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EXTENDED THERMODYNAMICS—A THEORY OF SYMMETRIC

HYPERBOLIC FIELD EQUATIONS

Ingo Müller, Berlin

Dedicated to Jürgen Sprekels on the occasion of his 60th birthday

Abstract. Extended thermodynamics is based on a set of equations of balance which are
supplemented by local and instantaneous constitutive equations so that the field equations
are quasi-linear differential equations of first order. If the constitutive functions are subject
to the requirements of the entropy principle, one may write them in symmetric hyperbolic
form by a suitable choice of fields.
The kinetic theory of gases, or the moment theories based on the Boltzmann equation,

provide an explicit example for extended thermodynamics. The theory proves its usefulness
and practicality in the successful treatment of light scattering in rarefied gases.
It would seem that extended thermodynamics is worthy of the attention of mathemati-

cians. It may offer them a non-trivial field of study concerning hyperbolic equations, if ever
they get tired of the Burgers equation.
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1. Formal structure1

The objective of extended thermodynamics is the determination of n fields, syn-

thetically denoted by uα(xd, t) (α = 1, 2, . . . , n), and called densities. The argu-

ment xd denotes the spatial coordinates of an event and t is its time. Invariably the

first five of these fields are chosen as the densities of mass, momentum, and energy—

and that is all in ordinary thermodynamics. But in extended thermodynamics the

number of fields is extended (sic!) and it may contain the stress, the heat flux and

more, see below.

1 This presentation is based upon the book [15] of which the author of this paper is a
co-author. For more details on motivation and exploitation of the basic principles the
interested reader is referred to that book.
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For the determination of the fields uα(xd, t) we need n field equations, and these

are based upon n equations of balance2

(1.1)
∂uα

∂t
+

∂F d
α

∂xd
= Πα (α = 1, 2, . . . , n).

The quantities F d
α (d = 1, 2, 3) are called fluxes and Πα are called productions.

If the first five equations of (1.1) represent the conservation laws of mass, mo-

mentum, and energy, the first five productions Πα (α = 1, . . . , 5) vanish. And all

productions vanish in an equilibrium.

In order to obtain field equations for the densities uα, the equations of balance

must be supplemented by constitutive equations. Such constitutive equations relate

the fluxes and productions to the densities in a manner characteristic for the material.

In extended thermodynamics the constitutive relations have the forms

(1.2) F d
α = F̂ d

α(uβ) and Πα = Π̂α(uβ),

so that the fluxes F d
α and productions Πα at a point and a time depend only on the

densities at that point and time. We may say that the constitutive equations are

local in space-time.3

If the constitutive functions F̂ d
α and Π̂α were known explicitly, we could elim-

inate F d
α and Πα between the equations of balance and the constitutive relations

and obtain explicit field equations for the uα’s. They form a quasi-linear system of

partial differential equations of first order. Every solution of this system is called

a thermodynamic process.

2. Symmetric hyperbolic systems

In reality, of course, the constitutive functions are not known, and it is the task of

the constitutive theory to determine those functions or, at least, to reduce their gen-

erality. The tools of the constitutive theory are certain universal physical principles

which represent expectations based on experience. The main principles are

• the entropy inequality,

• the requirement of concavity,

• the principle of relativity.

The first two of these combined represent the entropy principle.

2 Summation is implied over repeated indices, whether Greek or Latin.
3 Thus no gradients or time derivatives occur among the variables in the constitutive
equations. In particular, there is no temperature gradient. And yet, heat conduction is
accounted for, because the heat flux is counted among the variables.
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The entropy inequality is an additional balance law which we write as

(2.1)
∂h

∂t
+

∂hd

∂xd
= Σ > 0 for all thermodynamic processes.

Here h is the entropy density and hd is the entropy flux; Σ is the entropy production,

assumed non-negative for all thermodynamic processes. All three of those quantities

are constitutive quantities so that in extended thermodynamics we have

(2.2) h = ĥ(uβ), hd = ĥd(uβ), Σ = Σ̂(uβ).

The requirement of concavity demands that h be a concave function of uβ , i.e.

(2.3)
∂2h

∂uα∂uβ

is negative definite.

This makes it possible for the entropy to be maximal in equilibrium.

The principle of relativity states that the field equations and the entropy inequality

have the same forms in all Galilei frames.4

We defer the consideration of the principle of relativity and proceed with the

exploitation of the entropy principle. The key to the exploitation of the entropy

inequality lies in the observation that the inequality need not hold for all fields uα;

rather it must hold for thermodynamic processes, i.e. solutions of the field equations.

In a manner of speaking the field equations provide constraints for the fields that

must satisfy the entropy inequality. A lemma by Liu [10] proves that it is possible to

use Lagrange multipliers Λβ—functions of uα—to eliminate the constraints. Indeed,

the new inequality

∂h

∂t
+

∂hd

∂xd
− Λα

(∂uα

∂t
+

∂F d
α

∂xd
− Πα

)

> 0

must hold for all fields uα(xd, t). In particular this inequality must hold for arbitrary

derivatives ∂uα/∂t and ∂uα/∂xd at one event, and this implies

(2.4) dh = Λα duα, dhd = Λα dF d
α , and ΛαΣα > 0.

From (2.4)1 we conclude that

∂Λα

∂uβ

=
∂2h

∂uα∂uβ

4 In relativistic thermodynamics we require the same invariance under Lorentz transfor-
mations.

471



is negative definite because of the concavity of h as a function of uα. Therefore

there is a one-to-one correspondence between the densities uα and the Lagrange

multipliers Λβ. It is thus possible to make a change of variables uα ⇔ Λα. If this is

done, the two equations (2.4)1,2 may be written in the form

(2.5) dh′ = uα dΛα, dh′d = F d
α dΛα,

where h′ = −h+Λαuα and h′a = −ha +ΛαF a
α are called scalar and vector potentials

respectively, because their derivatives with respect to Λα are the densities and the

fluxes. Therefore in the new variables the system of field equations reads

(2.6)
∂2h′

∂Λα∂Λβ

∂Λβ

∂t
+

∂2h′d

∂Λα∂Λβ

∂Λβ

∂xd
= Πα (α = 1, 2, . . . , n).

All four matrices in this system are obviously symmetric and the first one is negative

definite.5 Therefore the system of field equations (written in terms of Lagrange

multipliers) is a symmetric hyperbolic system.

Hyperbolicity guarantees finite speeds of propagation and symmetric hyper-

bolic systems have convenient and desirable mathematical properties, namely well-

posedness of Cauchy problems, i.e. existence, uniqueness, and continuous dependence

on the data. The desire for finite speeds of propagation was the primary original

incentive for the formulation of extended thermodynamics by Müller [13].

The residual inequality (2.4)3 is due entirely to the production terms in the field

equations; recall that the first five productions are zero. Since Πα may be considered

as a function of the Lagrange multipliers Λβ, it follows from the inequality that in

the equilibrium defined by Πα|E = 0 all Λβ (β = 6, 7, . . . , n) are equal to zero,

(2.7) Λβ|E = 0 (β = 6, 7, . . . , n).

The residual inequality is a sum of products of the productions and the Lagrange

multipliers. In the jargon of ordinary (non-extended) thermodynamics we may con-

sider these quantities as thermodynamic forces and fluxes. And in a linear theory

the forces are linear functions of the fluxes, so that we may write

(2.8) Πα =

n∑

β=6

LαβΛβ (α = 6, 7, . . . , n).

5 This follows from the concavity of the entropy density in terms of the densities uα, since
h′ = −h + Λαuα defines a Legendre transformation associated to the map uα ⇔ Λα.
Such a Legendre transformation preserves concavity so that h′ is a concave function
of Λα.
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3. Characteristic speeds and pulse speed

A wave is a moving surface, represented mathematically by the equation

ϕ(xd, t) = 0,

which defines the wave front. The unit normal nd and the normal speed V are given

by

(3.1) nd =
∂ϕ/∂xd

|gradϕ|
and V = −

∂ϕ/∂t

|gradϕ|
.

In the simple case considered here the wave front separates the constant and ho-

mogeneous fields Λα(xd, t) in front of the wave from the perturbed fields behind it.

In the case of weak waves, or acceleration waves6, the fields are continuous across

the front, but the gradients have a jump and, obviously, that jump points in the

direction of the normal. Therefore

(3.2) [Λα] = 0 and hence
[∂Λα

∂xd

]

nd = Jα and
[∂Λα

∂t

]

= −V Jα,

where a square bracket [a] denotes the difference of a generic quantity a in front of

the wave and behind it. Here Jα (α = 1, 2, . . . , n) are called the amplitudes of the

acceleration wave.

In our case the speeds and amplitudes are given by the field equations (2.6) as

solutions of the homogeneous linear algebraic system

(3.3)
( ∂2h′

∂Λα∂Λβ

V −
∂2h′d

∂Λα∂Λβ

nd
)

Jβ = 0.

Thus the possible wave speeds in the direction nd are the solutions of the character-

istic equation

(3.4) det
( ∂2h′

∂Λα∂Λβ

V −
∂2h′d

∂Λα∂Λβ

nd
)

= 0.

We obtain n speeds and they are called characteristic speeds. The fastest one of

these is called the pulse speed. All speeds are real and finite as a consequence of the

symmetric hyperbolic character of the field equations.

By (3.3) the amplitudes Jβ are right eigenvectors of the matrix of the linear system.

6 In fluid mechanics weak waves have a continuous velocity across the front but a jump of
acceleration; hence the name acceleration wave.

473



4. Growth and decay of acceleration waves

The solutions of non-linear hyperbolic equations have a tendency to develop sin-

gular derivatives even when the initial data are smooth. Thus jumps or shocks may

appear. However, dissipation represented by the productions in the equations (2.6)

can put a check on this tendency.

The conditions on initial data and on the dissipative terms which need to be

satisfied to guarantee smooth solutions for all times are unknown. All we have is

a sufficient condition for smoothness by Kawashima [9]. However, the treatment of

acceleration waves gives a good intuitive understanding of what is involved.

It is possible to determine the rate of change ∂J/∂t of the amplitude of acceleration

waves. This was first done by W.A. Green [8] but the most elegant derivation and

result is due to Boillat [1]. We shall restrict the attention to the case that the wave

propagates into a region of equilibrium with constant and homogeneous fields. In

that case Boillat’s result reduces to a Bernoulli equation with constant coefficients

(4.1)
∂J

∂t
−

∂V

∂Λβ

dβ

︸ ︷︷ ︸

a

J2 − lα
∂Πα

∂uβ

dβ

︸ ︷︷ ︸

b

J = 0.

Here lα and dα are the left and the right eigen-values of the matrix of the linear

system (3.3). The coefficient a, indicated in (4.1), represents the non-linearity of the

system, namely the dependence of the wave speed upon the value of the fields Λα.

The coefficient b represents dissipation, because it depends on the productions in the

field equations.

The solution of (4.1) reads

(4.2) J(t) =
J(0)e−bt

1 − J(0)ab−1(e−bt − 1)
.

If the system were linear, i.e. a = 0, there would be exponential decay, of course.

But even for a 6= 0 there may be decay unless the initial amplitude is too big. If that

amplitude is big enough, J(t) becomes singular at some time. For an acceleration

wave this means that the amplitude of acceleration becomes infinite, so that the

velocity has a jump; a shock wave appears, a discontinuity of velocity.

Experiments show that discontinuities do not exist. Natura non fecit saltus! If a math-
ematical theory predicts discontinuities, e.g. jumps of velocity in a shock wave, it is a sure
sign that the theory is deficient and additional fields are required to resolve the discontinuity
into a steep but smooth structure. Extended thermodynamics of moments shows the way
in which this may be done, cf. [15]. Parabolisation of the field equations—euphemistically
called regularization by mathematicians—is not the correct way.
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5. An example. Extended thermodynamics of moments

5.1. Pulse speeds

The kinetic theory of gases is based on the Boltzmann equation for the distribution

function f(xd, cd, t) which determines the number density of atoms of the mass µ with

the velocity cd at the point xd and time t. The moments of the distribution function

are

(5.1) ui1i2...il
=

∫

µci1ci2 . . . cil
f dc,

so that u, ui, and uii are the densities of mass, momentum and energy of the gas.

The moments obey equations of balance of the form (1.1), viz.

(5.2)
∂ui1i2...il

∂t
+

∂ui1i2...ild

∂xd
= Πi1i2...il

(l = 0, 1, 2, . . . , N).

For u, ui, and uii the productions Π, Πi, and Πii vanish because of the conservation

of mass, momentum and energy in atomic collisions. Since each index may assume

the values 1, 2, 3, there are n = 1
6 (N + 1)(N + 2)(N + 3) equations.

These equations fit into the formal framework of extended thermodynamics, but

they are simpler.7 Therefore the results of Sections 2 and 3 may be carried over

to the present case, in particular the exploitation of the entropy inequality. In the

kinetic theory of gases that inequality assumes the form8

(5.3)
∂

∂t

(

−k

∫

f ln
f

eY
dc

)

+
∂

∂xa

(

−k

∫

caf ln
f

eY
dc

)

> 0.

The exploitation makes use of the Lagrange multipliers Λi1i2...il
(l = 0, 1, 2, . . .N)

and the moment character of the densities and fluxes implies that the distribution

function has the form

(5.4) f = Y exp
(

−
1

k
Λi1i2...il

µci1ci2 . . . cil

)

,

so that the scalar and vector potential may be written as

h′ = − kY

∫

exp
(

−
1

k
Λi1i2...il

µci1ci2 . . . cil

)

dc(5.5)

and

h′a = − kY

∫

ca exp
(

−
1

k
Λi1i2...il

µci1ci2 . . . cil

)

dc.

7 Indeed, on the left-hand side there is only one flux, namely ui1i2...iN d, the last one, which
is not explicitly related to ui1i2...il

(l = 0, 1, 2, . . . , N).
8Here e is the Euler number and 1/Y is the smallest cell of the phase space spanned by xa

and ca.
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Insertion into the characteristic equation (3.4) for the calculation of the wave

speeds gives

(5.6) det

(∫

(cana − V )ci1ci2 . . . cil
fE dc

)

= 0

provided that the wave propagates into a region of equilibrium. By fE we denote

the Maxwell distribution.

Thus the calculation of characteristic speeds and, in particular, the pulse speed,

requires no more than simple quadratures and the solution of an nth order algebraic

equation. It is true that the dimension of the determinant in (5.6) increases rapidly

with N : For N = 10 we have 286 rows and columns, while for N = 40 we have

12341 of them. But then, the calculation of the elements of the determinant and the

determination of the pulse speed Vmax may be programmed into the computer and

W. Weiss [19] has the values ready for any reasonable N at the touch of a button,

cf. Fig. 5.1. We recognize from the figure that the pulse speed goes up with increas-

ing N and it never stops. Indeed, according to Boillat & Ruggeri [3] there exists

a lower bound for Vmax which tends to infinity for N → ∞.

N n Vmax/
√

5
3

k
µ
T

10 286 4.018
20 1771 6.080
30 5456 7.663
40 12341 8.997

0 5 10 15 20 25 30 35 40 45
0
1
2
3
4
5
6
7
8
9

10Vmax
√

5
3

k
µ
T

N

Figure 5.1. Pulse speeds referred to the normal sound speed. Table and crosses: Calcula-

tions by Weiss. Circles: Lower bound
√

6
5

(

N −
1
2

)

by Boillat and Ruggeri.

The fact that Vmax is unbounded in a non-relativistic moment theory repre-

sents something of an anticlimax for extended thermodynamics, because that theory

started out originally as an effort to find a finite speed of heat conduction. But it

does not matter! Indeed by the time the conclusion was reached, extended thermo-

dynamics had long outgrown its original motive.9 It had become a predictive theory

9Anyway the problem lies with the kinetic theory rather than with extended thermody-
namics. After all, infinite speeds of atoms are permitted in the non-relativistic kinetic
theory and in the Maxwell distribution. For that reason the moments are integrals over
the whole range of velocities from −∞ to +∞.
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which is needed when steep gradients and rapid changes occur as they do in light

scattering. Let us consider the situation in the following section.

5.2. Field equations for moments

Once the distribution function is known in terms of Lagrange multipliers, cf. (5.4),

it is possible, in principle, to change back from the Lagrange multipliers Λi1i2...il
to

the moments ui1i2...il
by inverting the relation

(5.7) ui1i2...il
=

∫

µci1ci2 . . . cil
Y exp

(

−
1

k
Λi1i2...il

µci1ci2 . . . cil

)

dc.

Once this is done, we may determine the last flux

(5.8) ui1i2...iN d =

∫

µci1ci2 . . . ciN
cdY exp

(

−
1

k
Λi1i2...il

µci1ci2 . . . cil

)

dc

in terms of the densities ui1i2...il
(l = 0, 1, 2, . . . , N). Also the productions may

thus be calculated after we choose an appropriate model for the atomic interaction,

e.g. the model of Maxwellian molecules.

In reality the calculations of the flux ui1i2...iN d and of the productions
10 Πi1i2...il

(l = 6, 7, . . . , N) require somewhat precarious approximations, since integrals of the

type occurring in (5.8) cannot be solved analytically. Those approximations deserve

further study11 but when everything is said and done, one arrives at explicit field

equations, e.g. those of Fig. 5.2, which are valid for N = 3 so that there are 20 indi-

vidual equations. The equations written in the figure are linearized and the canonical

notation has been introduced, like ̺ for the mass density u, ̺vi for the momentum

density ui, 3/2̺k/µT for the energy density 1/2uii, t〈ij〉 for the deviatoric stress and

qi for the heat flux. The moment u〈ijk〉 has no conventional name other than trace-

free third moment because it does not enter the conventional equations of balance

of mass, momentum, and energy. And yet, it does have to satisfy an explicit field

equation.

The figure shows the same set of 20 equations four times so as to make it possible

to point out special cases within the different frames.

• On the upper left side we see the equations for the Euler fluid, which is entirely

free of dissipation and thus without shear stresses and heat flux.

• The upper right box contains the Navier-Stokes-Fourier equations with the stress

proportional to the velocity gradient and the heat flux proportional to the tem-

perature gradient. This set identifies the only unspecified coefficient τ as related

10 Recall that the first five productions are zero because of the conservation of mass, mo-
mentum, and energy.

11 A fully satisfactory theory of extended thermodynamics, which does not need the pre-
carious approximation, is presented in [16].
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to the shear viscosity η. We have η = 4
3τ̺ k

µ
T so that η grows linearly with T

as is expected for Maxwellian molecules.

• In the fifth equation of the third set I have highlighted the Cattaneo equa-

tion. Cattaneo [4] was a forerunner of extended thermodynamics, who provided

a modification on the Fourier law on the grounds of kinetic arguments by adding

a term with the rate of the heat flux to it.

• The fourth box exhibits the 13-moment equations. These were formulated by

Grad [7] as an example for his moment method for the approximate determi-

nation of the consequences of the Boltzmann equation. They are the most

popular equations of extended thermodynamics, because they contain only the

moments ̺, ̺vi, T , t〈ij〉 and qi known from ordinary thermodynamics.

For an interpretation we may rely on the upper right box in Fig. 5.2, the one that

emphasizes the Navier-Stokes-Fourier theory. Inspection shows that some specific

terms are left out of that theory, namely

(5.9)
∂t〈ij〉

∂t
and

∂qi

∂t
and

∂t〈ij〉

∂xj
and

∂qi

∂xk
.

For rapid rates and steep gradients we may suspect that these terms do count and

indeed they do, and we must go to the full set of 20 equations, or to equations

with even more moments. Since the rapid rates and steep gradients are measured in

terms of mean times of free flight and mean free paths, we may suspect that extended

thermodynamics becomes necessary for rarefied gases.

5.3. Light scattering in gases as an example of extended thermodynam-

ics of moments

The random thermal motion of the atoms or molecules of a gas disturbs the equi-

librium of the gas and generates tiny and short lived compressions and expansions,

i.e. fluctuations of density. These make the dielectric constant of the gas fluctuate,

because it depends on the density. By Maxwell’s equations the fluctuations cause

a light wave to be scattered sideways, cf. Fig. 5.3 a). Most of the scattered light has

the frequency ω(i) of the incident mono-chromatic light, but neighbouring frequen-

cies ω are also present in the scattering spectrum S(ω). Typically the measured

spectrum—scattered in a gas and passed through an interferometer to a photo-

multiplier—exhibits three well-developed peaks, if the gas is normally dense. In

a rarefied gas measurements show a flatter curve with lateral shoulders, cf. Fig. 5.3 b).

The light scattering spectrum may also be calculated from the field equations

fort the gas, e.g. the Navier-Stokes-Fourier equations. The key to the calculation

is the Onsager hypothesis by which the spatial Fourier components of the fields

are the same functions of time as the mean regression of a fluctuation. For dense
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Figure 5.3. On light scattering. a) Light scattering, schematic. b) Scattering spectrum in
a dense gas and in a rarefied gas. Dots: Measurements in a rarefied gas. Lines:
Calculation by Navier-Stokes-Fourier theory.

gases the measured and calculated scattering spectra agree perfectly well. This fact

supports the Onsager hypothesis. For a rarefied gas, however, the agreement is bad,

cf. Fig. 5.3 b). Therefore we may conclude that the discrepancy is due to the Navier-

Stokes-Fourier theory which, indeed, is expected to fail in a rarefied gas according

to the considerations of Section 5.2.

So, this is a case where extended thermodynamics can prove its usefulness and

practicality. Weiss [19] has applied the linearized field equations of 20, 35, 56, and

84 moments to the problem and has calculated the scattering spectra of Fig. 5.4

(top) for small pressures for which the experimental dots of Fig. 5.3 b were obtained.

Inspection shows that the theories differ among themselves and that none of them

fits the experimental points well. Nor can we adjust parameters to obtain a better

fit, because there are no adjustable parameters of the usual type in extended ther-
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modynamics. The only available parameter is the number of moments and moment

equations. Therefore Weiss went ahead to 120 through 286 moments and obtained

convergence as well as a perfect fit, cf. Fig. 5.4 (bottom).
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Figure 5.4. Light scattering spectra in a moderately rarefied gas. Dots represent mea-
surements. Top: Extended thermodynamics of N = 20, 35, 56, 84 moments.
Bottom: Extended thermodynamics of N = 120, 165, 220, 286.

That result might be called satisfactory, amazing and disappointing at the same

time:

• Satisfaction comes from the fact that extended thermodynamics combined with

the Onsager hypothesis is capable of representing light scattering satisfactorily

in rarefied gases.
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• The amazing feature is the convergence of the light scattering spectra at some

finite number of moments. More moments will not appreciably change the

calculated curves.

• Disappointment stems from the large number of moments needed to achieve

convergence. We might have hoped that 13 or, perhaps 14 or 20 moments could

give good results. That would have given us a manageable system of equations.

Instead we need 120 of them—at least for the small pressures to which the

curves of Fig. 5.4 refer.

And yet, the results for light scattering represent the claim to fame of extended

thermo-dynamics. Indeed, the convergence put in evidence by the plots of Fig. 5.4

permits us to conclude that extended thermodynamics determines its own range of

applicability without any reference to experiments. This is something that is often

said to be impossible. Yet in extended thermodynamics it is possible because it is not

a single theory; it is a theory of theories, one each for a given number of moments.

So, if, after an increase of that number, we obtain the same function S(ω) in some

norm, we have reached convergence and may fully trust the theory and predict the

light spectrum, without making a single experiment.

6. On the origin and development of extended thermodynamics

When extended thermodynamics started with the work of Müller [13], [14] its

sole and, from the present point of view, rather naive objective was the resolu-

tion of the so-called paradoxa of heat conduction and shear wave propagation:

The Navier-Stokes-Fourier theory has a parabolic structure and it predicts infinite

pulse speeds. Working within the then prevailing theory of Thermodynamics of

Irreversible Processes (TIP), Müller allowed the local entropy to depend on the

heat flux and the viscous stress. Also he assumed the entropy flux to be given by

a generic constitutive equation rather than being determined universally by the ratio

of heat flux and temperature, cf. [12]. This theory led to hyperbolic equations for

temperature and shear velocities.

That early type of extended thermodynamics profited from the contact with the ki-

netic theory of gases—still in [14]—particularly with the moment method by Grad [7].

Later the connection between extended thermodynamics and the kinetic theory of

gases became really close in the work [11] by Liu and Müller, where Lagrange mul-

tipliers were used for the exploitation of the entropy inequality. In this manner

extended thermodynamics assumed a neat systematic form, albeit only for 13 or

14 moments.

482



Yet in this shape the theory was prepared to be joined to the mathematical the-

ory of hyperbolic systems. Ruggeri and Strumia [18] recognized that the Lagrange

multipliers—their main field—were privileged as a variable field and, if they are cho-

sen, they make the field equations symmetric hyperbolic. With this observation it

became possible to reveal the formal structure of extended thermodynamics which

I have described in Sections 1 and 2 above. That formal structure applied to moments

was refined and extended by Boillat and Ruggeri [17], [2]. In the end the authors

proved in [3] that the pulse speed, though finite for any finite number of moments,

tends to infinity for infinitely many moments, at least in the non-relativistic case.12

It seems that the significance of symmetric hyperbolic equations was first recog-

nized by Godunov [6], who rewrote the conventional equations of fluid mechanics

in symmetric hyperbolic form. Later Friedrichs and Lax [5] discovered that quasi-

linear first order systems may be reduced to symmetric hyperbolic systems, if they

are compatible with a “convex extension”, i.e. an additional equation of balance type.

Although widely quoted, the approach by Friedrichs and Lax is second best com-

pared with the method of Ruggeri and Strumia [18]. Indeed, the eventual symmetric

hyperbolic equations of Friedrichs and Lax are no longer equivalent to the original

physically motivated balance laws and their solutions of shock structure problems,

if they exist at all, are different from those of the original balance laws.
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