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Abstract. In this paper, we discuss the numerical simulation for a class of constrained
optimal control problems governed by integral equations. The Galerkin method is used for
the approximation of the problem. A priori error estimates and a superconvergence analysis
for the approximation scheme are presented. Based on the results of the superconvergence
analysis, a recovery type a posteriori error estimator is provided, which can be used for
adaptive mesh refinement.
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1. Introduction

The finite element approximation plays an important role in the numerical treat-

ment of optimal control problems. This approach has been extensively studied in

the papers [1], [12], [26]. In particular, a priori error estimates of finite element ap-

proximations for optimal control problems governed by linear elliptic equations were

established some 30 years ago in, for example, [11], and a posteriori error estimates

have been discussed in, e.g., [4] and [21]–[23] in recent years.

Although the finite element method for the optimal control problem governed by

partial differential equations has been extensively studied, to the author’s knowl-

edge, there are very few similar results for the optimal control problem governed by

*The research project is supported by the National Basic Research Program under the
Grant 2005CB321701 and the National Natural Science Foundation of China under the
Grant 10771211.

267



integral equations, even though this kind of problem is also widely used in practical

engineering and scientific computations. Recently, an a priori error estimate and a

residual type a posteriori error estimate for a class of constrained optimal control

problems governed by integral equations have been presented in [6].

In this paper we consider the numerical simulation for a class of constrained opti-

mal control problems governed by integral equations of Fredholm type (see (2.1)–(2.2)

for more details). We provide a superconvergence analysis for the Galerkin approx-

imation to these control problems. Based on the results of the superconvergence

analysis, a recovery type a posteriori error estimator is established, which can be

used for adaptive mesh refinement.

Superconvergence has been investigated for the finite element method of the opti-

mal control problem governed by the partial differential equation, in, e.g., [7], [10],

[16], [21], [24], and [28]. It has also been discussed for the Galerkin approximation

of integral equations, see, e.g., [5], [17], and [18]. Some techniques used in the above

references are utilized in this paper. However, it seems to be not straightforward

to extend the existing techniques to the optimal control problems governed by inte-

gral equations. Comparing our results with the corresponding ones on constrained

optimal control problems governed by partial differential equations, it can be found

that there are some significant differences between them. For example, the supercon-

vergence analysis for the constrained optimal control problems governed by integral

equations can be applied to general regular meshes, which is in contrast to many

well-known superconvergence results where the condition of uniform meshes is re-

quired. Moreover, a new recovery operator is introduced in this paper in order to

fit the interpolation definition and regular meshes. As a result, the new approach is

more suitable for adaptive finite element mesh refinement.

The plan of the paper is as follows. In Section 2 we present the optimal con-

trol problem (2.1) governed by integral equations (2.2), and we further provide its

Galerkin scheme (finite element method). In Section 3 an a priori error estimate of

the Galerkin approximation is derived. In Section 4 we provide the main result of

this paper: superconvergence of the Galerkin approximation for the optimal control

problem (2.1)–(2.2). On the basis of the superconvergence results established in Sec-

tion 4 we construct a recovery type a posteriori error estimator in Section 5, which

is proved to be asymptotically exact on regular meshes.

2. Model problem and its Galerkin scheme

Let Ω be a bounded open set in R
2 with Lipschitz boundary ∂Ω. We adopt

the standard notation Wm,q(Ω) for Sobolev spaces on Ω with norm ‖ · ‖m,q,Ω and

semi-norm | · |m,q,Ω. We denote W
m,2(Ω) by Hm(Ω), with norm ‖ · ‖m,Ω and semi-
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norm | · |m,Ω. In addition, c and C denote generic positive constants which do not

depend on h.

We consider a model problem for the optimal control problem governed by a

Fredholm-type integral equation, namely,

(2.1) min
u∈K

{

1

2
‖y − y0‖

2
0,Ω +

α

2
‖u‖2

0,Ω

}

subject to

(2.2) y −

∫

Ω

G(s, t)y(s) ds = f + u in Ω.

Here G(·, ·) is at least in L2(Ω×Ω) (precise regularity conditions will be given later),

f ∈ L2(Ω), and K denotes a convex subset of the space U = L2(Ω), the state space is

V = L2(Ω), Ω ⊂ R
2 is a bounded domain. This is a typical optimal control problem

governed by integral equations. Its numerical simulation was discussed in, e.g., [6].

It is well known that if 1 is not in the spectrum of the Fredholm integral operator,

then the equation

y −

∫

Ω

G(s, t)y(s) ds = F in Ω

has a unique solution y ∈ L2(Ω) and ‖y‖0,Ω 6 C‖F‖0,Ω for any F ∈ L2(Ω) (compare,

for example, Kress [15] or Zabreiko et al. [29]). Moreover, if G(·, ·) is smooth enough,

we have

(2.3) ‖y‖m,Ω 6 C‖F‖m,Ω for all F ∈ Hm(Ω).

In this paper we always assume that 1 is not in the spectrum of the Fredholm

integral operator G(s, t). Let

(y, w)L2(Ω) :=

∫

Ω

y(s)w(s) ds

be the L2(Ω) scalar product. For simplicity, we denote (y, w)L2(Ω) by (y, w) if there

is no confusion. Moreover, we let

A(w, v) := (w, v) −

∫

Ω

∫

Ω

G(s, t)w(s)v(t) ds dt

in the sequel. Then the integral equation (2.2) can be rewritten as

A(y, w) = (f + u,w) ∀w ∈ L2(Ω).
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We will show that there exists a constant c > 0 such that for any v ∈ L2(Ω) there

exist a w ∈ L2(Ω), w 6= 0, such that

(2.4) c‖v‖0,Ω‖w‖0,Ω 6 A(v, w)

and

(2.5) c‖v‖0,Ω‖w‖0,Ω 6 A(w, v).

This is true since, for any v ∈ L2(Ω), there is a function ϕ ∈ L2(Ω) such that for all

ψ ∈ L2(Ω) we have

(ψ, ϕ) −

∫

Ω

∫

Ω

G(s, t)ψ(s)ϕ(t) ds dt =

∫

Ω

∫

Ω

G(s, t)ψ(s)v(t) ds dt

and ‖ϕ‖0,Ω 6 C‖v‖0,Ω. Let w = v + ϕ. Then

A(v, w) = (v, w) −

∫

Ω

∫

Ω

G(s, t)v(s)w(t) ds dt

= (v, v) −

∫

Ω

∫

Ω

G(s, t)v(s)v(t) ds dt+ (v, ϕ) −

∫

Ω

∫

Ω

G(s, t)v(s)ϕ(t) ds dt

= (v, v) = ‖v‖2
0,Ω.

Therefore, (2.4) follows from

‖w‖0,Ω 6 ‖v‖0,Ω + ‖ϕ‖0,Ω 6 C‖v‖0,Ω.

Similarly, we can also prove the inequality (2.5). See also [3] and [6] for details.

Using the standard method from [19], it can be proved that the problem (2.1)–

(2.2) has a unique solution (y, u) ∈ (L2(Ω))2, and that the pair (y, u) is a solution

of (2.1)–(2.2) if and only if there is a co-state p ∈ L2(Ω) such that the triple (y, p, u)

satisfies the system

A(y, w) = (f + u,w) ∀w ∈ L2(Ω),(2.6)

A(q, p) = (y − y0, q) ∀ q ∈ L2(Ω),(2.7)

(αu+ p, v − u) > 0 ∀ v ∈ K.(2.8)

In this paper we consider the integral constraint for the control variable

(2.9) K =

{

v ∈ L2(ΩU ) :

∫

Ω

v > 0

}

.
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It can be proved (see, e.g., [13] and [21]) that the solution of (2.6)–(2.8) satisfies

(2.10) u =
1

α

(

−p+ max

{

0,

∫

Ω p
∫

Ω
1

})

.

We focus on the optimal control problems with constraints of integral type (2.9).

This kind of constrained optimal control problems can be found in many practical

and engineering problems, because in many practical problems the control should be

constrained in the sense of average or gross on the whole domain. Although optimal

control problems governed by PDEs with integral constraints have been extensively

investigated (see, e.g., [8], [13] and [21]), to the author’s knowledge, this paper is the

first to discuss the error analysis of the numerical simulation for the optimal control

problems governed by integral equations with integral constraints. Considering the

equation (2.10), we have that the regularity of the control u is the same as of the

costate p. Moreover, it can be concluded from (2.3) that y, p and u are smooth

enough if f , y0 and the integral kernel G(·, ·) are smooth enough. In many practical

problems, the integral kernel G(·, ·) is not smooth enough. Sometimes, it is even

weakly singular. Then the solutions of the control problems may be not so smooth.

Let us consider the finite element approximation of the control problem (2.1)–

(2.2). Here we only consider triangular elements, and similar results can be easily

obtained for quadrilateral elements and three dimensional problems.

Let Ωh be a polygonal approximation to Ω with boundary ∂Ωh. Let T h be a

partitioning of Ωh into triangles τ so that Ω̄h =
⋃

τ∈T h

τ . Let hτ denote the diameter

of the element τ in T h, and let h = max
τ∈T h

hτ . For simplicity, we assume that Ω is a

convex polygon so that Ω = Ωh.

Associated with T h we have a finite-dimensional subspace V h of L2(Ω̄h), such that

χ|τ are polynomials of order m (m > 0) for all χ ∈ V h and τ ∈ T h. Note that we do

not impose a continuity requirement. It is easy to see that V h ⊂ V = U = L2(Ω).

Let Kh = K ∩ V h. We have Kh ⊂ K.

The finite element approximation of the control problem (2.1)–(2.2) is defined by

(2.11) min
uh∈Kh

{1

2
‖yh − y0‖

2
0,Ω +

α

2
‖uh‖

2
0,Ω

}

subject to

(2.12) A(yh, wh) = (f + uh, wh) ∀wh ∈ V h ⊂ L2(Ω).

It follows from the conditions imposed on the kernelG(·, ·) of the Fredholm integral

operator that for all sufficiently small h > 0 the Galerkin equation

A(yh, vh) = (F, vh) ∀ vh ∈ V h
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has a unique solution for any F ∈ L2(Ω). Similarly to (2.4) and (2.5) it can be shown

that there exists a constant c > 0 such that for any vh ∈ V h there exist a wh ∈ V h,

wh 6= 0, such that

(2.13) c‖vh‖0,Ω‖wh‖0,Ω 6 A(vh, wh)

and

(2.14) c‖vh‖0,Ω‖wh‖0,Ω 6 A(wh, vh).

It is well known (see, e.g., [6] and [19]) that the control problem (2.11)–(2.12) has

a unique solution (yh, uh), and that a pair (yh, uh) is a solution of (2.11)–(2.12) if

and only if there exists a co-state ph ∈ V h such that the triple (yh, ph, uh) satisfies

the following optimality condition:

A(yh, wh) = (f + uh, wh) ∀wh ∈ V h ⊂ L2(Ω),(2.15)

A(qh, ph) = (yh − y0, qh) ∀ qh ∈ V h ⊂ L2(Ω),(2.16)

(αuh + ph, vh − uh) > 0 ∀ vh ∈ Kh.(2.17)

3. A priori error estimate

In this section we will provide an error analysis for the optimal control prob-

lem (2.6)–(2.8) and its finite element approximation (2.15)–(2.17).

Theorem 3.1. Let (y, p, u) and (yh, ph, uh) be the solutions of the systems (2.6)–

(2.8) and (2.15)–(2.17), respectively. Let V h be the finite element space of order m

defined in the previous section. Assume that y, p ∈ Hm+1(Ω). Then we have

(3.1) ‖y − yh‖0,Ω + ‖p− ph‖0,Ω + ‖u− uh‖0,Ω 6 Chm+1.

P r o o f. Let (yh(u), ph(u)) be the solution of the system of equations:

A(yh(u), wh) = (f + u,wh) ∀wh ∈ V h,(3.2)

A(qh, ph(u)) = (yh(u) − y0, qh) ∀ qh ∈ V h.(3.3)

It follows from (3.2)–(3.3) and (2.15)–(2.16) that

‖yh(u) − yh‖
2
0,Ω = (yh(u) − yh, yh(u) − yh)(3.4)

= A(yh(u) − yh, ph(u) − ph) = (u − uh, ph(u) − ph).
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Let uI ∈ V h be the L2-project of u. Then we have

∫

Ω

uI =

∫

Ω

u > 0,

and hence uI ∈ Kh.

Moreover, note that uh ∈ K. Thus, (2.8), (2.17), and (3.4) imply that

α‖u− uh‖
2
0,Ω + ‖yh(u) − yh‖

2
0,Ω

= α(u− uh, u− uh) + (u− uh, ph(u) − ph)

= (αu+ p, u− uh) + (αuh + ph, uh − uI)

+ (αuh + ph, uI − u) + (ph(u) − p, u− uh)

6 0 + 0 + (αuh + ph, uI − u) + (ph(u) − p, u− uh)

= (ph(u) − p, u− uh)

6 C(α)‖ph(u) − p‖2
0,Ω +

α

2
‖u− uh‖

2
0,Ω,

where we have used the property of the L2-projection:

(u− uI , wh) = 0 ∀wh ∈ V h.

Therefore, we have

(3.5) ‖u− uh‖
2
0,Ω + ‖yh(u) − yh‖

2
0,Ω 6 C‖ph(u) − p‖2

0,Ω.

Setting pI ∈ V h to be the L2-project of p again, it follows from (2.14) that there

exists a function wh ∈ V h such that

c‖ph(u) − pI‖0,Ω‖wh‖0,Ω 6 A(wh, ph(u) − pI),

where ph(u) is the solution of the equations (3.2)–(3.3). Then (3.3) and (2.7) imply

that

c‖ph(u) − pI‖0,Ω‖wh‖0,Ω 6 A(wh, ph(u) − pI) = A(wh, ph(u) − p) +A(wh, p− pI)

= (yh(u) − y, wh) +A(wh, p− pI)

6 C(‖yh(u) − y‖0,Ω + ‖p− pI‖0,Ω)‖wh‖0,Ω.

Therefore, we have

(3.6) ‖ph(u) − pI‖0,Ω 6 C(‖yh(u) − y‖0,Ω + ‖p− pI‖0,Ω),
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and hence,

(3.7) ‖ph(u)−p‖0,Ω 6 ‖ph(u)−pI‖0,Ω+‖pI−p‖0,Ω 6 C(‖yh(u)−y‖0,Ω+‖p−pI‖0,Ω).

Similarly, let yI ∈ V h be the L2-projection of y. There exists a function vh ∈ V h

such that

c‖yh(u) − yI‖0,Ω‖vh‖0,Ω 6 A(yh(u) − yI , vh)

= A(yh(u) − y, vh) +A(y − yI , vh)

= 0 +A(y − yI , vh) 6 C‖y − yI‖0,Ω‖vh‖0,Ω,

and hence,

(3.8) ‖yh(u) − y‖0,Ω 6 ‖yh(u) − yI‖0,Ω + ‖yI − y‖0,Ω 6 C‖y − yI‖0,Ω.

Summing up, it follows from (3.5), (3.7), and (3.8) that

‖u− uh‖
2
0,Ω + ‖yh(u) − yh‖

2
0,Ω 6 C(‖y − yI‖0,Ω + ‖p− pI‖0,Ω)2,(3.9)

which, together with (3.8), yields that

(3.10) ‖y−yh‖0,Ω 6 ‖y−yh(u)‖0,Ω+‖yh(u)−yh‖0,Ω 6 C(‖y−yI‖0,Ω+‖p−pI‖0,Ω).

Moreover, it can be concluded from (2.14), (2.16), and (3.3) that

c‖ph(u) − ph‖0,Ω‖wh‖0,Ω 6 A(wh, ph(u) − ph) = (yh(u) − yh, wh)(3.11)

6 ‖yh(u) − yh‖0,Ω‖wh‖0,Ω.

Thus, (3.7)–(3.9) and (3.11) imply that

‖p− ph‖0,Ω 6 ‖p− ph(u)‖0,Ω + ‖ph(u) − ph‖0,Ω(3.12)

6 C(‖y − yI‖0,Ω + ‖p− pI‖0,Ω).

Therefore, it follows from (3.9), (3.10), (3.12), and the well-known interpolation error

estimate (see, e.g., [9]) that

‖y − yh‖0,Ω + ‖p− ph‖0,Ω + ‖u− uh‖0,Ω 6 C(‖y − yI‖0,Ω + ‖p− pI‖0,Ω)

6 Chm+1(‖y‖m+1,Ω + ‖p‖m+1,Ω),

which proves (3.1). �
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R em a r k 3.1. There is an extensive list of papers devoted to the a priori error

analysis for optimal control problems governed by PDEs (see, e.g., [11], [21], and [25]).

Moreover, a priori and a posteriori error estimates of the finite element method for

optimal control problem governed by integral equations with a different constraint

have been investigated in [6]. The proof of Theorem 3.1 uses techniques from the

above references.

4. Supconvergence analysis

Next, we will discuss the superconvergence analysis of the optimal control prob-

lem (2.6)–(2.8).

Theorem 4.1. Let (y, p, u) and (yh, ph, uh) be the solutions of the systems (2.6)–

(2.8) and (2.15)–(2.17), respectively. Let V h be the finite element space of order m

defined in Section 2. Assume that y, p ∈ Hm+1(Ω) and ∂m+1
t G(s, t) ∈ L2(Ω × Ω),

where ∂m+1
t G(s, t) is the derivative of orderm+1 of the function G(s, t) with respect

to the variable t. Then

(4.1) ‖yI − yh‖0,Ω + ‖pI − ph‖0,Ω + ‖uI − uh‖0,Ω 6 Ch2(m+1),

where yI , pI , uI ∈ V h are the L2-projections of y, p and u, respectively.

P r o o f. Recalling (3.4), we have

(4.2) ‖yh(u) − yh‖
2
0,Ω = (u− uh, ph(u) − ph) = (uI − uh, ph(u) − ph),

where (yh(u), ph(u)) is the solution of the equations (3.2)–(3.3). Using (2.8), (2.17)

and (4.2), we obtain

α‖uI − uh‖
2
0,Ω + ‖yh(u) − yh‖

2
0,Ω(4.3)

= α(uI − uh, uI − uh) + (uI − uh, ph(u) − ph)

= (αuI + ph(u), uI − uh) + (αuh + ph, uh − uI)

6 (αuI + ph(u), uI − uh) + 0

= (αu + p, u− uh) + (αu + p, uI − u)

+ α(uI − u, uI − uh) + (ph(u) − p, uI − uh)

6 0 + (αu + p, uI − u) + 0 + (ph(u) − p, uI − uh).

Recalling (2.10), we conclude that αu+ p is a constant on the whole domain. Thus,

(4.4) (αu + p, uI − u) = (αu + p)

∫

Ω

(uI − u) = 0.
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In addition, it is easy to see that

(ph(u) − p, uI − uh) = (ph(u) − pI , uI − uh)(4.5)

6 C(α)‖ph(u) − pI‖
2
0,Ω +

α

2
‖uI − uh‖

2
0,Ω.

Then, it follows from (4.3)–(4.5) that

(4.6) ‖uI − uh‖
2
0,Ω + ‖yh(u) − yh‖

2
0,Ω 6 C‖ph(u) − pI‖

2
0,Ω.

By virtue of (2.14), there exists a function wh ∈ V h such that

c‖ph(u) − pI‖0,Ω‖wh‖0,Ω 6 A(wh, ph(u) − pI).

Hence, it follows from (2.7) and (3.3) that

c‖ph(u) − pI‖0,Ω‖wh‖0,Ω(4.7)

6 A(wh, ph(u) − pI) = A(wh, p− pI) +A(wh, ph(u) − p)

= A(wh, p− pI) + (yh(u) − y, wh)

= A(wh, p− pI) + (yh(u) − yI , wh).

Note that

A(wh, p− pI) = (wh, p− pI) −

∫

Ω

∫

Ω

G(s, t)wh(s)(p− pI)(t) ds dt(4.8)

= 0 −

∫

Ω

wh(s)

(
∫

Ω

(G(s, t) −Gt
I(s, t))(p− pI)(t) dt

)

ds

6 Ch2(m+1)

∫

Ω

(
∫

Ω

(∂m+1
t G(s, t))2 dt

)1/2

|p|m+1,Ωwh(s) ds

6 Ch2(m+1)|p|m+1,Ω

(
∫

Ω

∫

Ω

(∂m+1
t G(s, t))2 dt ds

)1/2(∫

Ω

w2
h(s) ds

)1/2

6 Ch2(m+1)‖G‖m+1,Ω×Ω‖p‖m+1,Ω‖wh‖0,Ω,

where Gt
I(s, t) is the L

2-projection of G(s, t) defined by

∫

Ω

Gt
I(s, t)vh(t) dt =

∫

Ω

G(s, t)vh(t) dt ∀ vh(t) ∈ V h

and ∂m+1
t G(s, t) is the derivative of order m+ 1 of the function G(s, t) with respect

to the variable t. Moreover, it is easy to see that

(4.9) (yh(u) − yI , wh) 6 ‖yh(u) − yI‖0,Ω‖wh‖0,Ω.
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Thus, (4.7)–(4.9) imply

(4.10) ‖ph(u) − pI‖0,Ω 6 Ch2(m+1) + ‖yh(u) − yI‖0,Ω.

Similarly, it can be deduced that

c‖yh(u) − yI‖0,Ω‖vh‖0,Ω 6 A(yh(u) − yI , vh)

= A(y − yI , vh) +A(yh(u) − y, vh)

= A(y − yI , vh) + 0

6 Ch2(m+1)‖G‖m+1,Ω×Ω‖y‖m+1,Ω‖vh‖0,Ω,

and hence,

(4.11) ‖yh(u) − yI‖0,Ω 6 Ch2(m+1).

Summing up, it follows from (4.6), (4.10), and (4.11) that

(4.12) ‖uI − uh‖
2
0,Ω + ‖yh(u) − yh‖

2
0,Ω 6 Ch4(m+1).

Moreover, (4.11) and (4.12) imply that

(4.13) ‖yI − yh‖0,Ω 6 ‖yI − yh(u)‖0,Ω + ‖yh(u) − yh‖0,Ω 6 Ch2(m+1).

Furthermore, (3.11) and (4.12) imply that

(4.14) ‖ph(u) − ph‖0,Ω 6 C‖yh(u) − yh‖0,Ω 6 Ch2(m+1).

Then, by means of (4.10), (4.11), and (4.14), we obtain that

(4.15) ‖pI − ph‖0,Ω 6 ‖pI − ph(u)‖0,Ω + ‖ph(u) − ph‖0,Ω 6 Ch2(m+1).

Thus, (4.1) is proved by (4.12), (4.13), and (4.15). �

In Theorem 4.1 we have proved the supercloseness property for the finite ele-

ment approximation of the optimal control problem (2.6)–(2.8). It has been shown

that the error between (yh, ph, uh) and (yI , pI , uI) is smaller than the error between

(yh, ph, uh) and (y, p, u) (see Theorems 3.1 and 4.1), and the order of error is im-

proved from m+ 1 to 2(m+ 1). In order to obtain global superconvergence by using

the supercloseness result provided by Theorem 4.1, we construct a postprocessor as

follows.
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For any element τ0 ∈ T h, we construct its neighborhood Ω0 =
3
⋃

i=0

τi ⊂ Ω as

follows: Let li, i = 1, 2, 3, be the three edges of τ0.

a) If li ∩ ∂Ω = ∅, i = 1, 2, 3, set τi to be the element such that li is an edge of τi.

b) If there is one edge of τ0 on the boundary ∂Ω, e.g., li ∩ ∂Ω = ∅, i = 1, 2, and

l3 ⊂ ∂Ω, set τi to be the element such that li is an edge of τi for i = 1, 2, and

set τ3 to be the element such that the intersection point of l1 and l2 is a vertex

of τ3.

c) If there are two edges of τ0 on the boundary ∂Ω, e.g., l1 ∩ ∂Ω = ∅, and li ⊂ ∂Ω,

i = 2, 3, set τ1 to be the element such that l1 is an edge of τ1, and set τi,

i = 2, 3, to be the element such that two end points of l1 are vertices of τ2 and

τ3, respectively.

Then we set Π̃2hw|Ω0
∈ P2m+1 such that

∫

τ0

(Π̃2hw − w)v = 0 ∀ v ∈ Pm−1

and
∫

τi

(Π̃2hw − w)v = 0 ∀ v ∈ Pm, i = 1, 2, 3,

where Pk is the space of polynomials of order k. Note that the number of the degrees

of freedom for the interpolation Π̃2hw defined above is

1

2
m(m+ 1) +

3

2
(m+ 1)(m+ 2) =

1

2
(m+ 1)(m+ 3m+ 6) =

1

2
(2m+ 2)(2m+ 3),

which is the same as the number of the degrees of freedom for the polynomials of

order 2m+1. Because the above interpolation conditions are independent, it can be

proved that the interpolation Π̃2hw exists and is unique for all w ∈ L2(Ω) and fixed

Ω0 =
3
⋃

i=0

τi. Let Π2hw = Π̃2hw on the element τ0. Then it can be deduced that

‖Π2hwh‖0,Ω 6 C‖wh‖0,Ω ∀wh ∈ V h,(4.16)

Π2hwI = Π2hw ∀w ∈ L2(Ω),(4.17)

‖Π2hw − w‖0,Ω 6 Ch2m+2‖w‖2m+2,Ω ∀w ∈ H2m+2(Ω).(4.18)

Using the above properties and Theorem 4.1, we obtain the following global super-

convergence result.

Theorem 4.2. Let (y, p, u) and (yh, ph, uh) be the solutions of systems (2.6)–(2.8)

and (2.15)–(2.17), respectively. Let V h be the finite element space of orderm defined

278



in Section 2. Assume that u, y, p ∈ H2m+2(Ω) and G(s, t) ∈ Hm+1(Ω×Ω). Then we

have

(4.19) ‖y − Π2hyh‖0,Ω + ‖p− Π2hph‖0,Ω + ‖u− Π2huh‖0,Ω 6 Ch2(m+1).

P r o o f. Note that

(4.20) ‖y−Π2hyh‖0,Ω 6 ‖y−Π2hy‖0,Ω +‖Π2hy−Π2hyI‖0,Ω +‖Π2hyI −Π2hyh‖0,Ω.

It follows from property (4.16) and Theorem 4.1 that

(4.21) ‖Π2hyI − Π2hyh‖0,Ω 6 C‖yI − yh‖0,Ω 6 Ch2(m+1).

Then it is easy to see from (4.17), (4.18), (4.20), and (4.21) that

(4.22) ‖y − Π2hyh‖0,Ω 6 Ch2(m+1).

Similarly, we can prove that

(4.23) ‖p− Π2hph‖0,Ω 6 Ch2(m+1)

and

(4.24) ‖u− Π2huh‖0,Ω 6 Ch2(m+1).

Hence (4.19) is the direct result of (4.22)–(4.24). �

R em a r k 4.1. There are many papers devoted to the superconvergence analysis

for integral equations (see, e.g., [5], [17], [18], and [27]) and to the optimal control

problems governed by PDEs (see, e.g., [7], [10], [16], [21], [24], and [28]). The proofs

of Theorems 4.1 and 4.2 use techniques similar those in references just cited.
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5. Recovery type a posteriori error analysis

Using the global superconvergence result given in Theorem 4.2, we can construct

a recovery type a posteriori error estimator as follows.

Set

(5.1) η2 = ‖yh − Π2hyh‖
2
0,Ω + ‖ph − Π2hph‖

2
0,Ω + ‖uh − Π2huh‖

2
0,Ω,

where Π2h was defined in the last section. We have the following asymptotically

exact a posteriori error estimate.

Theorem 5.1. Let (y, p, u) and (yh, ph, uh) be the solutions of the systems (2.6)–

(2.8) and (2.15)–(2.17), respectively. Let V h be the finite element space of order m

defined in Section 2. Assume that u, y, p ∈ H2m+2(Ω) and ∂m+1
t G(s, t) ∈ L2(Ω×Ω).

Then we have

(5.2) η2 = ‖y − yh‖
2
0,Ω + ‖p− ph‖

2
0,Ω + ‖u− uh‖

2
0,Ω +O(h4(m+1))

and

(5.3) lim
h→0

η2

‖y − yh‖2
0,Ω + ‖p− ph‖2

0,Ω + ‖u− uh‖2
0,Ω

= 1

if for some ε > 0,

‖y − yh‖
2
0,Ω + ‖p− ph‖

2
0,Ω + ‖u− uh‖

2
0,Ω > Ch4(m+1)−ε,

where η is defined by (5.1).

P r o o f. From Theorem 4.2 we know that

|‖yh − Π2hyh‖0,Ω − ‖y − yh‖0,Ω| 6 ‖y − Π2hyh‖0,Ω 6 Ch2(m+1),

which leads to the expression

(5.4) ‖yh − Π2hyh‖0,Ω = ‖y − yh‖0,Ω +O(h2(m+1)).

Similarly, we have

(5.5) ‖ph − Π2hph‖0,Ω = ‖p− ph‖0,Ω +O(h2(m+1))

and

(5.6) ‖uh − Π2huh‖0,Ω = ‖u− uh‖0,Ω +O(h2(m+1)).

Then (5.2) follows from (5.4)–(5.6), and (5.3) is the direct result of (5.2). �
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R em a r k 5.1. In this section we have used the combined recovery techniques of

least square fitting (see, e.g., [30]) and post-processing by interpolation (see, e.g., [17])

for constructing a recovery type a posteriori error estimator. Noting that there is

no requirement of uniform meshes in Theorem 5.1, which is often required in many

general superconvergence analysis and recovery type a posteriori error estimates, the

recovery type a posteriori error estimator defined in this section is more suitable for

adaptive mesh refinement.

6. Discussion

In this paper we have analyzed the superconvergence of the finite element dis-

cretizations of a class of constrained optimal control problems governed by Fredholm-

type integral equations. Based on the superconvergence analysis, global supercon-

vergence and a recovery type a posteriori error estimates are provided. There are

many important issues that remain to be studied. For example, the focus will be

on the full discretization of (2.12) by using appropriate quadrature approximations

for the Fredholm integral operator, and on numerical calculation based on applied

optimal control problems of the forms (2.1)–(2.2). These include discussions on the

discretization of problems governed by integral equations with weakly singular ker-

nels (using suitable graded partitions or adaptive techniques), and optimal control

problems with more complicated control constraints, as well as computational issues

such as the integration of the numerical simulation into the mathematical program-

ming algorithms that are used to solve the finite-dimensional optimization problems.
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