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Abstract. A class of non-linear singular integral equations with Hilbert kernel and a re-
lated class of quasi-linear singular integro-differential equations are investigated by applying
Schauder’s fixed point theorem in Banach spaces.
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1. INTRODUCTION

During the last years the theory of non-linear singular integral equations has suc-
cessfully developed. Many problems of mathematical physics like elasticity, plastic-
ity, viscoelasticity, aerodynamics and fluid mechanics reduced to the solution of non-
linear singular integral equations. Non-linear singular integral and integro-differential
equations and related Riemann-Hilbert problems have been treated by many authors,
see Pogorzelski [16], Guseinov and Mukhtarov [5], Wolfersdorf [17], [18], Junghanns
and others [7], [8], Ladopoulos [9]-[12] and many others. The theory of non-linear
singular integral and integro-differential equations seems to be a particularly com-
plicated form of the non-linear integral equations. Schauder’s fixed point method
is one of the basic tools for investigating the existence results of many classes of
singular integral and integro-differential equations [1], [2], [4], [6], [7], [17], [18]. We
refer to Ladopoulos [9]-[12] for many applications of singular integral and integro-
differential equations in engineering and science. In the present paper a class of
integral equations with Hilbert kernel and a related class of quasi-linear integro-
differential equations are investigated by means of Schauder’s fixed point theorem in
the Sobolev space W,.
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We shall consider the non-linear singular integral equation

1 r —
(1.1) o(s) + 7 / m(s, o, p(a)) cot g 5 5 do = f(s)
with an additional condition
(1.2) L (s)ds =
: on ] ¢ =,

where ¢ is a positive constant and the functions ¢(s), f(s), m(s, o, p(c)) are contin-
uous positive functions defined on the regions

D={s: se[-nn} and D ={(s,0,0(0)): 5,0 €[-m 7], —00 < ¢ < 00},

respectively.
Throughout the paper Ly[—m,n] (1 < p < oo) means the Banach space of all
measurable functions u defined on [—m, n] with the norm

full, = || |u<t>|pdtr_l,

and Wpl[—n, 1], 1 < p < oo, means the Sobolev space of all functions u € Ly[—m, 7]
with v’ € Ly[—=, 7.
We will seek the solution of equation (1.1) in the Sobolev space W, .

2. REDUCTION TO FIXED POINT EQUATION

In this section we seek the solution of equation (1.1) and an estimation of the
kernel of a fixed point equation. Differentiating both sides of equation (1.1), we
have [14]

e

(2.1) o'(s) + 2%_[ ) my(s,0,¢(0))¢ (o) cot 7 o= F(s),
where
F(5) = 1)~ 5= [ (ma(s,000(0)) + ma(s, 0. p() cor T o

Equation (2.1) can be written as the quasi-linear integro-differential equation

(2.2) )+ o [ Moo (o)l (o) cot 752

do = F(s)
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with the additional condition

1 T

(2.3) 2 |

which is equivalent to equation (1.2), where A is a positive constant, M (s, o, p(0)) =
my(s,0,¢(0)) and M (s, o, ¢(0)) satisfy the Holder-Lipschitz condition as follows:

(2.4) |M(s2,02,¢2(02)) — M(s1,01,01(01))] < af|s2 — 51|° + |02 — 01]° + |2 — ],

where « is a positive constant and 0 < § < 1.

From the theory of singular integral equations [3], the solution of equation (2.2)
is the solution of the corresponding boundary value problem

(2.5) u(s) +v(s) = c(s)

with the additional condition

1 T

(2.6) |

v(s)ds =0, wu(s)=¢'(s).

Since the boundary value problem (2.5) has index equal to zero [3], its solution has
the form

. 1 T io
(2.7) F(z) =) {— M(s,0,p(0))c(o)e1 (@) C F2 4o 1 if0|,
—Z

10
2n J_, e

where v(z) = w(z,y) + iwi(x,y) and [y is an arbitrary constant.

Setting
. 1 T io
(28) Y =etin, d(z) = o / M(s,0,p(0))e(o)e ) 2 do
2n J_, €7 —z
and taking into account the properties of Schwarz kernel, we have
(2.9) Redp(t) = M(s, s,(s))c(s)e"* (),
1 B —
Imy(t) = — = M (s,0,¢(0))c(o)e™ () cot 7% 4.
T —T
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Substituting (2.8) and (2.9) into equation (2.7), we obtain

F(z) = (=)(€ + in)[¢(2) +iB0]
= (=i¢+n) [M(s s,(s))c(s)e ()

T M(s 7, (0))el(0)e™ (™) cot =

- L(S)ﬂo +1(s)M(s, 5, (s))e(s)e )

;S d0'+160:|

_ %Sx) /T; M(s, 0, 0(0))e(o)e™ () cot = ; : da}

gsdo}

+i [77(5)50 — £(s)M (s, 5,0(s))c(s)e? )

- /_ M(s,0,0(0))c(0)e @) cot Z

Now we have

u(s) = &(s)Bo +n(s)M(s, s, p(s))c(s)e? ()
_%i) / M(s, o, @(U))C(U)ewl(a) cot g ; 5 do,
(2.10) -
v(s) = n(s)Bo — E(s)M(s, 5, 0(s))c(s)e™ ()
271/ M(s,o,p(c ()COtJ;Sdg,
In view of condition (2.6), we have
/_7: |:77(5)60 — g(s)M(S, S, (p(s))c(s)ewl(s)
- %i) /_rn M(SvUMP(U))C(U)ewl(U) cot Z ; S do| = 0.
Hence
(2 ].]. / ﬂods—/_ f S s SD ( )e’UJl(S) ds
_/_n ( )dS/_T:r QLTCM(S o, (p( )) (U)ewl(a)COtU;Sdg:Q
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and by changing the order of integration in the last term of equation (2.11), we
obtain

(212) Bo /“ n(o)do — j £(0)M(s,0,¢(0))c(o)e? (@) do

—T
T

+ M(s,a,¢(c))c(a)e?r () d02i / n(s) cot
T

—T —T

S§—0

ds = 0.

Now by using the Hilbert formula

1 [T — 1 [T
— v(o) cot 7 5 4o = u(s) — ugp where ug = u(0,0) = — / u(o)do
2rn J_; 2 2n

—T

we have L )
T s—o T
) 7(s) cot 5 ds =¢&(0) — — 3 &(o) do.

Hence equation (2.11) takes on the form

Bo ‘/TE 77(0) do — ’ f(O’)M(S,J,Qp(g))c(g)ewl(f’) do

-1 —x

- ’ M(s,0,0(c))c(0)e? @) do {g(a) L[ (o) da} =0.

—T

Therefore

o0 [ nerdo— o [ &o)do [ Misopo)elore ) da o

—7 — —

In the case of Gy f; n(c)do # 0 the corresponding homogeneous equation has no
solution. In this case we determine the constant Jy and consequently the nonhomo-
geneous equation (2.2) has the unique solution (2.10).

Hence

u(s) = E(s)00 + ()M (s, 5, (s))e(s)e™ )

- %i) j M(s, 0, 0(0))e(0)e™ @) cot == do.
From (2.6) we have
(2.13) @' (s) = €(5)Bo + 1(s) M (s, 5, 0(s))c(s)e” )

- %ft) M(s,0,0(0))c(0)e*@ cot 72 do.

—T
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Taking into account the additional condition (2.3), we obtain an equivalent fixed
point equation

(2.14) Sp =g,

where the operator S is defined for any 2n-periodic continuous function ¢(s) by
(215) (S¢)(s) = A+ [ K(s.00(0) do,
0

with the kernel function

(2.16)  k(s,0,0(0)) = &(5)B0 + n(s) M (s, 5,(s))c(s)e )
_ &0

21

o —

M(s,0,0(0))e(0)e?1(?) cot ® do.

—T

Lemma 2.1. The kernel function k(s, o, p(c)) given by (2.16) is bounded in the
space Ly[—m, |, p > 1, under the conditions

€(s2) — £(s1)] < Arlsa — s1]°,

s9) —n(s1)] < Aalsg — s 5,

(2.17) In(s2) —n(s1)| < Azls2 1|5
|c(s2) — c(s1)] < As|s2 — s1]?, and

lwi(s2) — wi(s1)] < Aafs2 — 81/,
where \; (i = 1,2,3,4) are positive constants.

Proof. We shall estimate the kernel k(s, o, (o)) for p > 1 as follows:

(2.18) (s, 0,60 Iy < IE)Bolly + N3] + N2 ()l
where

(2.19) N (s) = n(s) M (s, 5, 9(s))e(s)e™

and

(2.20) Ny(s) = %i) /j M(s, o, SD(O'))C(O')ewl(G') cot g ; i do.

Now we estimate [|£(s)5o]lp-
By using conditions (2.17), we have

(2.21) €(s)] <ni with 7y = 27\ + [€(0)].
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Therefore

(2.22) 1€(s)Bollp < @1 = const,

where
-1
Q1 = |Bo|m (2m)P .

By using conditions (2.4), (2.17) and equality (2.19), from [7], [15] we can estimate
[IN1(s)|lp as follows:

(2.23) IN2(3)llp < () s le(5) e e O llpa 1M (s, 5, 0(5)) s

where p; ' +pyt +p3t 4 pt =p L
To estimate the norm given in (2.23), we proceed in several steps:
(a) Estimation of ||n(s)]|p, -
As in (2.21) it is easy to see that

(2.24) In(s)| < me  with no = 21 + |1(0)].
Therefore
(2.25) 17()llp, <1,

where v; = (27)P1 ns.
Similarly, from (2.24) it is easy to obtain an estimate of ||c(s)||p, as follows:

(2.26) le(s)] < mg with ng = 2rnAs + |¢(0)],
therefore
(2.27) l[e(s)[lp2 < 72,

where v, = (27)P2 ' na.
Also, an estimate of || M (s, s, ¢(s))||p, follows:

(2.28) |M(s,s,¢(s))| <na with ng=aR+ B, B= max |M(s,s,¢(0)),

s,c€[—n,n]

therefore
(2.29) M (s, 5, 0(5))llps <3,
where v3 = (2n)p21n4.
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(b) Estimation of [|e®1(*)]|,,.
It follows from [5] that

n Pyt T 1/ps
e )|, < [1 + (/ (ns)P? ds) } exp (/ (ns)P? ds) = (1+y4)e™,

where

(2.30) w1 (s)] < ms,  ns = (2m)As + [wr(0)], 4 = (20)P5 ns.
Therefore

(2.31) 1) [y < (14 ya)e™.

Substituting (2.25), (2.27), (2.29), and (2.31) into (2.23), we obtain
(2.32) [N (s)llp < Q2,

where Q2 = Y17273(1 + 74)e74.
Similarly, we can estimate || Na(s)]|, as follows:

g —Ss

(2.33) ||N2(s)[l, = H%i) ) M(s,0,¢(0))c(o)e™* () cot do
< s llél | [ MGs,0,0(0)e()e @ ot T do :
. )
Using the well-known inequality, [5],
(2.34) 2% / fi‘sl <ol
where p is a positive constant, we conclude that
(2.35) IN2(3)lp < ellE(3)ly 1M (s, 0, p(0))e()e™ 4o,
where p~! =¢; ' +¢5 "
Hence,
(2:36) 1€()lay < ma2m)e”
Also,
(237)  le(0)e” @M (s,0,0(0)) e < lle(@) eIz M (5,0, 0(0)) 1
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where ¢5 ' = k7t + ky ' + k3!, and so

—1
(2:38) (@)l < (20",
_ —1
(2:39) ek, < (14 ms(2m"" e e
and
—1
(2.40) 1(s5,0, (), < (2% ma

Substituting (2.38), (2.39), and (2.40) into (2.37), we obtain

_ _ _ -1
(241) [[e(0)e" M (s,0.0(0))lay < mama(2n)s (1Lt mg(2m)t )
using (2.36) and (2.41) in (2.35), we have

(2.42) [N2(3)llp < @3,

where )
_ — — — ko
Q3 = oninany(2m)% Lkt (1 4+ ns (27)" 1)en5(2n) 2

Substituting (2.22), (2.32), and (2.42) into (2.18), we conclude that

(2.43) [k (s, 0, p(0))]| < Q,

where

Q = Q1+ Q2+ Q3 = const.

3. EXISTENCE THEOREM

For non-negative constants R and p we define the following convex and compact
set:

(3.1) A% ={e e Wi, lo| <R, |@(s2) — (s1)] < plsz2 — s1]°,

s1,82 € [—m, 1]}

We are going to prove some assertions about the set A5R7 ,, and its image S (A% u)‘ It
is easy to see that the set A‘SR’ ., 1s a convex set.
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Now we shall prove that the operator S defined by (2.15) transforms A% ,, into
itself.
For each ¢ € A‘SR’M, we have

(3.2) (Se)(s) =(s), (s) € Wy[-m,
where (S¢)(s) = A+ [ k(s, 0,¢(0)) do.

Then for any s € [—n, 1] we have from (2.43) and (3.2) that

63 wol<as | " Jk(s,0, pl0)|do < A + [[K(s, 0, 0(0) |27/ < R

—T

where
R= Q(ZJ‘E)K1 +A and pl4+kl=1.

Now, we evaluate [1)(s2)—t(s1)| forp > 1,p 1 +k= 1 =1, k71 =6, 51,82 € [-7, 7).
We have

(34)  [¥(s2) —(s1)| =

/032 k(s,0,¢(0))do — /081 k(s, o, o(0)) do

< ks, 0, 0(0))lpls2 = s1*

| kool do

S1

—1
<Qls2 — S1|k .

If @ = p, then the operator S maps the space Wpl[—n, 7] into its convex compact
subset A%! uo In particular, S maps A%! . into itself, so that all transformed func-
: 1)
tions t(s) belong to A% .

Hence the following lemma is valid.

Lemma 3.1. Let functions £(s), n(s), c(s), wi(s) and M (s,o,¢(0)) satisfy the
Hilbert-Lipschitz conditions (2.17). Then, for arbitrary ¢ € A5R7 ,.» the transformed
points (S¢)(s) =1(s) belong to the set AER,H'

Lemma 3.2. The operator S defined in (3.2) which transforms the set A‘Is%, ., Into
itself is continuous.

Proof. Let {v,}52; be a sequence of elements of the set A‘SRW converging
uniformly to an element ¢ € A‘SR’ e
We consider the difference

I

on(s) — $(s)] < / k(5. 0, 0n(0)) — k(s, 0, 0(0))] do,

—T
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where
|k(s,0,0n(0)) = k(s,0,0(0))] <[(Ny)(s)] + [(N3)(s)]

with
(N2)(s) = n(s)e(s)e D M (s, 5, ¢n(s)) — n(s)c(s)e™ ) M(s, s, 0(s))
and
(N?)(s) = %i) /_T; c(a)e“”(")M(s7 o, pn(0)) cot z ; % do
- %i) /_T; c(0)e™ M (s, 0,0(c)) cot 7 ; ® do.

Now, we will show that

im [ (s) — (s)] = 0.

n—oo

We have
T [(N2)(s)] = Tim_ [g(s)e(s)e™ M (s, 5, 00(s) — n(s)e()e™ @ M(s, 5, 0(s))]
< [n(s)e(s)e™ )] lim [M(s, 5, 0u(s)) — M(s, 5. 0(s))

< [n()e(5)e™ D] lim_alipn(s) — o(5))

but
lim |pn(s) — o(s)] = 0.
n—oo
Hence
(3.5) lim |[(N})(s)| = 0.
n—oo
Also,

T |(N2)(s)
&(s)

g— S

do

/ c(0)e" M (s, 0, pn(0)) cot

- —/ c(0)e" M (s, 0,¢0(0)) cot 7 5 ® do

Sda

[ o) M s, 00 (o)~ Ms. o] eot T

—T
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and using inequality (2.34), we arrive at

lim_|(N7)(s)]

n—oo

< 16(s)] lim_ olle(0)e™ @) [M(s, 0, 0 (0)) — M(s, 0, 0()]|

< 0l€(s)le(0)e™ @] lim aln(s) — o(s)| = 0.
Hence

(3.6) lim |[(N?)(s)| = 0.

n—oo

From (3.5) and (3.6) we obtain

lim |¢,(s) — 9(s)| = 0.

n—oo
Consequently, the operator S is continuous. O

By the preceding lemmas and the Arzela-Ascoli theorem [13], [16] the image of
A‘SR’ ., 1s compact. Therefore, we can use Schauder’s fixed point theorem. Hence the
operator S has at least one fixed point. Thus, we can state the main theorem as
follows.

Theorem 3.1. If the conditions of Lemmas 3.1 and 3.2 are satisfied, then equa-
tion (1.1) has at least one solution in the space W} |-, 1.
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