Applications of Mathematics

Jens Frehse; Wladimir Weigant
On quasi-stationary models of mixtures of compressible fluids
Applications of Mathematics, Vol. 53 (2008), No. 4, 319-345

Persistent URL: http://dml.cz/dmlcz/140325

Terms of use:

© Institute of Mathematics AS CR, 2008

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized

documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz


http://dml.cz/dmlcz/140325
http://dml.cz

53 (2008) APPLICATIONS OF MATHEMATICS No. 4, 319-345

ON QUASI-STATIONARY MODELS OF MIXTURES OF
COMPRESSIBLE FLUIDS*

JENS FREHSE, WLADIMIR WEIGANT, Bonn

(Received January 22, 2007, in revised version December 21, 2007)

Abstract. We consider mixtures of compressible viscous fluids consisting of two miscible
species. In contrast to the theory of non-homogeneous incompressible fluids where one has
only one velocity field, here we have two densities and two velocity fields assigned to each
species of the fluid. We obtain global classical solutions for quasi-stationary Stokes-like
system with interaction term.
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1. STATEMENT OF THE PROBLEM AND MAIN RESULTS

In this article we deal with mixtures of compressible viscous fluids consisting of
two miscible species. In literature one may find several contributions to the mathe-
matical theory of incompressible density dependent fluids which can be interpreted
as mixtures, cf. [14], [15], [12], [19], [18]. In these contributions physical models
using only one velocity field and one density are studied. In the present work we
consider an alternative model of a mixture where densities and velocity fields are
assigned to each species of the fluid. For the derivation of the constitutive equations
from the physical model see the books of Rajagopal [20] and Haupt [10]. We study
the quasi-stationary model which is a reasonable approximation of the general case
if accelerations are small. Furthermore, the convective term is neglected, which is
justified for small velocities.

The one component quasi-stationary model as an approximation of the Navier-
Stokes system has been considered in the works [1], [13], [17], [16]. The stationary

* This work was supported by SFB 611.
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Stokes-like case with two components has been considered in [5], [6], and [8]. In these
papers the existence of weak solutions with additional LP-properties of the densities
has been proved. The analytical tools there are based on techniques developed in
e.g. [2], [3], [4], [15], [16].

In the present article we establish existence of global classical solutions to the
initial-boundary value problem of quasi-stationary mixtures with two species. The
main idea is to establish new a priori estimates which then imply the existence result.
Note that the system of equations is nonlinear and of first order with respect to the
densities. Obviously, we have performed considerable simplifications of the physical
model. However, existence of global classical solutions with a general non-monotone
pressure law is a result which is unlikely to be ever achieved in the general case.
(Furthermore, having classical solutions for small data, the convective term may be
treated in a secondary step using perturbation arguments.)

The partial differential equations of the quasi-stationary model which describe the
motion of the mixture in a bounded domain Q ¢ RY, N > 1, read:

Balance of momentum for the ith species (1 = 1,2):

2
(1) Z :LL’L]AU’ + (wij + Az])VdIVU N+ (=) —uM)g - vp = 0.
j=1

Conservation of mass for the ith species (i = 1,2):
0 ) & div(o®y®
(2) 52 +div(p"u') = 0.

The equations (1) and (2) have to hold in Qr = Q x (0,T), T = const > 0.
The quantities in equations (1) and (2) have the following meaning;:

o o (z,t)—mass density for the ith component of the mixture, i = 1, 2;
p@ (oM, o)) —pressure for the ith component of the mixture, i = 1,2;
(1) (x,t)—the jth component of the ith velocity field, j =1,...,N;

. u() (ugz),.. ug\z,)) x=(z1,...,TN), t—time;

ij, Aij—Viscosity constants;
A—Laplacian in RY, V = (9/0z1,...,0/0xx)—gradient operator, divu =
N

i=1
For simplicity we start with the case when the flow domain is taken to be the

N-dimensional parallelepiped 2:
N
=[]0, dp) ={z e R": 0 <y <dy, k=1,...,N}.
k=1
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The boundary 052 of ) consists of the parts

N
Sk:({kaO}U{xk:dk})ﬁQ, 0N = USk

k=1

For the viscosity constants we require

(3 p11 >0, poe >0, vi1 > 0, vag > 0, Vij = Z/.Lij +)\ij7 1<, <2,
dpag oz — (1o + p21)? > 0, dv11vae — (V12 + v21)? > 0.

The pressure law has the form

(4) {p(i)(g(”, o) = kD Dp(e", o), k¥ = const >0, i =1,2,

p(e, ) = (&M /olet + o) /0le)7 ™", 7 = const > 1.

The factor g in the interaction term is assumed to satisfy

g(t,z, 00, 0 u® — D) = g + a1 (oD + @)
+as(l+ [u® — ulD|?)02,
a) ag = const > 0, a; = const > 0, as = const > 0,
b) 6y = const > 0, 6; € [0,2/N),
c) 02 =const >0, 6 € [0,1/(Nvy—1)) for N > 2,
02 €0,1/(2y —2)) for N = 1.

We have the initial condition
(6) 0D (@, )]imo = ol (z), €, i=1,2.

We consider the following mixed boundary condition for the velocity fields u(?:

- ul) =0 on Sy x [0, 7], k=1,...,N,
8u$,?/8xk:00n5k><[0,T], m#k, mk=1,2,...,N.
Remark 1.1.

a) If N =1, then £k = 1, S; = 09, and we have just the Dirichlet boundary
condition

u =0 on 90 x [0,T].

b) If N = 2, the boundary conditions (7) have the form

u® . n =0 on 00 x [0, 7],
curlu® =0 on 99 x [0,T].
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c) If N = 3, the boundary conditions (7) read

u® . =0 on 0N x [0,T],
n xcurlu® =0 on 9Q x [0, 7).

Here 7 is the outer normal vector at the boundary.

Remark 1.2. We treat all dimensions N > 1. The results and methods of proof
hold and work analogously in the case of periodic boundary conditions and can be
easily extended to the case of a mixture of [ species, [ > 3.

Definition 1.1. A classical solution to problem (1)—(7) is a quadruple of func-
tions (u(M,u®, oM o)) such that

uM,u® e 1@ x [0,T]); oM, 0 € CH(Q x [0,T));
oV (z,t) >0, 0P (x,t)>0 in Qx[0,T).

The main results of the article are contained in

Theorem 1.1. Let the initial data g(()l), 982) satisfy g(()l), 982) e Whr(Q), r > 1,
I>1,r(l-1)>N,0<mp < g(()i) < My, i = 1,2, where mqg, My are constants. Then
there exists a global unique classical solution (u™,u(®, o), o)) of the boundary-
initial-value problem (1)—(7), and we have

ak (2)

a) afk e L0, T; Wk (Q)), i=1,2,
8k (2)

b) T € LR, TR (@), =12

for 0 <k <UL
Furthermore, there exist numbers my and M such that

0<my <oP(x,t) <My <oo, (x,t)eQx|[0,T], i=1,2.

Strategy of the proof

The existence and uniqueness for classical solutions in a sufficiently small time
interval is well known and follows from the theory of [21], [22], [23]. Therefore, the
main difficulty in studying the “global in time” problem is connected with a priori
estimates where the constants depend only on the data of the problem and the
duration T of the time interval, but are independent of the interval for which one
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can show existence of local solutions. Such estimates imply that local solutions can
be extended to the whole interval [0, T].

In Section 2 the system for the effective viscous fluxes is established. Section 3
contains first estimates for the velocities and densities. In Section 4 we prove a
global L*-bound for the densities from above and from below. In the last section
we establish TW?2P-estimates for the velocities and W 1P-estimates for the densities,
using an approach for obtaining W' >-estimates for linear elliptic systems due to
Yudovich [25], [26].

2. AUXILIARY RESULTS

We state some assertions that are used later. Lemmas (2.2)—(2.5) are simple in-
equalities for real numbers which are used for the proof of the boundedness assertions
in Section 4. The consideration concerning the effective viscous fluxes start with (15).

Lemma 2.1. Let Q C RY (N > 1) be an arbitrary bounded domain satisfying
the cone condition.

1) Then the following inequality is valid for every function u € W'P(Q) N LI(Q),
IZ21,p>1,q>1:

(8) lallwsr @) < enllulliynny - lullka,

where 1/r =k/N+a-(1/p—1I/N)+ (1 —a)/q, k/L < a < 1.
Ifi — k — N/p is an integer, | —k — N/p >0 and 1 < p < oo, then 0 < o < 1.

2) Furthermore, the following inequality is valid for every function u € W™ (Q)
orue Whm(Q), [qudz =0 orue W"™(Q), uls, =0, Sy C 9, mespn So > 0:

(9) lullzoy < Co 1VullEn) - lullf .

where o = (1/r — 1/q)(1/r — 1/m + 1/N)~!'; moreover, if m < N then q €
[r,mN/(N —m)] for r < mN/(N —m) and ¢ € [mN/(N —m),r] for r > Nm x
(N—m)~'. If m > N then q € [r,00) is arbitrary; moreover, if m > N then
inequality (9) is also valid for ¢ = co.

The positive constants Cy, Cs in inequalities (8), (9) are independent of the func-
tion u(x). Inequalities (8) and (9) are particular cases of the more general multi-
plicative inequalities proved in [7], [11], [9].
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Lemma 2.2. Let v;; (¢,j = 1,2) be constants such that
vi1 >0, vo2 >0, 4dviives — (V12 + 1v21)* > 0.

Then there exists a number vyg > 0 such that

Vi2 U v
TR L U S

V22 Yoo V11

> 0.

Proof. We consider the following four cases:
(1) If v19, 91 < 0, then choose vy = 1.
(if) If 12 < 0, vo1 > 0, choose vog = 2191 /111.
(iii) If v12 > 0, w1 <0, choose vy = %(VQQ/Vlg).
(iv) If 12 > 0, v91 > 0, choose vyp = %(1/21/1/11 + vaa/112).
With these choices the statement of Lemma 2.2 is satisfied in all cases. O

For further use we define

(10) M:min{1,1—”12”°0,1— v21 } M € (0,1].
V22 Yoo Y11

Lemma 2.3. Let v;5, 1,j = 1,2, be constants such that
vin >0, vaa >0, 4y — (112 +v21)? > 0,

and let m > 1, k) > 0, k) > 0 be constants. Then there exist numbers D) > 0,
D®) > 0 such that for all x > 0, y = 0 the inequality

DWEM o™t 4 DRyt - DO E@) 0y — D@D gy e
> M(D(l)k‘(l)llggmerl +D(2)k(2)1/11ym+1)
holds, where M is the constant from (10).

Proof. To prove the lemma we define
)
D) — E(k_)m,/(%ﬂj DB =1,
(11) Vo \k(2)
a = x(DWEMppo)/mFD) - — (D@ )y, )1/ (41
where vyg comes from Lemma 2.2.
The left-hand side of the inequality stated in Lemma 2.3 has the form

Yoo V12 V21
F(a,b) = ™! 4 pm+t a™b — ab™
V22 Yoo V11

=a™t 4yt g™ — ab™ + (1 _ ot V12)amb + (1 - )abm
V22 Voo V11

> M(a™ ™+ ") + (1= M) (@™ = b™)(a — b),
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where M has been defined in (10). Thus
F(a,b) = M(a™* + b,
and the lemma is proved. O

Lemma 2.4. Let v > 1, m > 1 and D, D® > 0 be constants. Then for all
x,y > 0 we have the inequality

(2 +1)" < Koo[(DVa™ ! + D@ ym ) (@ 4 )71 (2 4 ),

where
v—1

((D(l))l/m+(D(2))1/m)m o1
m+y—1 ’

01 = DODE

Koo =

Proof. It is easy to see that the statement follows from the inequality
(z+y)" T < Kop™ (DWa™ 4 DOyt w20, y > 0.
To prove this, one considers the minimization problem: Find (a, b) such that
DWgmtt L D@yt —minl, a+b=1, a>0, b>0.

One finds that

1) (2
min  (DWa™ ! + D@pm+1) = DWW DR _
b (1))1/m N\1/m)™
0550 (DW)/m 4 (DR))1/m)
and Lemma 2.4 follows. .

Lemma 2.5. Let v > 1, m > 1 and D) > 0, D®® > 0 be constants. Then the
inequality

(12)  DWa™ + DAy™ < Koy [(DWa™+ 4 DOy™ (2 + )7 71)% (z + )

holds for all x > 0, y > 0.
Here 63, 64 are positive constants, 0 < 63 < m/(m + ), d4 = m — (m + 7)d3 and

Koy = 21/(m+1)(D(1) + D(l))l*ég.
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Proof. By homogeneity, it suffices to prove (12) for all > 0, y > 0 such that
z +y = 1. By a convexity argument we have

, 1120,1r020 m>1.

(ri” + r@*b)l/m _ <r{”+1 + r;nH)l/(m“)
2 = 2

Hence we conclude that

(D(l)am + D(Q)bm)l/m ((D(l))1+1/mam+1 + (D(Q))1+1/mbm+1>1/(m+1)
<
2 2

and continue to estimate

DWgm 4 PEpm < 91/Gmt1)(p(1) 4 PR/ (kD) (1) gmt1 | @ pmeetym/ (met1)
< 2V/(m+D) (D) | PN/ mt1) (D) gmtd | (@) ym+1yds
« (DWgm+1 4 PRI pm1)(m/ (me+1)=5s
< 9/m+1) (D) | PR)YI=8s (DD gmt1 4 H@jm+1ys
Here we have used that m/(m+1) —d3 > 0,a >0,b >0, a+b=1. Thus (12) is
proved and the lemma follows. O

Remark 2.1. Lemma 2.5 yields
(13) (DWa™ + D®y™) < Koo[(DWa™+ 4+ DBy ) (@ +y) 712 (2 + )t =%,

where d; = (m —1)/(m +~ — 1) and Koo = 21/ (D) 4 DR))v/(mdy=1),

Remark 2.2. In our consideration we use that the differential equation (1) and
the boundary conditions (7) imply the additional natural boundary conditions (in
the generalized sense)

aj(yll divu® + vy dive® — pM) +p§1))|,99 =0,
n

0 . .
(14) aj(ygl divu® + vy divu? — p@ + ng))L’)Q =0,
n

i 1 ; .
pg) = s ) /Qp(z)(g(l),g(m)dx, i=1,2, forall t €[0,T].

We now derive an “algebraic” equation between the quantities divu(®, o(¥) which
corresponds to the equation of the effective viscous flux in the one component case.
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We introduce a function ¢ defined by
Ap = div((u® —uM)g),
(15) Op
7= loa = 0, Joedz=0 forall te[0,T]

From (1) and (15) we deduce

2
—A (Z vij divu(j)) +A(=Dip+p® —piy =0, i=1,2.
j=1

Then we find from (14) and (15) after some calculation

(16) { v divul + g diva® = —p+p0 —pi?,

vo1 divuD) + ey divu(® = o+ p(2) — p(12).

From (16) we eliminate div 1) using the number D) = vy 159 — v19v9; > 0. Then
we find equations for the effective viscous fluzes:

(2)

(a7) DO divu® = — (13 + v12)p + vz (pV) — pil)) —v12(p® — ng)%
DO divu® = (v11 + va1) + v11(p? — pi”) — var (p) — pil))-

3. THE FIRST A PRIORI ESTIMATE FOR THE VELOCITIES AND DENSITIES

Contrary to the usual procedure in compressible flow theory, we do not start with
the usual energy estimate coming from the momentum equation by testing with u(%,
1 =1, 2, but we establish in the first step L?-bounds for the densities via the equation
of the effective viscous fluxes.

Let (u®,u® oM, 9(2)) be a classical solution of the problem under consideration.

1) From (2) and (7) we obtain

(18) / oD (x,t)de = / Q(()i)(l‘) dz, i=1,2, forall te0,T].
Q Q

2) Let m = const > v > 1. From (2) and (7) we obtain equations (i = 1, 2)

1 d A . :
19y 4 eymyg / @ym . divu® dz =0, for all ¢ € [0, .
(19) — Q(g )™ da + Q(g ) ivu'" dz , fora [0,T]

This will be used for a certain sequence of numbers m — oo; the aim is to obtain an
L>*-bound oY (which reminds us to Moser’s iteration technique).
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Let D® =1 and DM = vy; v90/vas - (KW vg0)/EP)™ (see Lemma 2.3 where
these constants have been introduced).

Now, we replace divu(® (i = 1,2) in formula (19) by the expressions in (17). Then
we obtain the following identities:

1 d
—— . — | DW(,Mym L p@)(,(2)ym g
— dt/Q (") + DY (o)™ du

1
DO /Q DD (6D [ (pV — p{V) — w12 (p? — pi?)
—(v22 + l/12)<,0] dz

1
DO /Q D (o)™ [y (p® — ) — var (p — piV)

+(vi1 + 1/21)30} dx =0,

DO =11 vy — vio 11 > 0,
wm__1 [ oy, @ L / @ 4
Pi mes ) /Qp e mes {2 Qp v

Let us define (for all ¢ € [0,T1])

L= ﬁ/ﬂl)(l)(gm)m [V22p§1) - V12p§2)}
+D®@) (p2))m [Pf)l/n - P(ll)l/m] dz,
I = %/Q[D(D(Q(l))m(l/m +112)
(21) ) —D(Q)(Q(Q))m(Vn + 1/21)} ~pdz,
I = m/ﬂp(l)(g(l))m (1229 — v12p®)]
+D@ (0@ [pPyyy — pWDun;] da,

(t) = [ D)™+ D ()" da,
Q

Alt) = /Q[Du)(Q(l))mH + D@ ()] (o) 4 o)1 o

In the rest of this section we confine ourselves to the case m = ~.
2a) By (4) we have the estimate

I < Cy(t) / (6™ + @) da.
Q
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Furthermore, Lemma 2.4, Lemma 2.5 and Holder’s inequality yield

1-(v=1)/(2v-1)
/(Q(n + 0@ dz < C(A(t) - D/@D [/ (0¥ + Q<2>)dx]
Q Q

)

1-(y=1)/(2v-1)
J(t) < C(A(t)) -1/ @1-D) [/ (o) + Q<2>)dx] .
Q

Hence we obtain the inequality
(22) I < C(A(t))(QV*Q)/(Q“/*l)

with a positive constant C.
2b) Now, the term I5 can be estimated in the following way:

(23) I < C/(D“) (W) + D (6?)7) - ol de
Q

1*1/111
< CU (o)) + @)@/ -1) dx]
Q

N1l Lo )

QQ 1*1/¢J2
n c[ JRCERYENE —dx} Nl
Q g2 —1

} (v=14+1/q1)/(2v-1)

< c[ / (0 + o) da Nl o
Q

(v=1+1/q2)/(2v—-1)
} Nl

+ C[/ (oM + o> da
Q

with positive constants C, q; = const > 2, go = const > 2.
The functions ¢ and 9 are defined in the following way: We write ¢ = @1 + 2
and define 1, 2 as solutions to the problems

Apy = div((ag + al(g(l) + 9(2))91)(u(2) - u(l))),
24
(24) 911 _y, /apldx:O, Vit e [0,7],
o 199 Q
Apy = div(az(1 + [u?® —uM2)0%2 (U2 —y)y),

25
(25) 92| _ /apgdx:(), Vit e [0, 7).
o 199 Q

By virtue of Lemma 2.3 we find

M .01 1)\7+1 2).(2 yty (2 o® o
(26) Is>m/ﬂ[0( Dy (o) 4+ DB EB (o)) o) v

ref ref

> C/ [D(l)(g(l))’YJrl +D(2)(g(2))w+1](g(1) _’_9(2))771 du
Q
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where M = const > 0 comes from Lemma 2.3, C' = const > 0. So, we conclude
from (20) in the case m =  the inequality

1
y—1 dt

2 1+1 2 1
< CA() @2/ 1 0o + o P Y D ooy Lo

y(t) + CA(t)
2 1+1 2v—1
+Clle™ + PN Y el Lon .

This implies

2 (2v—1 1
(27) y(t) + CA®R) < C(1+ Il Sa) 07 + el G )/ O )

dt

with C' a positive constant.
3) From (1) and the boundary condition (7) one obtains via (3)

(28) Va2 0 + (V6@ 200 + / glu® — w4z
Q

1 2
<C(Ilp™Y = V1220 + 19? = 92122 (0)
< (1 + ”Q(l + 0 Q)Hsz(Q))

4) Let ¢1 > 2, g2 > 2. Then the problems (24), (25) are solvable and by the usual
LP-theory for elliptic operators (see also Lemma 2.1) we have the following estimates:

(29) le1llza @) < ClIVerllLm@

< C|l(ag +ay - ( (R 9(2))91) . |u(2) _ u(l)my1 @)
(30) P2l Loz (@) < ClIVe2llLr2 ()

<Cllag - (1+ |u(2> _ u(1>|2)92 . |u(2) _ u(l)” Lr2(Q)s

where 7, o € (1,400) for N =1 and ry € [Nq1/(N + q1),+0), 2 € [Ng2/(N +
g2), +00) for N > 2. The numbers satisfy Nqi1/(N 4+ q1) > 1, Nga/(N + ¢q2) > 1 for
N > 2, since q1,¢2 € (2,+00).

Now, we estimate the terms on the right-hand side of (29), (30):

4a) In the case N = 1 we set (observing that here 0 < 6; < 2)

46— 61) .
S S VN 0< 6, <2;
q G- , since 1 :
2
- if 0< ) < 1;
1 1+91 if 0< 1 < L
r1:6_491 it 1<6, <2
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Consequently,

1) 1<rm <2
2) 917“1 2 -7 if 0< 91 < 1;
(31) 3) 2—r <O <29(2—1) if 1<0, <2;
2
4)—+91<— if 1<6, <2.

81

In the case N > 2, we set (observe 0 < 6; < 2/N)

2N .o 2N 2N,
= — E .
T N2 SNT2 116

¢ =246, 6:5-(1+%)Q.

This yields

1 1
5)1<r1-(—+—), r < 1;

(32)

6) 917“1 g 2—7“1.

Furthermore, from (29) and Holder’s inequality (1 < r1 < 2) we have

1]l Lo ) < Caollu® — M| 120

1/2
+ Caq (/ (0™ + 0@ | — (V)2 dx)
Q
(2=r1)/(2r1)
" (/ (oM + Q<2>><em>/<2m>dx) .
Q

If N>2or N=1and0 < 6#; <1 we conclude from (31) and (32) the inequality
011 < 2 —ry. Thus, using also the estimate (18) and the inequality (28) we obtain

1/2
(33) lprllza @) < C(A+lle™ + 0?7k )

If N=1and 1< #; <2, then we have the representation

91'T1 917“1/(2—7“1)—1
2y THITT T 2y — 1

€ (0,1).
This gives

n
/(Qm @)/ ) gy < c[/ (o + 6@y da
Q Q
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where
_ 01/2—(2—r1)/(2r)
n= 5 :
v—1

Hence we conclude via inequality (28) that

1/2+
(34) lorllza (@) < C(L+ oM + Q(Z)H%w(m) "

It is important to note that

(1+) -1l __ 1 (—1+9—1—i+1)<1
o ) S T g =g\ 2T T T '

In fact, this estimate follows from (31).
4b) In the case N = 1 we define (taking into account that 0 < 62 < 1/(2y — 2))

A1+6) _ 202 +2

=T 00,1 "7 T o, 11

Then, from (30), we derive the inequality

(35) |2l ez ()

9 (292+1)/(292+2)
< c<1 + / (1+ [u® —uM2)2 @ - u(1)|2dx)
Q

205+1)/(202+2
<c(1+|\g<1>+g<z>||2;%(m)< 2+1)/(20242)

It is important to observe that

292+1 2’}/—1 <1 Since o 4(1+92)
2%, +2 y—1/gp =T 0,y 1)

In the case N = 2 we define (taking into account that 0 < 6y < 1/(2y — 1))

4(1+62) 2q2
=—— = _>2 9=
1—65(2y-1) 24+ ¢

qo > 1, since g > 2.

Then we obtain from (30), (28) and Sobolev’s imbedding theorem the estimate

1/q2
(36) ||302HL’12(Q) < C|\\/§|u(2) _ U(1)|HL2(Q) . [/ (1 4 |u(2) _ u(1)|«92q2) dr
Q
1/246/2
<O+ oW + o®|2, ) 7"
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Here it is important to note that

11 29— 1 , 4(1+ 6y)
Z Z .7<]_7 =
(2+2 2) ~—1/q SR T T T2y — 1)

In the case N > 3 we define (here we have 0 < 0 < 1/(Nvy —1))

7 205 + 2 2N 1
0= — = ) . (1 —=906):
(37) s a1t N gt
N
Q2 = 2 > 2, since the inequalities
N—?”Q
1
N_2<7“2<N, 0<02<N'y—1 and N > 3 are satisfied.

Then we have from (30), (28) and Sobolev’s imbedding theorem

1/?2
(38) ||302HLq2(Q) < C(l —l—/ |u(2) — u(1)|(292+1)r2 dx)
Q

é
< C(l + [/ [u®) — q(D)202+2 dx}
Q
1-6 1/?2
y U (@ _ 2N/ (V-2) dx] )

)
C(1+11va u® —uV||34,

x ||V (u® — u(l))|‘§;22]E]S%76))/((N72)T2))

C(1+ 0™ + o2y

It is important that

6 1-9 N 2y —1
(— + : ) : <1.
2 2 N=2/ yv-1/¢
5) The above considerations in all cases yield the estimate

2y—1 1 2v—1 —1/q:
H%II(LLZ( V=) 4o, ”(ngmi/(v /42)

<O+ [lo™ + 0@ |72, )", v € (0,1).

Hence, we find from (27) the inequality

S+ CLAW < G,

where C7, Cy are positive constants.

8 /rat (N/(N=2))(1-8) /72
o) :
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Consequently,

sup [[le ()l Lro) + 6P O] <€,
0<t<T

(39) T
AHd(mmmHW(Wm@ <cC

Further, we obtain from (39), (28) and the boundary condition (7) that

T
Aww@%w®+mmw@wm&<a
(40)

T
AHW%@—MWM@@M<G

4. ESTIMATES FOR THE DENSITIES OF THE MIXTURE FROM ABOVE AND BELOW

In this section we derive L°°-bounds for the densities and its inverses from the
effective viscous flux equations. The technique of proof resembles the method of
J. Moser for elliptic equations. In our case, the interaction term needs some addi-
tional treatment.

First, let us present some estimates for the function ¢(z,t).

1) In the case N =1 we set (observe that 0 < 61 < 2,0 < 03 < 1/(2y—2))

. 1 2v/61 — 1
= 0,1).
€1 mln{292+15 27/91_’_1}7 €1 E( ) )

Then we have
205 + 2 1+¢&
1 < , < 290,.
TS 1o SN

From the imbedding theorem and equation (15) we find

el @) < ClIV@lLiter @) < Cllglu® = uD || p14e1 )

1/(14e1)
< C(l + ag [/ |u(2) _ u(1)|1+61 d$:| )
Q

1/(1+e1)
+ C<a2 [/ u(® — (V|01 (1Fe1) dx}
Q

1/(14en)
ta [/ (o) & @) (1e0) | @) _ 1/ (14en) dx} )
Q
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From the choice of €; and inequality (28) we have

a0||u(2) - u(1)||L1+51(Q) C(1+ ||Q(1 +o 2)HL V(Q))l/Qv

a2||u(2) - u(l)”ie(gtzlﬂ)(wal) S (1 + ”Q(l +0 2)”L 27(Q) )(202+1)/(202+2)a

arfl (@™ + o) [u® — uD|| prves ) < CA+ oM + 0P [ 72 ) /2.
Therefore
lell o) < CA+ 6™ + 0@ 72, o)
where 81 = max{(202 +1)/(202 + 2), 3 + (61/47), 1} < 1.

From this and (39) we have

(41) el (o) € L'(0,T).

2) In the case N = 2 we set (observe that 0 < ¢; <1,0< 603 < 1/(2y—1))

1
€9 = = -min{l,y — 1},

2
2 1 0
i >1, = 1 1

YRR : <1
201 (1 +¢e2) n—1 2 R 2y

r =
By Sobolev’s imbedding theorem and equation (15) we find the estimates

el =) < ClIVll2(14es)

1/(242¢2)
<ot [ g o]
Q

1/(242e2)
T [/ (0% + o) [u® — V)20 =) dx]
Q

Faalu® )

where ga = 2(202 + 1)(1 + €2).
By the choice of €5, m and by inequality (28) we obtain

a0||u(2) - u(1)||L2+252(Q) C(1+ ||Q(1 + 0 2)||L27(Q))1/27

ar]|(eM + o)1 [u® —uM ||| 21202 ) < O+ @M + 0P|[73, o)) /> H2,
a2||u(2) —ul ”ia(zéj;lﬂ)(uaz) 2(9) (1 + ”Q ) + 9(2 ||L2w )Vza

where vy = (1 — 52)/(2(1 + 52)) + (92(1 + 362) + 262)/(2(1 + 52)) < 1lsince 0 < by <
1/(2y—1) and e, = 4 min{1, — 1}. Thus, in this case, we have the estimate
Il < O+ oD + 6@ ]2%, ).
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where G2 = const > 0, 2 € (0,1). From this and (39) we have
3) In the case N > 3 we set (observe that 0 < 6; <2/N,0< 03 <1/(Nvy—1))

§=min{, I(v—1),(N-1)/(N+1)-(1+6;—Nbs)};
r1 :(1+5)
ro =max{l+ N(1—61/7)- (1 = N6 /2y)" 1,1+ N(1+8)(1 — (N —1)62)1}.

Then the following estimates hold:
32) 0<20<1,0<20 <vy—1; r1,r2 € (N, +00);
3b) r161 < 2ysincer; -0 = N(1+0) 01 <2425 < 27;
3c) N(146)/ra <2420 —205N 46 - (1 — 2N65) since 2 + 205 — 20N +
0-(1—=2N6O3)=2+205 —20oN—-6-(N+1)/(N—-1)+6(2N/(N -1)—
2N92) > 2+292_292'N—5'(N+1)/(N—1) > 14+60,—N-05 > (1+6)N/r2
Now we conclude from the imbedding theorem and equation (15) the following esti-

mates:

ClIVel

c(1+ a2||u(2) _ u(1)||i€(§6j;1+1)r1(9) + a0||u(2) — 4 [P

||80||L°°(Q) L™1(Q)

<
<
+ar]| (™ + o) [u® — uD]|| ey ().

Furthermore, from (1) and the boundary condition (7) and by virtue of (3) we obtain
the estimate

V)
<Cﬂ+Hémmmm‘Hmmqug+aﬂmm—mnhmwwwmm

+ar][(@™ + o) [ul® — uD|| pxras a0y + a2l[u® — u DTG,

Lra(e) + [|[Vu?]

L2(Q)

where ¢4 = (202 +1)Nry /(N +72). From the inequality > Nry/(N +7r2) we obtain

(43) ||50||L°°(Q) + ||V“(1)| Lr2(Q) + ||Vu(2)| L™2(Q)
CUA 110D Tra gy + 162 1 Trra ey + aollu® —u]

L1(Q))

+ar[[ (0" + 0@) [ul® — )|

) u(l) ||2t92+1
L(292+1)'V'1 (Q) .

L™1(Q)

+ ag - |Ju®®
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Finally, we estimate the last three expressions in the following way:

&) aolul® —ul]

L™1(Q)
<e(|vuV Lr2(Q) + [Vu®| L2 (@)) + Caglu® — ut! )”Lz(Q)
< e(IVu?|pra() + IVuD | pra () + C(1 + [lo I)HL?W
+ ||Q(2 ||L2'V(Q )1/2-
Here

a) the number ¢ € (0,1) will be determined later;
b) the estimate (28) has been used.

(B) a1||(g(1) + oo |u(2) (1)||

Lm1(

1/r1
< Cllu® = uV)| (/ (o)) + @10 dx)
Q
< O+ 1oV gy + 10?3, )"/
HV(U(Q) - U(l))HLT2(Q)||U(2) - U(l)HLw/(N 2)(Q)
Here

a) 71 - 01 < 27, since 3b) is satisfied;
b) a=(N—-2)/2N-((N —2)/2N — (N —r3)/(Nr3))~!

=(3—1/N)-(3—1/rs)~' €(0,1) comes from Lemma 2.1.
Using (28) and the imbedding theorem we find

a1||(9(1) + 9(2))91 |u(2) _ u(1)|| L1 (@)
<e(Va | praga) + Ve pra )
+ O 16200 g + 16223, )20/ 10—,

It is important that we have £ + 6;/(2y(1 — a)) < 1.

2605+1
(0) ag|lu® — u(l)”@;jﬂ)m(g)
202+1 1-8)(202+1
< Cag||V(u® - u(l))||§(2 o Nu® — u(l)”(L%Qg(QQ) ),
where

a) the inequality follows from Lemma 2.1,
b) B =[1/(202+2)—1/(2r102+71)](1/(202+2) — (N —r3)/(Nr))~t € (0,1).
Using (28) we find v3 = ((1 — §)(202 + 1))/(1 — 5(202 + 1)) - 1/(202 + 2) such that

2605+1

(1)
u| L1(202+1) ()

a2||u(2)

e(IVu L2 0y + Ve | r2 @) + OO+ 0175 ) + 10P 11730 0))"
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Here it is important that 3(26, + 1)? < 1. This inequality gives us the estimates
B(20:+1) <1, (1-=0)(202+1) < (1—p5(202+1))(202 +2).

Therefore, choosing € € (0, 1) appropriately we arrive at the inequality

(44) el Lo () + [VuD| Lra() + V)| Lr2(9)
<C(1+ ||Q(1)||122TQ(Q) + [|10®@] ZZ%Q(Q))I/TZ
+ O+ (0D Th ) + 116172 (0)) ™,

where
a) B = max{3, 1 +01/(29(1 - ),
(1-0)(202+1)/(1—p5(202+1))-1/(202+ 2)} € (0,1).
4) Here we look at the terms Iy, I, I3 from (21) in the case m >~y > 1, N > 1.
By virtue of (21) and (39) we find, for all ¢ € [0,T7,

L < Cy(t) / (o + o) dw < Cy(t),
Q

where C' is a positive constant not depending on m. Furthermore, the inequality
I < Cy@) )|l L= (), t€[0,T],

holds and, again, the positive constant C' does not depend on m.
Due to Lemma 2.3 the term I3 can be estimated from below in the following way:

M
I > o (DW kD iy (qVY+1 4 DDy, (o)1)
Q

x (o oret + 0 /o) do

> C/ (D(l)(g(l))erl +D®@. (9(2))m+1)(9(1) + 9(2))771 dz = CA(t),
Q

where M = const > 0 comes from Lemma 2.3 and C' is a positive constant not
depending on m. Hence we conclude from (20) the following inequality for all ¢ €
(0,7):

(45) L )+ CLA) < Calyt) +ul0) - o) o).

where C7, Cy are positive constants independent of m.
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4a) In the cases N = 1, N = 2 we obtain from (45) and (41), (42), for all
m >~ >1,te(0,T), the inequality

1 d

46 _
(46) m—1 dty

(t) < Ga1(t) - y(t),
where Gy (t) = Co(1+||¢(t)|| L)) € L*(0,T) and the function G1(t) does
not depend on m.

4b) In the case N = 3 we obtain from (45) and (44) that, for all m >
max (y,7y(re — 1)) > 1, t € (0,T), the following inequality holds:

(47) + C3A(t)

m—1 dty( )
< Cay() - (14 ([0 O 0 + 122 O 75 )
+ (IO ) + 16D O30 @) "™)-

Lr27(Q)

Due to the estimates for the densities (39) one easily checks the inequality

(/Q D(l)(Q(l))m + D(Q)(Q(Q))m dx) : (1 + ||Q(1)||22TZ’Y(Q) + ||Q(2)||22TZ’Y(Q))1/T‘2

<O (A0 1y (1)),

where C' is a positive constant not depending on m.
Hence we obtain from (47) that

(18) L Sy <O Galt) -y, e (0.T),

with C being a positive constant not depending on m, and with the function Go
defined by
Ga(t) = COL+ 0V (1) 22 g + 102 (0701 )

We have Gy(t) € L*(0,T).
Now we find from (46) and (48), for all N > 1, m > my, t € [0,T], the estimate

y(t) = /D<1>-(g<1>)m+D<2>-(g<2>)mdx
Q

m 1 2
<(C@)™ - (1+ |0 Lm (e + 1105

)™,

where C(T) is a positive constant not depending on m. Consequently,
(49) sup (o (Ol + 10D Bl < CU+llog” n(o) + o lre):
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Now, we present an estimate from below for the densities of the mixture:

5) Let n € (0,400) be a positive number. Then, analogously to equation (20), we
find

b d

(@)™ + (o)™ da

1 -n
Do /Q@”) a2 (0 = i) = 112 — b)) = (22 + 112)) da

1
DO /Q<@<2>)*"[m<p<2> =) = v (0 = i) 4 (11 + )l de = 0.
We define for all t € [0, 7] a function Z(t) = [,(p™V)~" + (p@) " dz.
Then the estimate (49) implies the inequality

1 d
n+1 dt

Z(t) < CZH) A + [l @),

where C' again is a positive constant not depending on n.

Taking into account (41), (42), (43) and (49) we derive from the differential in-
equality an estimate for all n > 0:

Z(t) = / ()" 4+ (0®) " dz < (C(T)" 1+ [11/08 Loy + 111/05 11 1m0)"

where C(T) is a positive constant not depending on n. Hence

1 1
50 (|5 oo * 0 o)
(50) oceer oM (@) ) T 1@ () L~ (@)

1 1
<C<1+‘

1
&

"

L°°(Q)>.

5. ESTIMATES FOR GRADIENTS OF THE VELOCITIES AND DENSITIES

L@ o

In this section we show that it is possible to estimate the first derivatives of the
functions v (z,t), u®(z,t), oM (x,t), 0®(2,t). Let s € (N, +00) be any number.
1) First we have by equation (1) and the boundary condition (7) the estimate

||U(2)||W21S(Q) + Hu(2)||W215(Q)
< C(llg- (u® —uM)]

Loy + 1VeW|

Loy + 1Vp?)

Lo(Q))-
340



Having completed (49) one proceeds with the inequality

(51)  JuP Iz ) + 0P w2
<O+ ||(u® —ult) QL(?(Z;;U(Q) + |V

e + [Ve®)

Le())-
We take into account that (28) implies
(52) IVu L2y + [Vu® | 120) < C.

la) In the case N =1, N = 2 we have the estimate

1(u® —u®)]

Looan gy < CIV(u® —uM)|12(q),
and thus we find from (51) and (52) the estimate

(53) ||U(1)||W215(Q) + ||U(2)||W215(Q) <C(1+ ||VQ(1)| Ls() + ||VQ(2)|

Ls(Q))-
1b) In the case N > 3 the inequality (Lemma 2.1)

||u(2) _ u(1)|

Lo+ () S C||V(U(2) - Uu))”%w(m ) HU(2) - u(1)||1L;3‘/(N72)(Q)

holds with @ € (0,1), a = 1—2/N—2/(2s02+s) if s(20,+1) > 2N/(N—2)
and a = 0 if s(26; + 1) < 2N/(N — 2). Here we take into account that
a-(202+1) <1, since 0 < b <1/(Nvy—1).

Therefore, by (52) and the estimate

||u(2) - u(1)||L2N/<N—2>(Q) < C||V(u(2) - u(l))”L2(Q)
we conclude that the following inequality holds for all € > 0:

(54) lu® — )

0
isz(;re;—l)(g) < EHV(U(Q) - u(l))||L°°(Q) + C(E)
From this inequality we further obtain

205+1

(55) Ju® — u )] LoGoat) () S elluM w2 o) + 1u® w2 ()] + Cle).

Now, from (51) and (55) we find the estimate

(56) lut[w2.s () + [ w2 (0) < CL+ [V

e + V@)

L:(2))-
Hence we have proved the estimate (53), (56) in all cases N > 1.
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2) In our considerations we use an important estimate for the velocities from [25],
[26], [24], [16]. By virtue of the estimates for the densities (49), (50) we have (¥ €
L>(Q x (0,T)) for i = 1,2 and in view of the inequality from [25], [26], [24], [16] we
conclude from (1), for all s > N, the estimate

[Vu || oo () + [V || oo
< C(1+@2+ VoDl o) + [|Ve®|

o)) +llg- (u® — u(l))| LS(Q))-

Because of (49), (52) and (54) we have

(57) IVuD || poo) + V@ || Loy < C(L+ 2 + VoV | 1oy + V0P || 15(0)))-

3) The estimates for the derivatives 8g(i)/8xj(x,t), i=1,2,5=1,...,N are

derived from the equation

o ) . . ) )
5: (Vo) + V(™ ¥)o) + V(e - divul?) =0,

which, in turn, follows from (2). Therefore, we obtain from (49) for s € (IV, 00) the
estimate

d
I (/Q Vol |* + |Vo?)|® dw)

< c( 19601 + 196 1) vut] + |Vu<2>|>dx)
Q
- c</ (VoM |* 4 |Vo@5)=V/5(|v div uM | + |V div u?P ) dx>.
Q

Using (56) and (57) we proceed to

%L(t) < C(1+ L(t) + L(t) In(2 + L(t)))

with L defined by L(t) = [, VoM ®)|* + [Vo P (t)|* dz, t € [0, T].
From the last differential inequality we obtain, for s € (N, +00), the estimate
(58)

(Ve () e o) + IV (1)]

sup L)) < C.
0<t<T

Furthermore, by (2) and (56) we have

90
e Ol I I Y e

+ [ @)@ ) < C.

1
o ([0

L () + H L ()
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4) The estimates for the derivatives 8/8t(8u(i)/8xj (z,t),i=1,2,5=1,...,N,
come from the following system which is, in turn, derived from (1):

2
(60) % <Z 1 AuY) + (g + Nij )V divu(j))
Jj=1

) o dg op(d)
1Vt (D) o, (D) 29 (2 _ (1)) —
+(-1) (g 5 (u u') 4 5t (u U )) V( 5 ) 0.

First, from (60), in view of the estimates (49), (50) and (59), we obtain the inequality

(€] (2)
1) v (T s+ IV )

<
L2(9)
since g = g(x,t) > 0.

Finally, by the properties of the system (60) and the imbedding theorem, we have
for s € (N, +00) the estimate

ou?

ot .o @) +H HWLS(Q)

(1)
<<(|%

(2) (2) (1)
* ‘LS(Q) + Hg(agt B 8gt )‘

99, @ _ . )
+H8t(u Y )‘

Ls(Q) H L= ()

Ls(Q))'

Thus, applying (49), (50) and (59) we find the estimate

ou™ ou® ou®  gu®
155 by * 1 ey < €0 1 = o))
ot llwrsq) ot llwisQ) ot ot llLs(q)
Therefore, we conclude with Lemma 2.1 and (61):
ou?
o (] [0, <
©2) 0Ster W (9) or ) W ()

5) In the case Qo ,92) e Wh(Q), r > 1,1 > 1, r- (I —1) > N it is easy to
see, using (49), (50), (58), (59) and (62), that for all k = 1,2,...,l and i = 1,2 the
following inclusions hold:

k@
a T ok

ok Q(i)
otk

(63) € L0, T; WH=Fr(Q)), € L0, T, W' =kr(Q)).
Thus we have proved all a priori estimates stated in the theorem.
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