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Abstract. In this paper we propose a parametrized Newton method for nonsmooth equa-
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1. Introduction

A lot of optimization problems can be transformed to a system of nonsmooth

equations

(1) F (x) = 0,

where F : R
n → R

n is locally Lipschitz, for instance, nonlinear complementarity

problems, variational inequality problems and LC1 optimization problems ([1], [3],

[5], [7]–[10]).

In recent years, much attention has been devoted to various forms of methods for

solving (1). Most popular methods are the Newton-type ones, which include Newton

methods, inexact Newton methods and quasi-Newton methods. They are based on

the Clarke-type subdifferentials in each iteration step. For instance, the Newton

*This work was supported byNational Science foundation of China (under grant 10671126),
key project for fundamental research of STCSM (under grant 06JC14057) and Shanghai
leading academic discipline project (S30501) and JWCXSL0801 of Shanghai.
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method is given as follows:

(2) xk+1 = xk − V −1
k F (xk),

where Vk is an element of Clarke generalized Jacobian [7], an element of B-

differential [8], and an element of b-differential [11] of F an xk. Under the as-

sumption that all elements of ∂ClF (x⋆), of ∂BF (x⋆), or of ∂bF (x⋆), where x⋆ is

the solution of (2), are nonsingular, the locally super-linear convergence properties

were obtained. In [1], Chen and Qi presented a parametrized modification of the

generalized Jacobian Newton-like method

xk+1 = xk − αk(Vk + λkI)−1F (xk),

where Vk ∈ ∂BF (xk), I is the n × n identity matrix, the parameters αk and λk are

chosen to ensure convergence and Vk + λkI is invertible.

In this paper we study a new method for the equations with max-type functions

proposed by Gao in [3]

max
j∈J1

f1j(x) = 0,(3)

...

max
j∈Jn

fnj(x) = 0,

where fij : R
n → R for j ∈ Ji, i = 1, . . . , n, are continuously differentiable, Ji for

i = 1, . . . , n are finite index sets. Denote

fi(x) = max
j∈Ji

fij(x), x ∈ R
n, i = 1, . . . , n,

F (x) = (f1(x), . . . , fn(x))T , x ∈ R
n,

Ji(x) = {ji ∈ N : fij(x) = fi(x)}, x ∈ R
n, i = 1, . . . , n;

then the equation (3) can be rewritten as (1). Define a new kind of the differential

for F (x) by

(4) ∂⋆F (x) = {(∇f1j1 , . . . ,∇fnjn
)T : j1 ∈ J1(x), . . . , jn ∈ Jn(x)}, x ∈ R

n.

Gao [3] gave the super convergence result. Based on [3], Śmietański constructed a

new version of finite difference approximation of the generalized Jacobian for a finite

maximum function in [9]. In paper [10], Śmietański also proposed a new class of the

parametrized Newton-like method for semismooth equations.
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Based on [10], we consider the max-type equations proposed in [3] and present

a new parametrized Newton method for the system of nonsmooth equations with

finite maximum functions. The well-known results on the generalized Jacobian and

the semismoothness will be recalled in Section 2. In Section 3, we will give the

new method for (3) and study the convergence of this method. Finally, we give a

numerical example.

2. Preliminaries

Let F : R
n → R

n be a locally Lipschitzian function. According to Rademacher’s

Theorem, the local Lipschitz continuity of F (x) implies that F (x) is differentiable

almost everywhere. Let DF be the set where F (x) is differentiable. Then

∂BF (x) = { lim
xi→x

JF (xi), xi ∈ DF }

is called the B-differential of F (x) at x ([8]), where JF (xk) denotes the usual Jacobian

matrix of partial derivatives of F (x) at xk. The generalized Jacobian ([2]) of F :

R
n → R

n at x in the sense of Clark is

∂F (x) = conv ∂BF (x).

From [2] we know ∂F (x) is nonempty, convex and compact and ∂F is upper semi-

continuous at x. By the definition in [7], a locally Lipschitzian function F : R
n → R

n

is said to be semismooth at x provided that

lim
V ∈∂F (x+th′)

h′→h, t↓0

V h′

exists for any h ∈ R
n.

The semismoothness was originally introduced for functions by Mifflin in [4].

Semismooth functions have many important properties, which are very important

in convergence analysis of methods in nonsmooth optimization. We will give some

properties for our discussion. If F is semismooth, let F ′(x; h) denote the classic

directional derivative of F at x in the direction h, i.e.,

F ′(x; h) = lim
t↓0

F (x + th) − F (x)

t
,

and

F ′(x; h) = lim
V ∈∂F (x+th′)

h′→h, t↓0

V h′, h ∈ R
n.
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Lemma 1. Suppose that F : R
n → R

n is locally Lipschitzian and semismooth

at x. Then

(1) V h − F ′(x; h) = O(‖h‖), ∀V ∈ ∂F (x + h), h ∈ R
n,

(2) F (x + h) − F (x) − F ′(x; h) = O(‖h‖), h ∈ R
n.

If for any V ∈ ∂F (x + h), h → 0, we have V h − F ′(x; h) = O(‖h‖1+p), where

0 < p 6 1, then F is p-order semismooth at x. When p = 1, the function F (x) is

called strongly semismooth ([6]).

Lemma 2 ([3]). Suppose that F (x) and ∂⋆F (x) are defined by (3) and by (4),

and all V ∈ ∂⋆F (x) are nonsingular. Then there exits a scalar β > 0 such that

(5) ‖V −1‖ 6 β, ∀V ∈ ∂⋆F (x).

Furthermore, there exists a neighborhood N(x) of x such that

‖V −1‖ 6
10

9
β, ∀V ∈ ∂⋆F (y), y ∈ N(x).

Scalar products and sums of semismooth functions are still semismooth functions

(see [4]). Moreover, the equations in (3) are also semismooth.

Lemma 3. Equations of max-type functions (3) form a system of semi-smooth

equations.

The terminology of the convergence rate, which is also used in this paper, refers to

the following. Let {xk} ⊂ R
n be a sequence of vectors tending to the limit x⋆ 6= xk

for all k. The convergence rate is said to be

(a) Q-linear if

lim sup
k→∞

‖xk+1 − x⋆‖

‖xk − x⋆‖
< ∞;

(b) Q-superlinear if

lim
k→∞

‖xk+1 − x⋆‖

‖xk − x⋆‖
= 0;

(c) Q-quadratic if

lim sup
k→∞

‖xk+1 − x⋆‖

‖xk − x⋆‖2
< ∞;

(d) quadratic if

lim
k→∞

‖xk+1 − x⋆‖

‖xk − x⋆‖2
= 0.

In these cases, we say that {xk} converges to x⋆ Q-linearly, Q-superlinearly, Q-

quadratically, and quadratically, respectively.
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3. A parametrized Newton method

The classical generalized Jacobian method was introduced by Qi and Sun [7] in

the form (2). The iteration is locally superlinearly convergent for the semismooth

equations. Our parametrized Newton method would be considered as a new approach

based on parametrization of the method (2) for solving (3). On the other hand, we

extend the method of Gao [3] and Śmietański [10] to a system of nonsmooth equations

with finite maximum functions. We give the new parametrization Newton method

for (3) in the form

(6) xk+1 = xk − [diag(λ
(k)
i fi(xk)) + Vk]−1F (xk),

where Vk ∈ ∂⋆F (xk) and λ
(k)
i ∈ R, 0 < |λ

(k)
i | < +∞ for i = 1, . . . , n and k =

0, 1, 2, . . . is a parameter chosen such that the matrix diag(λ
(k)
i fi(xk)) + Vk is non-

singular.

Lemma 4. Suppose x⋆ is a solution of (3). Then

(7) ‖diag(λ
(k)
i fi(xk))‖ 6 M 6

1

β

for all x in some neighborhood of x⋆ and M + ε < 1/β, where λ
(k)
i ∈ R and 0 <

|λ
(k)
i | < +∞ for i = 1, . . . , n and k = 0, 1, 2, . . .

Since each fij of (3) is continuous, we get the lemma immediately.

Theorem. Suppose that x⋆ is a solution of (3), and all V ∈ ∂⋆F (x⋆) are nonsin-

gular. Then the iteration method defined by (6) for solving (3) is well-defined and

superlinearly convergent to x⋆ in a neighborhood of x⋆.

P r o o f. Denote by Nx⋆ a neighborhood of x⋆ for any x ∈ Nx⋆ . For Vx ∈ ∂⋆F (x),

Lemma 1 implies that

‖Vx(x − x⋆) − F ′(x⋆; x − x⋆)‖ = o(‖x − x⋆‖),(8)

‖F (x) − F (x⋆) − F ′(x⋆; x − x⋆)‖ = o(‖x − x⋆‖).(9)

By virtue of Lemma 2 and (7), we get

(10) ‖[diag(λ
(k)
i fi(xk)) + Vk]−1‖ 6

β

1 − β(ε + M)
.

So (6) is well-defined for xk ∈ Nx⋆ .
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By (8), (10) and the fact of Lipschitz continuity of F (x), we have

‖xk+1 − x⋆‖ = ‖xk − x⋆ − [diag(λ
(k)
i fi(xk)) + Vk]−1F (xk)‖

6 ‖[diag(λ
(k)
i fi(xk)) + Vk]−1‖

× (‖diag(λ
(k)
i fi(xk))(xk − x⋆)‖ + ‖F (xk) − F (x⋆) − F ′(x⋆; xk − x⋆)‖

+ ‖Vk(xk − x⋆) − F ′(x⋆; xk − x⋆)‖)

= o(‖xk − x⋆‖).

Therefore, the sequence {xk} converges to x⋆ superlinearly. Thus, we have completed

the proof of the theorem. �

Corollary. Under the condition of the theorem, if the iteration does not terminate

after a finite number of steps, then

lim
k→∞

‖F (xk+1)‖

‖F (xk)‖
= 0

holds in a neighborhood of x⋆.

R em a r k. If fij in the equation system (3) are C2 functions, then F (x) is a

strongly semismooth function. Since

V h − F ′(x; h) = o(‖h‖2),

F (x + h) − F (x) − F ′(x; h) = o(‖h‖2),

we obtain that

‖Vx(x − x⋆) − F ′(x⋆; x − x⋆)‖ = o(‖x − x⋆‖2),

‖F (x) − F (x⋆) − F ′(x⋆; x − x⋆)‖ = o(‖x − x⋆‖2),

‖diag(λ
(k)
i fi(xk))(x − x⋆)‖ = o(‖x − x⋆‖2).

So the sequence {xk} converges to x⋆ quadratically.
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4. Numerical test

The system of equations of max-type functions have concrete background, for

instance, complementarity problems, variational inequality problems, Karush-Kuhn-

Tucker systems of nonlinear programs and other mechanics and engineering problems.

In order to show the performance of the parametrized Newton method (6), in this

section, we present some numerical results of our method. All the experiments were

run on a Pentium IV 1.8GHz using Matlab 7.0.

E x am p l e 1.
max{f11(x1, x2), f12(x1, x2)} = 0,

max{f21(x1, x2), f22(x1, x2)} = 0,

where

f11 = 1
3x2

1, f12 = x2
1, f21 = 1

2x2
1, f22 = x2

1.

From (3) we know

F (x) = (f1(x), f2(x))T ,

where f1(x) = x2
1, f2(x) = x2

1, x ∈ R
2.

x0 = (1, 10)
T λ1 = 0.01 λ2 = 10

Step x F (x)

1 (1.0000, 10.0000)T (1.0000, 1.0000)T

2 (0.5025, 9.9995)T (0.2525, 0.2525)T

3 (0.2519, 9.9993)T (0.0634, 0.0634)T

4 (0.1261, 9.9991)T (0.0159, 0.0159)T

5 (0.0631, 9.99906)T (0.00398, 0.00398)T

6 (0.031554, 9.99903)T 1.0e− 003 ∗ (0.99563, 0.99563)T

7 (0.01578, 9.99902)T 1.0e − 003 ∗ (0.248986, 0.248986)T

8 (0.00789, 9.99901)T 1.0e− 004 ∗ (0.62256, 0.62256)T

9 (0.003945, 9.99900)T 1.0e − 004 ∗ (0.155653, 0.155653)T

10 (0.001973, 9.99900)T 1.0e− 005 ∗ (0.38915, 0.38915)T

11 (0.000986, 9.999001)T 1.0e − 006 ∗ (0.972888, 0.972888)T

12 (0.000493, 9.999000)T 1.0e − 006 ∗ (0.243225, 0.243225)T

13 (0.000247, 9.999000)T 1.0e − 007 ∗ (0.608064, 0.608064)T

14 (0.000123, 9.999000)T 1.0e − 007 ∗ (0.152016, 0.152016)T

15 (0.0000616, 9.9990001)T 1.0e− 008 ∗ (0.3800416, 0.3800416)T

16 (0.0000308, 9.9990000)T 1.0e− 009 ∗ (0.9501046, 0.9501046)T

17 (0.0000154, 9.9990000)T 1.0e− 009 ∗ (0.2375262, 0.2375262)T

18 (0.0000077, 9.9990000)T 1.0e− 010 ∗ (0.5938156, 0.5938156)T

19 (0.0000039, 9.9990000)T 1.0e− 010 ∗ (0.1484539, 0.1484539)T

20 (0.0000019, 9.9990000)T 1.0e− 011 ∗ (0.3711348, 0.3711348)T

21 (0.000000963, 9.999000001)T 1.0e− 012 ∗ (0.9278370, 0.9278370)T

Table 1. Results for Example 1 with initial point x0 = (1, 10)
T and λ1 = 0.01, λ2 = 10.
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According to (6), we have

(

x
(k+1)
1

x
(k+1)
2

)

=

(

x
(k)
1

x
(k)
2

)

−

(

λ1x
(k)
1 ∗ x

(k)
1 + 2x

(k)
1 0

2x
(k)
1 λ2x

(k)
1 ∗ x

(k)
1

)−1 (

x
(k)
1 ∗ x

(k)
1

x
(k)
1 ∗ x

(k)
1

)

.

To test the points, we use

|x(k+1) − xk| < ε.

In this example, we let ε = 10−6.

x0=(1000, 1000)
T λ1=0.0001 λ2=2

Step x F (x)

1 (1000, 1000)T (1000000, 1000000)T

2 1.0e + 002 ∗ (5.2381, 9.9998)T 1.0e + 005 ∗ (2.74376, 2.74376)T

3 1.0e + 002 ∗ (2.68589, 9.99963)T 1.0e + 004 ∗ (7.21401, 7.21401)T

4 1.0e + 002 ∗ (1.36074, 9.99957)T 1.0e + 004 ∗ (1.85162, 1.85162)T

5 1.0e + 002 ∗ (0.68497, 9.99953)T 1.0e + 003 ∗ (4.69182, 4.69182)T

6 1.0e + 002 ∗ (0.34365, 9.99952)T 1.0e + 003 ∗ (1.18098, 1.18098)T

7 1.0e + 002 ∗ (0.17212, 9.99951)T 1.0e + 002 ∗ (2.96258, 2.96258)T

8 1.0e + 002 ∗ (0.08613, 9.99950)T (74.19182, 74.19182)T

9 1.0e + 002 ∗ (0.04309, 9.99950)T (18.56393, 18.56393)T

10 1.0e + 002 ∗ (0.02155, 9.99950)T (4.64298, 4.64298)T

11 1.0e + 002 ∗ (0.01077, 9.99950)T (1.16010, 1.16010)T

12 1.0e + 002 ∗ (0.00539, 9.99950)T (0.29028, 0.29028)T

13 1.0e + 002 ∗ (0.00269, 9.99950)T (0.07257, 0.07257)T

14 1.0e + 002 ∗ (0.00135, 9.99950)T (0.01814, 0.01814)T

15 1.0e + 002 ∗ (0.00067, 9.99950)T (0.00454, 0.00454)T

16 1.0e + 002 ∗ (0.00034, 9.99950)T (0.00113, 0.00113)T

17 1.0e + 002 ∗ (0.00017, 9.99950)T 1.0e− 003 ∗ (0.28351, 0.28351)T

18 1.0e + 002 ∗ (0.000084, 9.999500)T 1.0e− 004 ∗ (0.70877, 0.70877)T

19 1.0e + 002 ∗ (0.000042, 9.999500)T 1.0e− 004 ∗ (0.17719, 0.17719)T

20 1.0e + 002 ∗ (0.000021, 9.999500)T 1.0e− 005 ∗ (0.44298, 0.44298)T

21 1.0e + 002 ∗ (0.000011, 9.999500)T 1.0e− 005 ∗ (0.11074, 0.11074)T

22 1.0e + 002 ∗ (0.000005, 9.999500)T 1.0e − 006 ∗ (0.27686, 0.27686)T

23 1.0e + 002 ∗ (0.000003, 9.999500)T 1.0e− 007 ∗ (0.69216, 0.69216)T

24 1.0e + 002 ∗ (0.000001, 9.999500)T 1.0e− 007 ∗ (0.17304, 0.17304)T

25 1.0e + 002 ∗ (0.00000066, 9.99950000)T 1.0e − 008 ∗ (0.432598, 0.432598)T

26 1.0e + 002 ∗ (0.00000033, 9.99950000)T 1.0e − 008 ∗ (0.108149, 0.108149)T

27 1.0e + 002 ∗ (0.00000016, 9.99950000)T 1.0e − 009 ∗ (0.270374, 0.270374)T

28 1.0e + 002 ∗ (0.00000008, 9.99950000)T 1.0e − 010 ∗ (0.675934, 0.675934)T

29 1.0e + 002 ∗ (0.00000004, 9.99950000)T 1.0e − 010 ∗ (0.168983, 0.168983)T

30 1.0e + 002 ∗ (0.00000002, 9.99950000)T 1.0e − 011 ∗ (0.422459, 0.422459)T

31 1.0e + 002 ∗ (0.00000001, 9.99950000)T 1.0e − 011 ∗ (0.105615, 0.105615)T

32 1.0e + 002 ∗ (0.000000005, 9.999500000)T 1.0e − 012 ∗ (0.264037, 0.264037)T

Table 2. Results for Example 1 with initial point x0 = (1000, 1000)
T and λ1 = 0.0001,

λ2 = 2.
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x0 = (10, 10)
T λ1 = 0.003 λ2 = 0.002

Step x F (x)

1 (10.0000, 10.0000)T (150.0000, 100.0000)T

2 (5.0491, 5.0868)T (38.6227, 25.4937)T

3 (2.5373, 2.5657)T (9.8018, 6.4379)T

4 (1.2719, 1.2885)T (2.4691, 1.6177)T

5 (0.6368, 0.6457)T (0.6196, 0.4055)T

6 (0.3186, 0.3232)T (0.1552, 0.1015)T

7 (0.1593, 0.1617)T (0.0388, 0.0254)T

8 (0.0797, 0.0809)T (0.0097, 0.0063)T

9 (0.0398, 0.0404)T (0.0024, 0.0016)T

10 (0.0199, 0.0202)T 1.0e − 003 ∗ (0.6073, 0.3970)T

11 (0.00996, 0.01011)T 1.0e − 003 ∗ (0.1518, 0.0992)T

12 (0.00498, 0.00506)T 1.0e − 004 ∗ (0.3796, 0.2481)T

13 (0.00249, 0.00253)T 1.0e − 005 ∗ (0.9491, 0.6203)T

14 (0.00125, 0.00126)T 1.0e − 005 ∗ (0.2373, 0.1551)T

15 1.0e − 003 ∗ (0.6226, 0.6319)T 1.0e − 006 ∗ (0.5932, 0.3877)T

16 1.0e− 003 ∗ (0.31132, 0.31597)T 1.0e − 006 ∗ (0.1483, 0.0969)T

17 1.0e− 003 ∗ (0.15566, 0.15798)T 1.0e − 007 ∗ (0.3707, 0.2423)T

18 1.0e− 004 ∗ (0.77830, 0.78992)T 1.0e − 008 ∗ (0.9268, 0.6058)T

19 1.0e− 004 ∗ (0.38915, 0.39496)T 1.0e − 008 ∗ (0.2317, 0.1514)T

20 1.0e− 004 ∗ (0.19458, 0.19748)T 1.0e − 009 ∗ (0.5793, 0.3786)T

21 1.0e− 005 ∗ (0.97288, 0.98740)T 1.0e − 009 ∗ (0.1448, 0.0946)T

22 1.0e− 005 ∗ (0.48644, 0.49370)T 1.0e − 010 ∗ (0.3620, 0.2366)T

23 1.0e− 005 ∗ (0.24322, 0.24685)T 1.0e − 011 ∗ (0.9051, 0.5916)T

24 1.0e− 005 ∗ (0.12161, 0.12342)T 1.0e − 011 ∗ (0.2263, 0.1479)T

25 1.0e− 006 ∗ (0.60805, 0.61712)T 1.0e − 012 ∗ (0.5657, 0.3697)T

Table 3. Results for Example 2 with initial point x0 = (10, 10)
T and λ1 = 0.003, λ2 =

0.002.

E x am p l e 2.

max{f11(x1, x2), f12(x1, x2)} = 0,

max{f21(x1, x2), f22(x1, x2)} = 0,

where

f11 = 1
2x2

1 + 1
3x2

2, f12 = 1
2x2

1 + x2
2, f21 = 1

4x2
1, f22 = x2

1.

From (3) we know

F (x) = (f1(x), f2(x))T .

According to (6), we also have

(

x
(k+1)
1

x
(k+1)
2

)

=

(

x
(k)
1

x
(k)
2

)

−

(

λ1 ∗ (f1(x
(k))) + x

(k)
1 2 ∗ x

(k)
2

2 ∗ x
(k)
1 λ2 ∗ (f2(x

(k)))

)−1 (

f1(x
(k))

f2(x
(k))

)
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where

f1(x) = 1
2x2

1 + x2
2, f2(x) = x2

1, x ∈ R
2.

To test the points, we use

|x(k+1) − xk| < ε.

In this example, we also let ε = 10−6.

We also can test the example with other initial points and λ.

Acknowledgement. The authors are grateful to the anonymous referee for valu-

able suggestions and comments.

References

[1] X. Chen, L. Qi: A parameterized Newton method and a quasi-Newton method for
nonsmooth equations. Comput. Optim. Appl. 3 (1994), 157–179.

[2] F.H. Clarke: Optimization and Nonsmooth Analysis. John Wiley & Sons, New York,
1983.

[3] Y. Gao: Newton methods for solving two classes of nonsmooth equations. Appl. Math.
46 (2001), 215–229.

[4] R. Mifflin: Semismooth and semiconvex functions in constrained optimization. SIAM
J. Control. Optim. 15 (1997), 959–972.

[5] J. S. Pang, L. Qi: Nonsmooth equations: Motivation and algorithms. SIAM J. Optim.
3 (1993), 443–465.

[6] F.A. Potra, L. Qi, D. Sun: Secant methods for semismooth equations. Numer. Math.
80 (1998), 305–324.

[7] L. Qi, J. Sun: A nonsmooth version of Newton’s method. Math. Program. Ser. A 58
(1993), 353–367.

[8] L. Qi: Convergence analysis of some algorithms for solving nonsmooth equations. Math.
Oper. Res. 18 (1993), 227–244.
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