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Abstract. A non-interior point algorithm based on projection for second-order cone pro-
gramming problems is proposed and analyzed. The main idea of the algorithm is that we
cast the complementary equation in the primal-dual optimality conditions as a projection
equation. By using this reformulation, we only need to solve a system of linear equations
with the same coefficient matrix and compute two simple projections at each iteration, with-
out performing any line search. This algorithm can start from an arbitrary point, and does
not require the row vectors of A to be linearly independent. We prove that our algorithm
is globally convergent under weak conditions. Preliminary numerical results demonstrate
the effectiveness of our algorithm.
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1. Introduction

A second-order cone programming (SOCP) is to minimize a linear function over

the intersection of an affine space with the Cartesian product of a finite number of

second-order cones. The SOCPs have wide range of applications in many fields, such

as engineering, control, finance, robust optimization and combinatorial optimization

(see [1], [14], [15], [17], [20], [32], [33]).

*This work was supported by National Natural Science Foundation of China (10571109)
and Natural Science Foundation of Shandong (Y2008A01).
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Throughout this paper, we consider the SOCP problem with a single second-order

cone

(1) (P) min{〈c, x〉 : Ax = b, x ∈ Q},

where A ∈ R
m×n, c ∈ R

n, b ∈ R
m are given data, 〈·, ·〉 is the Euclidean inner product,

and Q is a second-order cone (SOC) with dimension n which is defined by

Q = {(x0; x̄) ∈ R× R
n−1 : x0 > ‖x̄‖},

where x0 is the first element of x, x̄ is the vector containing the remaining elements

of x, ‖ · ‖ refers to the standard Euclidean norm. For simplicity, we use “,” to join

vectors and matrices in a row and “;” to join them in a column. Thus, for instance,

for vectors x, y, and z we use (x; y; z) to represent (xT , yT , zT )T .

It is well known that SOC Q ⊆ R
n is a closed, pointed (i.e., Q ∩ (−Q) = {0})

and convex cone. Hence, SOCP problems are convex optimization problems and the

SOC Q is self-dual, that is,

Q = Q∗ = {s ∈ R
n : sT x > 0, for each x ∈ Q}.

Thus the dual problem of (P) is

(2) (D) max{bT y : AT y + s = c, s ∈ Q},

where y ∈ R
m and s ∈ Q is slack variable. The symbol (Rn, ◦) stands for a Euclidean

Jordan algebra, where “◦” is a bilinear mapping named the Jordan product and

defined by

(3) x ◦ s = (xT s; x0s̄ + s0x̄)

for any x = (x0; x̄) and s = (s0; s̄) ∈ R × R
n−1. The vector en = (1; 0) ∈ R× R

n−1

is the identity element of (Rn, ◦). Each vector is indexed from 0. We use lower case

letters such as x, s for column vectors, and upper case letters A, B for matrices,

0n denotes the square matrix whose dimension is n and elements are all zeros, and

0 denotes the vector of all zeros with suitable dimension. Subscripted vectors such

as xi represent the ith element of x. We use I for the identity matrices; in all cases

the dimensions of vectors and matrices can be discerned from the context. If K ⊆ R
k

and L ⊆ R
l, then K × L = {(x; y) : x ∈ K, y ∈ L} is the Cartesian product of K

and L. Let bdQ = {x ∈ Q : x0 = ‖x̄‖ and x 6= 0} denote the boundary of Q, while

the interior of Q is denoted by intQ = {x ∈ Q : x0 > ‖x̄‖}. For A ∈ R
n×n, A < 0
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(A ≻ 0) means A is positive semidefinite (positive definite). It is well known that

Q induces a partial ordering on R
n:

x <Q y iff x − y ∈ Q, and x ≻Q y iff x − y ∈ intQ.

The relations “4Q” and “≺Q” are defined similarly. In analogy to matrices, we call

x ∈ Q (i.e., x < 0) positive semidefinite and x ∈ intQ (i.e., x ≻ 0) positive definite [1].

For the sake of convenience, we denote wk := (xk, yk, sk), where k denotes the

iteration index, and let

F(P) = {x ∈ R
n : Ax = b, x ∈ Q},

F(D) = {(y, s) ∈ R
m × R

n : AT y + s = c, s ∈ Q}

represent the feasible sets of the (P) and (D), respectively. At the same time, the

interior feasible solutions of (P) and (D) are represented by

F0(P) = {x ∈ R
n : Ax = b, x ∈ intQ},

F0(D) = {(y, s) ∈ R
m × R

n : AT y + s = c, s ∈ intQ}.

Note that our analysis can be easily extended to the general case in the Cartesian

product of a finite number of SOCs.

For any x ∈ R
n, we have the basic conclusion:

(4) x ∈ Q ⇔ 〈x, s〉 > 0 ∀ s ∈ Q.

Associated with each vector x ∈ R
n, there is an arrow-shaped matrix defined as

Arw(x) =

(

x0 x̄T

x̄ x0I

)

.

It is easy to see that Arw(x) < 0 if and only if either x = 0, or x0 > 0 and the

Schur complement x0 − x̄T (x0I)−1x̄ > 0, which implies that x <Q 0 (x ≻Q 0) if and

only if Arw(x) < 0 (Arw(x) ≻ 0). As a consequence, we conclude that SOCP is a

special case of semidefinite programming. However, the algorithm which is reliable

for solving SOCP warrants our attention.

For a given primal-dual feasible point (x, y, s), 〈x, s〉 is called the duality gap due

to the famous weak dual theorem, i.e., 〈x, s〉 > 0, which implies that

〈c, x〉 − 〈b, y〉 = 〈AT y + s, x〉 − 〈Ax, y〉 = 〈x, s〉 > 0.

Note that 〈x, s〉 = 0 is sufficient for optimality for a feasible point (x, y, s).
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It is well known that under a suitable condition, such as the Slater constraint

qualification, the SOCP is equivalent to its optimality conditions

Ax = b,(5)

AT y + s = c,

〈x, s〉 = 0, x, s ∈ Q, y ∈ R
m,

where 〈x, s〉 = 0 is usually referred to as the complementarity condition.

Over the past decades, the primal-dual interior point method (IPM) has been

developed for all kinds of nonlinear optimization problems including SOCPs (see,

e.g., [1], [3], [5]–[8], [14]–[15], [17]–[20], [22]–[25], [28]–[30], [32]–[34] and references

therein). Numerous applications have been discussed in [17], [20], [27], [32]. Many

researchers indicated that the primal-dual IPM had the highly theoretical efficiency

for SOCPs.

Recently, motivated by the smoothing-type methods for linear programming

and complementarity problems, many methods for solving SOCPs have been pro-

posed in [2], [4], [9], [11], [13], [16], [26]. They include reformulating SOC con-

straints as smooth convex constraints, smoothing Newton methods, and smoothing-

regularization methods. These methods require solving a nontrivial system of linear

equations at each iteration. The main idea of these methods is that the optimality

conditions or central path conditions are reformulated as a nonlinear equation, which

excludes the inequality constraints such as x <Q 0, s <Q 0 or x ≻Q 0, s ≻Q 0.

Under mild assumptions, both IPM and the smoothing method are globally con-

vergent. It should be noted that both the methods require the linear independence

of the row vectors of the matrix A, and a suitable step length obtained by the line

search. Moreover, a feasible starting point is needed except infeasible IPMs (see [21],

[22]).

The non-interior point algorithm to be discussed here is motivated by the alter-

nating direction methods for variational inequality problems (see [5], [10], [12], [14],

[17], [20], [22], [31]). The new algorithm is based on the optimality conditions (5) and

the main difference from IPMs and smoothing methods is that we reformulate the

complementarity condition as a projection equation. It is shown that our algorithm

has the following good properties:

(i) The algorithm can start from an arbitrary point.

(ii) The algorithm needs to solve only one linear system of equations and compute

two simple projections at each iteration.

(iii) It does not require any line search, i.e., full Newton step is taken at each itera-

tion.

(iv) It does not require A to be of full row rank.
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(v) The generated sequence converges to the accumulation point globally with-

out strict complementarity, which is stronger than the corresponding results

for IPMs and smoothing-type methods.

The paper is organized as follows. In Section 2, we give the equivalent formulation

of the optimality conditions. A new algorithm is stated in Section 3. In Section 4,

we analyze the global convergence of our algorithm. Preliminary numerical tests are

shown in Section 5. Finally, some conclusions and suggestions for future research are

summarized in the last section.

2. Equivalent formulation of optimality conditions

In this section we give the equivalent formulation of the optimality conditions

in (5). To this end, we exploit the following result.

Proposition 2.1. Let x <Q 0, s <Q 0, then 〈x, s〉 = 0 is equivalent to x ◦ s = 0.

P r o o f. If x0 = 0 or s0 = 0, then the conclusion is obvious. Now, we assume

that x0 > 0 and s0 > 0. From x <Q 0, s <Q 0, we have

x2
0 > ‖x̄‖2 =

n−1
∑

i=1

x2
i ,(6)

s2
0 > ‖s̄‖2 =

n−1
∑

i=1

s2
i ,(7)

which yields

(8) x2
0 > x2

0

n−1
∑

i=1

s2
i

s2
0

.

By 〈x, s〉 = 0 we have −x0s0 = x1s1 + x2s2 + . . . + xn−1sn−1 which is equivalent to

(9) −2x2
0 =

n−1
∑

i=1

2x0xisi

s0

.

Adding (6), (8), and (9) together gives

n−1
∑

i=1

(

xi +
x0si

s0

)2

6 0,

from which we obtain x0si + s0xi = 0, i = 1, . . . , n−1. Therefore, we have 〈x, s〉 = 0

if and only if x ◦ s = 0. �
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Throughout the paper, we make the following assumption:

A s s um p t i o n 2.1. F0(P) ×F0(D) 6= ∅.

Note that under Assumption 2.1, strong dual theorem holds, i.e., both (P) and

(D) have optimal solutions and their optimal values are coincident. Therefore, the

optimality condition (5) is equivalent to

Ax = b,(10)

AT y + s = c,

x ◦ s = 0, x, s ∈ Q, y ∈ R
m.

Several researchers suggest solving the optimality conditions (5) by IPMs motivated

by the groundbreaking work of Nesterov and Nemirovskii (see [1], [15] and refer-

ences therein). They typically consider the following perturbed optimality condi-

tions, which are usually called the central path conditions :

Ax = b,(11)

AT y + s = c,

x ◦ s = µen, x, s ∈ intQ, y ∈ R
m,

where µ > 0 is a parameter. IPMs usually apply a Newton-type method to the

central path conditions and then deal with x ≻ 0 and s ≻ 0 explicitly by a suitable

line search.

Associated with SOC Q, we define the spectral decomposition of any vector x =

(x0; x̄) ∈ R× R
n−1 as

(12) x = λ1u1 + λ2u2,

where the spectral values λ1, λ2 and the associated spectral vectors u1, u2 of x are

given by

λi = x0 + (−1)i+1‖x̄‖,(13)

ui =















1

2

(

1; (−1)i+1
x̄

‖x̄‖

)

, x̄ 6= 0;

1

2
(1; (−1)i+1ω), x̄ = 0,

(14)

for i = 1, 2, with any ω ∈ R
n−1 such that ‖ω‖ = 1.
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Since Q is an SOC, it is a nonempty closed convex set in R
n. The orthogonal

projection from R
n into Q is defined by

(15) PQ(x) = argmin{‖ω − x‖ : ω ∈ Q}, ∀x ∈ R
n.

A basic property of the projection mapping is shown in Lemma 2.1.

Lemma 2.1. For any u, v ∈ R
n, w ∈ Q, we have

〈v − PQ(v), PQ(v) − w〉 > 0,(16)

‖PQ(u) − PQ(v)‖ 6 ‖u − v‖.(17)

Moreover, PQ(·) has the following important properties.

Proposition 2.2. For any x = λ1u1 +λ2u2 ∈ R
n, λi and ui being defined by (13)

and (14), we have

(18) PQ(x) = λ+

1 u1 + λ+

2 u2,

where λ+

i
= max{λi, 0}, i = 1, 2.

P r o o f. It is obvious that the pair of vectors {u1, u2} is a Jordan frame. The

superplane

(19) S = {z = ν1u1 + ν2u2 : ν1, ν2 ∈ R}

is a complete normed linear space in R
n.

For any γ ∈ Q, it follows from the orthogonal decomposition theorem that γ can

be decomposed into γ = γ1 + γ2, where γ1 = PS(γ) ∈ S ⊆ Q, γ2 ∈ S⊥, i.e., γ2 is in

the orthogonal complement of S.

Assume γ1 = λ̃1u1 + λ̃2u2, λ̃1, λ̃2 > 0. Then we have

‖x − γ‖2 = ‖(λ1 − λ̃1)u1 + (λ2 − λ̃2)u2 − γ2‖
2

= 〈(λ1 − λ̃1)u1 + (λ2 − λ̃2)u2 − γ2, (λ1 − λ̃1)u1 + (λ2 − λ̃2)u2 − γ2〉

=
1

2
(λ1 − λ̃1)

2 +
1

2
(λ2 − λ̃2)

2 + ‖γ2‖
2,

where the third equality follows from the fact that 〈ui, ui〉 = 1/2, 〈u1, u2〉 = 0,

and 〈ui, γ2〉 = 0, i = 1, 2. The right-hand side is minimized by the γ such that

λ̃i = max{λi, 0} = λ+

i
, i = 1, 2, and γ2 = 0. Thus the proof is completed. �
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Note that Proposition 2.2 offers a simple way to compute the projection PQ(x)

via the spectral decomposition of x.

R em a r k 2.1. It is easy to conclude that

(1) if x ∈ Q, then PQ(x) = x;

(2) if x ∈ −Q∗, then PQ(x) = 0;

(3) if x ∈ R
n − (Q ∪ (−Q∗)), then PQ(x) = λiui, where λi is the only positive

characteristic eigenvalue (the other one is negative), whose characteristic vector

is ui, 1 6 i 6 2. Therefore, the projection of x = (x0; x̄) ∈ R×R
n−1 on SOC Q

can be expressed by

(20) PQ(x) =















x, λ1 > 0, λ2 > 0;

1

2
(x0 + ‖x̄‖)

(

1;
x̄

‖x̄‖

)

, λ1 > 0, λ2 < 0;

0, λ1 6 0, λ2 6 0,

where λ1, λ2 are the spectral values of x defined by (13).

The following theorem plays an important role in our reformulation.

Theorem 2.1. For any (x, s) ∈ R
n × R

n, we have

(21) x, s ∈ Q, 〈x, s〉 = 0 ⇔ s = PQ(s − x).

P r o o f. First consider the “only if” part. If (x, s) ∈ Q ×Q satisfies 〈x, s〉 = 0,

then for any c <Q 0 we have

(22) ‖(s − x) − c‖2 = ‖s− c‖2 + 2〈c − s, x〉 + ‖x‖2 = ‖s − c‖2 + 2〈c, x〉 + ‖x‖2.

Since x, c <Q 0, by (4) we have 〈c, x〉 > 0. The right-hand side attains its mini-

mum ‖x‖2 at c = s, which means s = PQ(s − x).

Next, we consider the “if” part. If (x, s) ∈ R
n × R

n satisfies s = PQ(s − x), then

s <Q 0 and

(23) 0 6 ‖(s − x) − c‖2 − ‖x‖2 = ‖s − c‖2 + 2〈c − s, x〉 ∀ c <Q 0.

For any ω <Q 0 and any t ∈ (0, +∞), we have c = s + tω <Q 0. The equation (23)

yields

t2‖ω‖2 + 2t〈ω, x〉 > 0.

Dividing both sides by t and letting t → 0 yields 〈ω, x〉 > 0 for all ω <Q 0. Also,

by (4) we have x <Q 0. Similarly, for any t ∈ (0, 1] we have

c = (1 − t)s <Q 0.
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It follows from (23) that

t2‖s‖2 − 2t〈s, x〉 > 0.

Dividing both sides by t and letting t → 0 yields −〈s, x〉 > 0. Since x, s ∈ Q, by (4)

we get 〈x, s〉 > 0, which implies 〈x, s〉 = 0. The proof is completed. �

From Theorem 2.1 we obtain the following equivalent reformulation of the optimal

conditions (5):

(24) Φ(w) := Φ(x, y, s) =





Ax − b

c − AT y − s

s − PQ(s − x)



 = 0,

where x, s ∈ Q, y ∈ R
m.

3. Description of the algorithm

The aim of this section is to propose the non-interior point method for solv-

ing SOCPs. From (24) we can see that for a given element (x, y) ∈ Q × R
m, if we

update s by s = PQ(c−AT y−x), then (x, y, s) is a solution of (5) as long as Ax = b

and AT y + s = c. Hence, our main work is how to find (xk+1, yk+1, sk+1) for the

current (xk, yk, sk), which can be done by the following non-interior point algorithm.

A l g o r i t hm 3.1 (A non-interior point algorithm for SOCPs).

Step 0. Choose (x0, y0) ∈ R
n × R

m, γ ∈ (0, 2), ε > 0. Set k := 0.

Step 1. Set xk := PQ(xk), sk := PQ(c − AT yk − xk).

Step 2. If ‖c − AT yk − sk‖2 + ‖Axk − b‖2 6 ε, then stop. Else, go to Step 3.

Step 3. Solve the following system of linear equations to obtain ∆wk := (∆xk,

∆yk) ∈ R
n × R

m:

(25)

(

In −AT

A Im

) (

∆xk

∆yk

)

= −γ

(

c − AT yk − sk

Axk − b

)

.

Step 4. Set xk+1 := xk + ∆xk, yk+1 := yk + ∆yk and k := k + 1. Go to Step 1.

R em a r k 3.1. The coefficient matrix
(

In −AT

A Im

)

is invertible (in fact, it is positive definite by the Schur complement lemma [27])

for any A ∈ R
m×n, because the matrix AAT is always positive semidefinite, and

Im + AAT , i.e., the Schur complement of In, is always positive definite and hence

invertible. Therefore, the linear system (25) has a unique solution. Taking into

account Assumption 2.1, we conclude that Algorithm 3.1 is well defined.
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R em a r k 3.2. Straightforward evaluation yields

(

In −AT

A Im

)−1

=

(

(In + AT A)−1 AT (Im + AAT )−1

−A(In + AT A)−1 (Im + AAT )−1

)

,

from which we can see that, for large and sparse second-order cone programming

problems, the main cost of solving (25) lies in inverting In + AT A and Im + AAT ,

which can be done efficiently via sparse Cholesky factorization.

4. Global convergence

In this section we discuss the global convergence property of Algorithm 3.1. To

this end, we let Θ be the solution set of (5) and assume Θ is nonempty.

Lemma 4.1. Let (xk, yk) ∈ Q × R
m, sk = PQ(c − AT yk − xk). Then for any

w∗ = (x∗, y∗, s∗) ∈ Θ we have

(

xk − x∗

yk − y∗

)T (

In −AT

A Im

) (

c − AT yk − sk

Axk − b

)

(26)

> ‖Axk − b‖2 + ‖c − AT yk − sk‖2.

P r o o f. Since w∗ = (x∗, y∗, s∗) ∈ Θ, i.e., w∗ satisfies (5), hence

x∗ <Q 0, s∗ <Q 0, x∗ ◦ s∗ = 0

and

(27) 〈(x∗; y∗), (sk − s∗; 0)〉 = 〈x∗, sk〉 > 0.

On the other hand, choosing v = c−AT yk − xk and ω = s∗ in (16), and taking into

account PQ(v) = sk, we get

〈c − AT yk − xk − sk, sk − s∗〉 > 0.

Moreover, we have

(28) 〈(c − AT yk − xk − sk; yk − Axk + b), (sk − s∗; 0)〉 > 0.

Adding (27) to (28) and letting xk − c + AT yk + sk − x∗ = x̂, yk −Axk + b− y∗ = ŷ

yields

(29) 〈(x̂; ŷ), (s∗ − sk; 0)〉 > 0.

456



Since w∗ ∈ Q, we can rewrite (29) as

〈(c − AT y∗ − sk; Ax∗ − b), (x̂; ŷ)〉 > 0.

Rearranging the above inequality, we have

(

(xk − x∗) − (c − AT yk − sk)

(yk − y∗) − (Axk − b)

)T (

AT (yk − y∗) + (c − AT yk − sk)

A(x∗ − xk) + (Axk − b)

)

> 0.

Thus
(

(xk − x∗) − (c − AT yk − sk)

(yk − y∗) − (Axk − b)

)T (

0n AT

−A 0m

) (

xk − x∗

yk − y∗

)

(30)

+

(

(xk − x∗) − (c − AT yk − sk)

(yk − y∗) − (Axk − b)

)T (

c − AT yk − sk

Axk − b

)

> 0.

Furthermore, by taking into account

(

xk − x∗

yk − y∗

)T (

0n AT

−A 0m

) (

xk − x∗

yk − y∗

)

= 0,

we have
(

(xk − x∗) − (c − AT yk − sk)

(yk − y∗) − (Axk − b)

)T (

0n AT

−A 0m

) (

xk − x∗

yk − y∗

)

(31)

=

(

c − AT yk − sk

Axk − b

)T (

0n −AT

A 0m

) (

xk − x∗

yk − y∗

)

=

(

xk − x∗

yk − y∗

)T (

In −AT

A Im

) (

c − AT yk − sk

Axk − b

)

−

(

xk − x∗

yk − y∗

)T (

c − AT yk − sk

Axk − b

)

,

and
(

(xk − x∗) − (c − AT yk − sk)

(yk − y∗) − (Axk − b)

)T (

c − AT yk − sk

Axk − b

)

(32)

=

(

xk − x∗

yk − y∗

)T (

c − AT yk − sk

Axk − b

)

− (‖Axk − b‖2 + ‖c − AT yk − sk‖2).

Substituting (31) and (32) into (30) and rearranging the inequality, we get the desired

conclusion. �

The next result accounts for the termination rule used in Step 2. It can be easily

obtained from Lemma 2.1.
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Lemma 4.2. Let wk = (xk, yk, sk) be generated by Algorithm 3.1. Then we have

(33) ‖Φ(wk)‖2
6 2(‖Axk − b‖2 + ‖c − AT yk − sk‖2).

Lemma 4.3. Let wk be generated by Algorithm 3.1. Then for any w∗ ∈ Θ we

have
∥

∥

∥

∥

(

In −AT

A Im

) (

xk+1 − x∗

yk+1 − y∗

)∥

∥

∥

∥

2

(34)

6

∥

∥

∥

∥

(

In −AT

A Im

) (

xk − x∗

yk − y∗

)∥

∥

∥

∥

2

− γ(2 − γ)(‖Axk − b‖2 + ‖c − AT yk − sk‖2),

where γ ∈ (0, 2).

P r o o f. From Step 3 we obtain

(35)

(

In −AT

A Im

) (

xk+1

yk+1

)

=

(

In −AT

A Im

) (

xk

yk

)

− γ

(

c − AT yk − sk

Axk − b

)

.

Adding the following item
(

In −AT

A Im

) (

−x∗

−y∗

)

to both sides of (35) yields
(

In −AT

A Im

) (

xk+1 − x∗

yk+1 − y∗

)

=

(

In −AT

A Im

) (

xk − x∗

yk − y∗

)

− γ

(

c − AT yk − sk

Axk − b

)

.

Therefore, by Lemma 4.1 we obtain
∥

∥

∥

∥

(

In −AT

A Im

) (

xk+1 − x∗

yk+1 − y∗

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

(

In −AT

A Im

) (

xk − x∗

yk − y∗

)

− γ

(

c − AT yk − sk

Axk − b

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

(

In −AT

A Im

) (

xk − x∗

yk − y∗

)∥

∥

∥

∥

2

+ γ2

∥

∥

∥

∥

(

c − AT yk − sk

Axk − b

)∥

∥

∥

∥

2

− 2γ

(

xk − x∗

yk − y∗

) (

In AT

−A Im

) (

c − AT yk − sk

Axk − b

)

6

∥

∥

∥

∥

(

In −AT

A Im

) (

xk − x∗

yk − y∗

)∥

∥

∥

∥

2

− γ(2 − γ)(‖Axk − b‖2 + ‖c − AT yk − sk‖2),

which completes the proof. �

From Lemma 4.2 and 4.3 we can easily obtain the following result.
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Lemma 4.4. Let {wk} be the sequence generated by Algorithm 3.1. Then we

have

lim
k→+∞

[‖Axk − b‖2 + ‖c − AT yk − sk‖2] = 0,

and

lim
k→+∞

Φ(wk) = 0.

We are now in the position to give the global convergence result for Algorithm 3.1.

Theorem 4.1. Suppose that {wk} is any sequence generated by Algorithm 3.1.

Then the following results hold.

(a) If Assumption 2.1 holds, {wk} is bounded and hence, it has at least one accu-

mulation point w∗ = (x∗, y∗, s∗) with Φ(w∗) = 0 and x∗, s∗ ∈ Q.

(b) Every accumulation point of the sequence {wk} is a solution of the optimality

conditions (P) and (D).

P r o o f. (a) From Assumption 2.1 we know that (5) have solutions. Suppose

that ŵ = (x̂, ŷ, ŝ) is a solution of (5). Since

∥

∥

∥

∥

(

In −AT

A Im

) (

xk − x̂

yk − ŷ

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

(

xk − x̂

yk − ŷ

)

+

(

0n −AT

A 0m

) (

xk − x̂

yk − ŷ

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

(

xk − x̂

yk − ŷ

)∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

0n −AT

A 0m

) (

xk − x̂

yk − ŷ

)∥

∥

∥

∥

2

,

from Lemma 4.3 we have

∥

∥

∥

∥

(

xk − x̂

yk − ŷ

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

(

In −AT

A Im

) (

xk − x̂

yk − ŷ

)∥

∥

∥

∥

2

(36)

−

∥

∥

∥

∥

(

0n −AT

A 0m

) (

xk − x̂

yk − ŷ

)∥

∥

∥

∥

2

6

∥

∥

∥

∥

(

In −AT

A Im

) (

xk − x̂

yk − ŷ

)∥

∥

∥

∥

2

6

∥

∥

∥

∥

(

In −AT

A Im

) (

x0 − x̂

y0 − ŷ

)∥

∥

∥

∥

2

,

which means that the sequence {(xk, yk)} is bounded. On the other hand, by the def-

inition of sk and continuity of the projection operator we know that {sk} is bounded.

Hence, the sequence {(xk, yk, sk)} has at least one accumulation point.

(b) Let (x∗, y∗, s∗) be any accumulation of {(xk, yk, sk)} and without loss of gen-

erality, let us assume that the subsequence {(xki , yki , ski)} converges to (x∗, y∗, s∗).
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According to Lemmas 4.2 and 4.4 we have

lim
i→+∞

Φ(xki , yki , ski) = Φ(x∗, y∗, s∗) = 0.

Therefore, (x∗, y∗, s∗) is a solution of (5). Due to the equivalence of (P), (D), and

(5), we know that (x∗, y∗, s∗) is also a solution of (P) and (D). �

5. Preliminary numerical results

Now, we deal with numerical tests using Algorithm 3.1. All experiments were

performed on a personal computer (IBM R40e) with 512 MB memory and Intel(R)

Pentium(R) 4 CPU 2.00 GHz. The operating system was Windows XP (SP2) and

the implementations were done in MATLAB 7.0.1 with double precision. We use

‖c − AT yk − sk‖2 + ‖Axk − b‖2 6 10−6 as the stopping rule. The numerical results

are summarized in Tab. 1 for different tested problems. In Tab. 1, Iter denotes the

number of iterations. CPU time denotes the time needed for obtaining the optimal

solution satisfying the stopping rule, FV denotes the value of ‖c − AT yk − sk‖2 +

‖Axk −b‖2 at the final iterate. In the sequel, we give a brief description of the tested

problems.

We consider the SOCP problemmin{〈c, x〉 : Ax = b, x ∈ Q}, whose data are given

as follows:

Problem 1.

A =

(

2 1

1 −1

)

, c = (2; 1), b = (2; 1).

The optimal solution is x∗ = (1; 0), y∗ = (1; 0), and the optimal value of the objective

function is 2.

Problem 2.

A =





2 1

1 −1

4 2



 , c = (2; 1), b = (2; 1; 4).

The optimal solution is x∗ = (1; 0), y∗ = (0.2; 0; 0.4), and the optimal value of the

objective function is again 2.
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Problem 3.

A =















10 2

−2 10 2
. . .

. . .
. . .

−2 10 2

−2 10















∈ R
m×n,

c = 100en + 4 rand(n, 1) − 2 ones(n, 1),

b = 100em + 4 rand(m, 1) − 2 ones(m, 1),

where ones(k, 1) denotes the vector with dimension k whose all elements are ones,

and rand(n, 1) is an n-dimensional real vector with random entries, chosen from a

uniform distribution on the interval (0, 1).

Problem 4.

B =















10 2

−2 10 2
. . .

. . .
. . .

−2 10 2

−2 10















∈ R
m×m, A = [B, randn(m, n − m)],

c = 100en + 4 rand(n, 1) − 2 ones(n, 1),

b = 100em + 4 rand(m, 1) − 2 ones(m, 1),

where randn(m, n−m) is an m-by-(n−m) real matrix with random entries, chosen

from the standard normal distribution on the interval (0, 1), [B, randn(m, n − m)]

is the block matrix obtained by adjoining the matrices B and randn(m, n − m) in

a row.

Note that in Problem 1, the row vectors of A are linearly independent, while in

the case of Problem 2, A is not a full row rank matrix.

Displayed in Tab. 1 are numerical results for Algorithm 3.1 for the above four

problems. The computational results show that the present method is efficient as far

as the numerical results are considered. Moreover, it can also deal with the case that

A has not the full row rank. Furthermore, it can deal with large-scale and sparse

second-order cone programming. Therefore, the new method may be of practical

interest.
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Problem m n γ x0 y0 Iter CPU time (s) FV

Problem 1 2 2 0.9 e2 −e2 11 0.09 2.93× 10−7

2 2 0.9 0.5e2 0 10 0.06 6.65× 10−7

2 2 1 0 0 9 0.10 2.20× 10−7

2 2 1.5 −e2 0.5e2 15 0.02 8.66× 10−7

2 2 0.9 −0.5e2 0 10 0.08 7.02× 10−7

2 2 1.5 −0.5e2 −e2 17 0.08 4.13× 10−7

Problem 2 3 2 0.8 e2 0 10 0.08 6.85× 10−7

3 2 1 0.5e2 −e3 9 0.03 3.60× 10−7

3 2 0.9 0 0 9 0.08 9.93× 10−7

3 2 0.9 −0.5e2 0.5e3 10 0.01 4.27× 10−7

3 2 1.6 −0.5e2 0 14 0.09 1.59× 10−7

3 2 1.2 −e2 −e3 8 0.05 5.39× 10−7

Problem 3 150 150 0.9 0 0 38 4.907 6.6852 × 10−8

200 200 1.0 ones(200, 1) 0 18 3.845 4.3319 × 10−7

200 200 1.5 ones(200, 1) ones(200, 1) 33 6.790 8.6068 × 10−7

Problem 4 150 200 1.6 0 0 32 4.537 2.2935 × 10−7

150 200 1.4 0 ones(150, 1) 35 4.717 9.3174 × 10−7

150 200 1.8 ones(200, 1) ones(150, 1) 49 6.530 9.2915 × 10−7

Table 1. Numerical results for Algorithm 3.1.

6. Final remarks

In the paper a non-interior point algorithm for SOCP problems based on projection

is proposed and analyzed. The method provides a stronger convergence result than

that for IPMs and the smoothing methods. It is versatile and easy to implement.

Preliminary numerical results demonstrate that the algorithm given in this paper is

effective and has good numerical performance for second-order cone programming

problems, especially, in the following cases: the row vectors of A are not linearly

independent, there is no strict complementarity and the SOCPs concerned have

large-scale sparse structure. How to improve the method to obtain local convergence

and further numerical tests comparing our algorithm with existing methods will be

the topic of future research.
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