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REGULARITY CRITERION FOR 3D NAVIER-STOKES EQUATIONS
IN TERMS OF THE DIRECTION OF THE VELOCITY*

ALEXIS VASSEUR, Austin

(Received May 17, 2007)

Abstract. In this short note we give a link between the regularity of the solution u to
the 3D Navier-Stokes equation and the behavior of the direction of the velocity u/|u|. It is
shown that the control of div(u/|u|) in a suitable LY (L%) norm is enough to ensure global
regularity. The result is reminiscent of the criterion in terms of the direction of the vorticity,
introduced first by Constantin and Fefferman. However, in this case the condition is not on
the vorticity but on the velocity itself. The proof, based on very standard methods, relies
on a straightforward relation between the divergence of the direction of the velocity and
the growth of energy along streamlines.
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1. INTRODUCTION

This short paper deals with a new formulation of the well-known criteria for reg-
ularity of solutions to the incompressible Navier-Stokes equation in dimension 3,

namely,

(1) O+ diviu@u) + VP —Au=0, tc]0,00], z€R>
divu = 0.

The unknown is the velocity field u(¢,z) € R3. The pressure P is a non local operator
of u which can be seen as a Lagrange multiplier associated to the constraint of
incompressibility divu = 0. The existence of weak solutions was proved long ago by
Leray [10] and Hopf [7]. They showed that for any initial value with finite energy u® €

* This work was supported in part by NSF Grant DMS-0607953.
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L2(R3) there exists a function u € L>(0, 00; L2(R3))x L2(0, 00; H'(R?)) verifying (1)
in the sense of distributions, and verifying in addition the energy inequality

t
(2) lut, T2 es) + 2/0 IVuls, )L esy ds < lluollZa(gsy, > 0.

Such a solution is now called the Leray-Hopf weak solution to (1).

In [12], Serrin showed that a Leray-Hopf solution of (1) lying in L?(0, oo; L4(R?))
with p,¢ > 1 such that 2/p+3/¢q < 1 is smooth in the spatial directions. This result
was later extended in [13] and [5] to the case of equality for p < co. Notice that the
case of L>°(0,00; L3(R?)) was proven only very recently by Iskauriaza, Serégin and
Shverak [8].

Another class of regularity criteria which involves the gradient of u was introduced
by Beirdo da Veiga [2]. More precisely, he showed that any Leray-Hopf solution «
such that Vu lies in LP(L?) with 2/p + 3/q = 2, 3/2 < q < o0, is smooth. Beale-
Kato-Majda [1] dealt with the vorticity w = rotu and proved regularity under the
condition w € L'(L>°). This condition was later improved to L'(BMO) by Kozono
and Taniuchi [9].

In [4], Constantin and Fefferman introduced a criterion involving the direction of
the vorticity w/|w|. They showed that under a Lipschitz-like regularity assumption
on w/|w|, the solution is smooth (see [14] for extension of this result).

Our result is of the same spirit but involves the direction of the velocity itself
instead of the vorticity.

Theorem 1. Let u be a Leray-Hopf solution to the Navier-Stokes equation with
an initial value ug € L?(R3). If div(u/|ul) € LP(0,00; LY(R3)) with

w

2
S+i<
p

<
N =

then u is smooth on (0,00) x R3.

The result shows that it is enough to control the rate of change of the direction
of the velocity to get full regularity of the solution. The main point of this paper is
the following straightforward equality coming from the incompressibility of the flow:

u

3) |uf div(u/[ul) = - Vlul.

|ul

This equality shows that, due to the incompressibility, the growth of |u| along the
stream lines is linked to the divergence of the direction of u. It means that to allow
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some increase of kinetic energy |u|? along the streamlines, those streamlines need to
be bent, producing some divergence on the direction of the velocity.

This remark is the main point of this short note. The proof of the theorem then
follows in a very standard way. It uses the fact that the right-hand side term in (3)
corresponds, up to the multiplication by a power of |u|, to the flux of energy u-V|u|?.
Besides, it is also interesting to notice that this term depends only on the symmetric
part of the gradient of u. Indeed, it can be rewritten as

T

||2——£~V ‘u=———D(u)-
= |u|2 u-u= |u|2 u)-u.

ul div(u/fu]) = = - V]u| = TR

u
|ul

It has been already known that if one component of the velocity is bounded in
a suitable space, then the solution is smooth (see Penel and Pokorny [11], He [6],

Zhou [14], Chae and Choe [3]). Our result states that if the direction of the velocity
does not change too drastically, the conclusion is still true.

2. PROOF OF THEOREM 1
Let us first state a technical lemma.

Lemma 2. For every r, 2 < r < 6, there exists a constant C' such that for every
B > 0 and every function f lying in L?(R®) and such that V f lies in L?(R?), we have

1
BllfIZr sy < ZUV FIZ2gs) + CBYN 112 roy

for 0 =3/r—1/2.

Proof. The Sobolev inequality gives

I fllzers) < ClIV fllL2(Rs).-

Interpolation gives

BIFIEr@sy < BVONFIT2me)) (170 msy)' 7,
where
0, 1-0_1
2 6

that is @ = 3/r — 1/2. We complete the proof using the Minkowski inequality
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with

1 1
f=—-, 1—-0=-
p q
and 1/61) £]12 \6
(BN fN72) _
= WLl - oy
for € small enough. O

We consider now u, a Leray-Hopf solution to the Navier-Stokes equation. Since
u lies in L>(0, 00; L2(R3)) N L2(0, 00; H'(R?)), for almost every ty > 0, u(to,-) lies
in H'(R?). It is classical that there exists a maximal 7' > ¢y such that u is smooth
on (to,T) x R3. Our goal is to show that

tlin% w3 (2,60 (R3)) < 0.

Thanks to Serrin’s criterion, this implies that 7' = co. Note that u(to,-) € L2(R3) N
L5(R3), so it lies in L3(R?). We consider u on (to,T) x R3. Multiplying (1) by u|u|
and integrating in x we find

4

3
de—f—/ |u|(|Vu|2+|V|u||2)dx—/ Py - V]u|dz = 0.
dt Jps 3 R3 R3

Noting that
—AP = Z 87,8] (uiuj),
ij

we have, for every 4/3 < r < oo,

[Pl parraqmsy < Cr”“”%h/?(u@)'

Since div(u/|u|) € LP(L?) for 2/p+3/q < 1/2,q > 6, and u € L*(L®) for 2/a+3/b =
3/2,2 < b < 6, there exist p > 1 and 2 < g < 6 such that |u|div(u/|u|) € LP(LY)
with

1 1 1 1 1 1
—=—-+—-, —=-4-.
p p a q@ q b
Note that 2 < ¢ < 6 and
2 3
(4) -+ =<2.
p q

So, using (3), we have for every fixed time ¢,

d lul? 9 U
— —d V dz < P ‘— -V ‘d
G/, 3 x—f—/[R3 |||V |u||* dx /[R3| [ | Tl |u|| da

< CllulZar/a a1l diviw/full oges)
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with

Using Lemma 2 with
3
f= |u|3/27 Vf= §|u|1/2V|u|,
we find that
CllullZar 2 (gsylllul div(w/[u])|| Lags)
= C||f||2Lr(R3)|||u| diV(u/|U|)HL7(R3)

9 . 1/6
< EIIIUI1/QVIuIII%2<Rs> + Ol ] div(w/ [u]) || o g 1]l 35 25y

LA(R3)
31108y
r 2 2 q

By virtue of (4), this gives 1/0 < P, hence |||u| div(u/|ul)]]

where
9 P—

1/0

LT(R?) lies in L1(0,T) with

a7 : ~ yo f L
x|, 3 @t gg IV dx<C|||u|dw<u/|“|>”mw>/RSde'

The Gronwall lemma gives that, whenever T is finite,

lim lu® dz < oo,
t—T R3

T 4 T
// |u||V|u||2da:dt=—// IV |uf*2) da it
to JR3 9 to JR3

is finite too. The Sobolev imbedding gives that u € L3(to, T; L°(R?)). The Serrin’s
criteria, then, contradict the fact that 7" is finite. This shows that u is smooth on

and so

(to,00) x R3 for almost every to > 0. The assertion of Theorem 1 follows.
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