m
2 6 t+ τ,

τm
2 = (vm

t − ∂tv
m) =

τ

2
∂2

t v(t
m
3 ), t 6 tm3 6 t+ τ.

Setting ψ = 2η̂m
1 in (4.5) and taking the imaginary parts, we have

(4.7)
1

τ
(‖ηm+1

1 ‖2 − ‖ηm
1 ‖2) = α Im(umvm − ûm

N v̂
m
N , 2η̂

m
1 ) + (τm

1 , 2η̂
m
1 ).
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By applying the Cauchy-Schwarz inequality, we have

|α Im(umvm − ûm
N v̂

m
N , 2η̂

m
1 )| 6 C(‖umvm − ûm

N v̂
m
N ‖2 + ‖η̂m

1 ‖2).

But

umvm − ûm
N v̂

m
N = um(vm − v̂m) + v̂m(um − ûm) + ûmv̂m − ûm

N v̂
m
N .

By applying Lemma 2 and Taylor’s theorem, we arrive at

‖ûmv̂m − ûm
N v̂

m
N ‖ 6 C(‖ηm+1

1 ‖ + ‖ηm
1 ‖ + ‖ηm+1

2 ‖ + ‖ηm
2 ‖ +N−S + τ),

|(τm
1 , 2η̂

m
1 )| 6 C(‖ηm+1

1 ‖2 + ‖ηm
1 ‖2 + τ2).

Substituting the above estimates into (4.7), we have

1

τ
(‖ηm+1

1 ‖2 − ‖ηm
1 ‖2) 6 C(‖ηm+1

1 ‖2 + ‖ηm
1 ‖2 + ‖ηm+1

2 ‖2 + ‖ηm
2 ‖2 + τ2 +N−2S),

‖ηm+1
1 ‖2

6
1 + Cτ

1 − Cτ
‖ηm

1 ‖2 + Cτ(‖ηm+1
2 ‖2 + ‖ηm

2 ‖2) + C(τ2 +N−2S).

Summing up the above equation for m = 0 to n, we find that

(4.8) ‖ηn+1
1 ‖2

6 C(‖η0
1‖2 + τ

n
∑

m=0

(‖ηm
2 ‖2) + τ2 +N−2S).

Setting ψ = 2η̂m
2 in (4.6), we get

(4.9)
1

τ
(‖ηm+1

2 ‖2 − ‖ηm
2 ‖2) = β(∂x(|um|2 − |ûm

N |2), 2η̂m
2 ) + (τm

2 , 2η̂
m
2 ).

But

∂x|um|2 − ∂x|ûm
N |2 = (∂x|um|2 − ∂x|ûm|2) + (∂x|ûm|2 − ∂x|ûm

N |2).

By applying Lemma 2 and Taylor’s theorem, we obtain

‖∂x|um|2 − ∂x|ûm
N |2‖ 6 C(τ +N−S + ‖∂xη

m+1
1 ‖ + ‖∂xη

m
1 ‖),

|(τm
2 , 2η̂

m
2 )| 6 C(τ2 + ‖ηm+1

2 ‖2 + ‖ηm
2 ‖2).

Substituting the above estimate into (4.9), we get

1

τ
(‖ηm+1

2 ‖2−‖ηm
2 ‖2) 6 C(‖∂xη

m+1
1 ‖2 +‖∂xη

m
1 ‖2 +‖ηm+1

2 ‖2 +‖ηm
2 ‖2 + τ2 +N−2S),

‖ηm+1
2 ‖2

6
1+Cτ

1−Cτ ‖η
m
2 ‖2 +Cτ(‖∂xη

m+1
1 ‖2 +‖∂xη

m
1 ‖2)+C(τ2 +N−2S).
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Summing up the above equation for m = 0 to n, we get

(4.10) ‖ηn+1
2 ‖2

6 C(‖η0
2‖2 + τ

n
∑

m=0

(‖∂xη
m
1 ‖2) + τ2 +N−2S).

Letting ψ = ηm
1t in (4.5) and taking the imaginary parts, we obtain

(em
1t, η

m
1t) − α(umvm − ûm

N v̂
m
N , η

m
1t) = (τm

1 , η
m
1t).

By using Lemma 2 and Taylor’s theorem, we come to

(4.11) ‖ηm
1t‖2

6 C(‖ηm+1
1 ‖2 + ‖ηm

1 ‖2 + ‖ηm+1
2 ‖2 + ‖ηm

2 ‖2 + τ2 +N−2S).

Letting ψ = 2ηm
1t in (4.5), and taking the real parts, we get

2(∂2
xê

m
1 , η

m
1t) + 2αRe(umvm − ûm

N v̂
m
N , η

m
1t) + (τm

1 , 2η
m
1t) = 0.

Again by applying Lemma 2 and Taylor’s theorem, we find that

1

τ
(‖∂xη

m+1
1 ‖2 − ‖∂xη

m
1 ‖2)(4.12)

6 C(‖ηm+1
1 ‖2 + ‖ηm

1 ‖2 + ‖ηm+1
2 ‖2 + ‖ηm

2 ‖2 + ‖ηm
1t‖2 + τ2 +N−2S).

Using (4.11), we can rewrite (4.12) as follows:

1

τ
(‖∂xη

m+1
1 ‖2 − ‖∂xη

m
1 ‖2)(4.13)

6 C(‖ηm+1
1 ‖2 + ‖ηm

1 ‖2 + ‖ηm+1
2 ‖2 + ‖ηm

2 ‖2 + τ2 +N−2S).

Summing up (4.13) for m = 0 to n, we obtain

(4.14) ‖∂xη
n+1
1 ‖2

6 C(‖∂xη
0
1‖2 + τ

n
∑

m=0

(‖ηm
1 ‖2 + ‖ηm

2 ‖2) + τ2 +N−2S).

Combining (4.8), (4.10), and (4.14), we get

En = ‖ηn+1
1 ‖2 + ‖∂xη

n+1
1 ‖2 + ‖ηn+1

2 ‖2

6 C(‖η0
1‖2 + ‖∂xη

0
1‖2 + ‖η0

2‖2 + τ2 +N−2S)

+ Cτ

n
∑

m=0

(‖ηm
1 ‖2 + ‖∂xη

m
1 ‖2 + ‖ηm

2 ‖2).
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Using the definition of the Sobolev norm, we can rewrite the above equation as

follows:

En = ‖ηn+1
1 ‖2

1 + ‖ηn+1
2 ‖2

6 C(‖η0
1‖2

1 + ‖η0
2‖2 + τ2 +N−2S) + Cτ

n
∑

m=0

(‖ηm
1 ‖2

1 + ‖ηm
2 ‖2),

and hence

(4.15) En
6 C(τ2 +N−2S + ‖η0

1‖2
1 + ‖η0

2‖2) + Cτ

n
∑

m=0

Em−1.

Note that ‖η0
1‖1 = ‖η0

2‖ = 0, therefore equation (4.15) can be written as

(4.16) En
6 C(τ2 +N−2S) + Cτ

n
∑

m=0

Em−1.

By applying Gronwall’s lemma, we obtain

C(τ2 +N−2S) 6 Me−cT ,

and so the estimate for En in (4.16) takes the form

En(t) 6 C(τ2 +N−2S)ec(n+1)τ ∀ (n+ 1)τ 6 T.

Thus we have proved:

Theorem 2. Assume that um, vm are solutions of the equations (1.5)–(1.8) and

um
N , v

m
N are solutions of the spectral scheme (4.1)–(4.3), respectively. Then there

exists a positive constant M , independent of τ and N , such that the following error

estimate holds

sup
16m6[T/τ ]

(‖um − um
N‖1 + ‖vm − vm

N ‖) 6 M(τ +N−S).
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5. Numerical results

In this section we present some numerical results to demonstrate the computa-

tional complexity of the Fourier spectral method for (1.5)–(1.8). All computations

in this section were carried in FORTRAN 90 and all figures are obtained by using

MATLAB 6.5 on Compaq Branded system, Processor 3.2GHz, Memory 1GB, Hard

Disk 80GB.

The explicit and exact periodic wave solutions of resonant long-short nonlinear

wave interaction of (1.5)–(1.8) is given by [11]:

u(x, t) = ±
√

1 − w2

β
2i sech(2η(x− wt)) exp

[

i
(w

2
x−

(w2

4
− 4η2

)

t
)]

,(5.1)

v(x, t) = − 1 − w2

β
4η2 sech2(2η(x − wt)) + α,(5.2)

where w, η and α are positive constants.

The relative discrete L2-norm error is defined as follows:

(5.3) E2(u(t)) =

[
∑

x∈Ω |u(x, t) − uN (x, t)|2
∑

x∈Ω |u(x, t)|2
]1/2

,

where u = (u, v) is the exact solution of the equation (1.5)–(1.8) and uN = (uN , vN )

is the solution of the Crank-Nicholson Fourier spectral scheme (4.1)–(4.3).

The calculation is carried out with α = 1.0, β = 1.0, η = 0.5, w = 0.5, and

L = 16 throughout the computation. For comparison, we consider the pseudospectral

scheme of [14]. In Tab. 1 the numerical results show that the present scheme (4.1)–

(4.3) gives much better results than the scheme [14]. The present scheme provides

the numerical solution with high accuracy even if N is small. In order to check the

rate of convergence of the present scheme, Tab. 2 shows the numerical results of the

present scheme. We obtained that if N increases and τ decreases proportionally,

then the errors become smaller quickly, which shows the convergence of the present

scheme.

E2(u(t)) E2(v(t))
Time

Present scheme Scheme [14] Present scheme Scheme [14]
t = 0.2 0.9212E−5 0.9508E−4 0.1231E−5 0.3214E−4
t = 0.4 0.5916E−5 0.6527E−4 0.4346E−5 0.3565E−4
t = 0.6 0.1529E−4 0.1395E−3 0.8666E−4 0.7689E−3
t = 0.8 0.3829E−4 0.3646E−3 0.1364E−4 0.2478E−3
t = 1.0 0.6612E−4 0.6310E−3 0.1883E−4 0.2985E−3

Table 1. Comparison of errors at N = 8, τ = 0.001.
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E2(u(t)) E2(v(t))
N

τ = 0.005 τ = 0.001 τ = 0.0005 τ = 0.005 τ = 0.001 τ = 0.0005
4 0.3832E−3 0.6309E−3 0.7667E−3 0.2163E−3 0.2667E−3 0.8263E−3
8 0.3785E−5 0.4218E−6 0.3258E−7 0.3491E−5 0.3168E−6 0.5454E−7

16 0.3808E−5 0.4363E−6 0.4987E−7 0.3573E−5 0.3545E−6 0.5578E−7
32 0.3979E−5 0.5364E−6 0.5153E−7 0.3684E−5 0.4667E−6 0.6581E−7
64 0.3989E−5 0.5365E−6 0.5265E−7 0.3795E−5 0.4788E−6 0.6591E−7

128 0.3999E−5 0.5367E−6 0.5376E−7 0.3856E−5 0.4897E−6 0.6681E−7

Table 2. The relative errors for u and v at t = 1.0.

At time t = 1.0, the single soliton is plotted in Fig. 1. The surface graphs of the

exact solution and the approximate solution at t = 1 are given in Fig. 2 and Fig. 3,

respectively. We observe that the behavior of the exact solution and the approximate

solution are the same.

A clear conclusion can be drawn from the numerical results that Crank-Nicholson

Fourier spectral scheme provides highly accurate solution in spatial discretization

for nonlinear partial differential equations. It is also worth noting the advantage of

the spectral methodology that it displays a fast convergence of the solution by using

Fast Fourier Transform.
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Figure 1. Plot of the soliton at t = 1.0.
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Figure 2. Comparison of exact solution and approximate solution of u and v.
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