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Commutators and associators in Catalan loops

Jan M. Raasch

Abstract. Various commutators and associators may be defined in one-sided
loops. In this paper, we approximate and compare these objects in the left
and right loop reducts of a Catalan loop. To within a certain order of approx-

imation, they turn out to be quite symmetrical. Using the general analysis of
commutators and associators, we investigate the structure of a specific Catalan
loop which is non-commutative, but associative, that appears in the original
number-theoretic application of Catalan loops.

Keywords: loop, right loop, left loop, commutator, associator

Classification: 20N05, 20F12

1. Introduction

Catalan loops originated from an issue in number theory, studying the relation-
ship between Fermat curves and modular curves. (A more detailed description of
the motivation is given in [4].) Catalan loops are two-sided loops that admit a
range of possible definitions for commutators and associators. The topic of this
paper is the calculation of the commutators and associators of Catalan loops up
to a certain order of approximation, and a further investigation of the structure
in one of the motivating cases.

A general discussion of commutators and associators in left and right loops
is provided in Section 2. In particular, this discussion touches on the diverging
commutator conventions in groups. A brief introduction to Catalan loops is given
in Section 3. Section 4 covers the formal calculation of the different commutators
and associators. In Section 5 we make approximations in order to compare the
different commutators and associators in Section 6. Then, Section 7 focuses on
one of the smaller motivating cases where the Catalan loop actually turns out to
be associative and, hence, a group. Finally, we discuss directions for future work
on this topic in Section 8.

2. Commutators and associators

A right quasigroup (Q, ·, /) is a set Q together with binary operations of mul-

tiplication (denoted by x · y or juxtaposition xy) and right division x/y such
that

(x · y)/y = x = (x/y) · y
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for x, y in Q. A right loop (Q, ·, /, 1) is a right quasigroup (Q, ·, /) with an identity

element 1 such that

1 · x = x = x · 1

for x in Q. We define a right loop commutator to be

[x, y]
R

= (xy)/(yx)

for x, y in Q. Further, we set right loop associators to be

(x, y, z)R = (xy · z)/(x · yz)

and

(x, y, z)∗
R

= (x · yz)/(xy · z)

for x, y, z in Q.
Dually, a left quasigroup (U, ·, \) is a set U together with binary operations of

multiplication (denoted by x · y or juxtaposition xy) and left division y\x such
that

y\(y · x) = x = y · (y\x)

for x, y in U . A left loop (U, ·, \, 1) is a left quasigroup (U, ·, \) with an identity

element 1 such that

1 · x = x = x · 1

for x in U . We define a left loop commutator to be

(1) [x, y]
L

= (yx)\(xy)

for x, y in U . Further, we set left loop associators to be

(2) (x, y, z)L = (x · yz)\(xy · z)

and

(x, y, z)∗
L

= (xy · z)\(x · yz)

for x, y, z in U . Note that (1) and (2) agree with Bruck’s definitions of commuta-
tors and associators in a general quasigroup [2, I(2.1)].

A right loop is commutative if and only if

[x, y]
R

= 1

for all x, y. Also, a right loop is associative if and only if

(x, y, z)R = 1

for all x, y, z, or equivalently,

(x, y, z)∗
R

= 1

for all x, y, z. Analogous results hold in a left loop.



Commutators and associators in Catalan loops 335

Note that we have

(3) [x, y]
R

= xyx−1y−1

and

(4) [x, y]
L

= x−1y−1xy

in a group (with x/y = xy−1 and y\x = y−1x). Traditionally, (3) was used as the
commutator definition in the topological literature (e.g. [5, §X.5]), while (4) was
used in the algebraic literature (e.g. [3, p. 10]).

3. Catalan loops

Let R be a commutative, unital ring, with a topologically nilpotent element e.
In other words, R is complete in the (eR)-adic topology [1, §2.6]. Let E be the
annihilator of e in R. Let H be the subgroup of diagonal matrices in SL(2, R).
Consider the set

Q′ =

{[

1 ex
0 1

] [

1 0
ex′ 1

] ∣

∣

∣

∣

x, x′ ∈ R

}

.

Define G = HQ′. By [4, Proposition 4.2, 4.3], the set Q′ forms a loop transver-
sal to the subgroup H in G. The characterization as a loop transversal yields a
right loop structure on Q′, a so-called Catalan loop. Further, by [4, Corollary 5.2;
Theorem 5.3] the Catalan loop on Q′ is two-sided and may alternatively be rep-
resented on (R/E)2, as exhibited in the next paragraph. We use the alternative
representation, since it proves to be helpful for our calculations.

Let Q be (R/E)2. It will often be convenient to use a vector notation x =
〈x, x′〉 for elements of Q. For more complicated pairs x we will refer to the
first component as [x]1. Then the three binary operations in the Catalan loop

(Q, ·, /, \, 〈0, 0〉) are given as follows. Multiplication:

(5) 〈x, x′〉 · 〈y, y′〉 =
〈

xλ2
m

+ yλm, x′λ−1
m

+ y′
〉

with λm = λm(x,y) = 1 + e2(yx′). Right division:

(6) 〈x, x′〉 / 〈y, y′〉 =
〈

xλ2
r − yλr, x

′λ−1
r − y′λ−1

r

〉

with λr = λr(x,y) = 1− e2y(x′ − y′). Left division:

(7) 〈x, x′〉 \ 〈y, y′〉 =
〈

dy − d−1x,
(

d−1y′ − dx′
)

− e2x′y′
(

dy − d−1x
)〉

,

where d = d(x,y) is the unique recursive solution

d = 1 + e2 · x′(x− y)− e4 · 2x′2(x− y) + . . .

to the equation

d =
(

1 + e2xx′
)

− e2d2x′y.

The multipliers λm, λr and d are known as fudge factors .
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Now, consider the following two remarks about the right and left division which
prove to be useful.

Remark 1. If the respective fudge factors λr(x,y), λr(y,x) are equal to 1, which
means

e2y (x′ − y′) = e2x (y′ − x′) = 0,

we have

x/y = 〈x− y, x′ − y′〉 = −y/x.

Remark 2. If the respective fudge factors d(y,x) and λr(x,y) are equal to 1 and

e2y′x′
(

d(y,x)x − d(y,x)−1y
)

= 0,

then

x/y = y\x.

4. Formal calculations

In this section, we will conduct formal computations of the commutators and
associators in a Catalan loop, mainly to introduce the fudge factors we will need
later on. Having the respective formulae available will make the subsequent ap-
proximations easier. First note

xy =
〈

xλ2
1 + yλ1, x

′λ−1

1 + y′
〉

with λ1 = 1 + e2yx′,

and

yx =
〈

yλ̄2
1 + xλ̄1, y

′λ̄−1

1 + x′
〉

with λ̄1 = 1 + e2xy′.

4.1 The commutators. First we will formally calculate the left and right com-
mutator. The right commutator [x,y]R is

〈 (

xλ2
1 + yλ1

)

λ2
R
−

(

yλ̄2
1 + xλ̄1

)

λR,
(

x′λ−1
1 + y′

)

λ−1

R
−

(

y′λ̄−1
1 + x′

)

λ−1

R

〉

=
〈

x
(

λ2
1λ

2
R
− λ̄1λR

)

+ y
(

λ1λ
2
R
− λ̄2

1λR

)

, x′
(

λ−1

1 λ−1

R
−λ−1

R

)

+ y′
(

λ−1

R
− λ̄−1

1 λ−1

R

)〉

with λR equal to

1− e2
(

yλ̄2
1 + xλ̄1

) [(

x′λ−1
1 + y′

)

−
(

y′λ̄−1
1 + x′

)]

= 1− e2
(

yλ̄2
1 + xλ̄1

) [

x′
(

λ−1

1 − 1
)

− y′
(

λ̄−1

1 − 1
)]

.

The left commutator [x,y]L is

〈

λL

(

xλ2
1 + yλ1

)

− λ−1

L

(

yλ̄2
1 + xλ̄1

)

,
[

λ−1

L

(

x′λ−1
1 + y′

)

− λL

(

y′λ̄−1
1 + x′

)]

− e2
(

y′λ̄−1

1 + x′
) (

x′λ−1

1 + y′
) (

[[x,y]
L
]
1

) 〉

,



Commutators and associators in Catalan loops 337

with λL equal to

1 + e2 ·
(

y′λ̄−1
1 + x′

) [(

yλ̄2
1 + xλ̄1

)

−
(

xλ2
1 + yλ1

)]

+ O
(

e4
)

.

4.2 The right associators. Let us now have a look at the associators in the
right loop reduct. Firstly, xy · z is

〈

(xλ2
1 + yλ1)λ

2
2 + zλ2, (x

′λ−1
1 + y′)λ−1

2 + z′
〉

with λ2 = 1 + e2z(x′λ−1

1 + y′). Secondly,

yz =
〈

yλ2
3 + zλ3, y

′λ−1

3 + z′
〉

with λ3 = 1 + e2zy′,

and thus x · yz is

〈

xλ2
4 + (yλ2

3 + zλ3)λ4, x
′λ−1

4 + (y′λ−1
3 + z′)

〉

with λ4 = 1 + e2(yλ2
3 + zλ3)x

′. Finally, (x,y, z)R is equal to

〈 [(

xλ2
1 + yλ1

)

λ2
2 + zλ2

]

λ2
5 −

[

xλ2
4 +

(

yλ2
3 + zλ3

)

λ4

]

λ5,
[(

x′λ−1
1 + y′

)

λ−1
2 + z′

]

λ−1
5 −

[

x′λ−1
4 +

(

y′λ−1
3 + z′

)]

λ−1
5

〉

=
〈

x
(

λ2
1λ

2
2λ

2
5 − λ2

4λ5

)

+ y
(

λ1λ
2
2λ

2
5 − λ2

3λ4λ5

)

+ z
(

λ2λ
2
5 − λ3λ4λ5

)

,

x′
(

λ−1

1 λ−1

2 λ−1

5 − λ−1

4 λ−1

5

)

+ y′
(

λ−1

2 λ−1

5 − λ−1

3 λ−1

5

) 〉

,

where λ5 is

1− e2
[

xλ2
4 +

(

yλ2
3 + zλ3

)

λ4

]

·
[(

x′λ−1
1 + y′

)

λ−1
2 + z′ − x′λ−1

4 − y′λ−1
3 − z′

]

= 1− e2
[

xλ2
4 +

(

yλ2
3 + zλ3

)

λ4

]

·
[

x′
(

λ−1

1 λ−1

2 − λ−1

4

)

+ y′
(

λ−1

2 − λ−1

3

)]

.

Similarly, we get (x,y, z)∗
R

=

=
〈 [

xλ2
4 +

(

yλ2
3 + zλ3

)

λ4

]

λ∗
2

5 −
[(

xλ2
1 + yλ1

)

λ2
2 + zλ2

]

λ∗

5,

−
[

[(

x′λ−1
1 + y′

)

λ−1
2 + z′

]

λ∗
−1

5 −
[

x′λ−1
4 +

(

y′λ−1
3 + z′

)]

λ∗
−1

5

]

〉

=
〈

x
(

−λ2
1λ

2
2λ

∗

5 + λ2
4λ

∗
2

5

)

+ y
(

−λ1λ
2
2λ

∗

5 + λ2
3λ4λ

∗
2

5

)

+ z
(

−λ2λ
∗

5 + λ3λ4λ
∗
2

5

)

,

−
[

x′

(

λ−1

1 λ−1

2 λ∗
−1

5 − λ−1

4 λ∗
−1

5

)

+ y′

(

λ−1

2 λ∗
−1

5 − λ−1

3 λ∗
−1

5

)]

〉

,

where λ∗

5 is

1− e2
[

(xλ2
1 + yλ1)λ

2
2 + zλ2

] [

−
[(

x′λ−1
1 + y′

)

λ−1
2 + z′ − x′λ−1

4 − y′λ−1
3 − z′

]]

= 1 + e2
[

(xλ2
1 + yλ1)λ

2
2 + zλ2

] [

x′
(

λ−1

1 λ−1

2 − λ−1

4

)

+ y′
(

λ−1

2 − λ−1

3

)]

.
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4.3 The left associators. In the left loop reduct, (x,y, z)L is

〈

d
[

(xλ2
1 + yλ1)λ

2
2 + zλ2

]

− d−1
[

xλ2
4 + (yλ2

3 + zλ3)λ4

]

,
[

d−1
[

(x′λ−1

1 + y′)λ−1

2 + z′
]

− d
[

x′λ−1

4 + (y′λ−1

3 + z′)
]]

−

− e2
[

(x′λ−1
1 + y′)λ−1

2 + z′
] [

x′λ−1
4 + (y′λ−1

3 + z′)
]

· ([(x,y, z)L]
1
)
〉

,

where d is

1− e2
[

x′λ−1

4 + (y′λ−1

3 + z′)
]

×
[

x
(

λ2
1λ

2
2 − λ2

4

)

+ y
(

λ1λ
2
2 − λ2

3λ4

)

+ z (λ2 − λ3λ4)
]

+ O
(

e4
)

.

Similarly, (x,y, z)∗
L

is equal to

〈

d∗
[

xλ2
4 + (yλ2

3 + zλ3)λ4

]

− d∗
−1 [

(xλ2
1 + yλ1)λ

2
2 + zλ2

]

,
[

d∗
−1 [

x′λ−1

4 + (y′λ−1

3 + z′)
]

− d∗
[

(x′λ−1

1 + y′)λ−1

2 + z′
]

]

− e2
[

(x′λ−1

1 + y′)λ−1

2 + z′
] [

x′λ−1

4 + (y′λ−1

3 + z′)
]

· ([(x,y, z)∗L]
1
)
〉

,

where d∗ is

1 + e2
[

(x′λ−1

1 + y′)λ−1

2 + z′
]

×
[[

(xλ2
1 + yλ1)λ

2
2 + zλ2

]

−
[

xλ2
4 + (yλ2

3 + zλ3)λ4

]]

+ O
(

e4
)

= 1 + e2
(

x′λ−1

1 λ−1

2 + y′λ−1

2 + z′
)

×
[

x
(

λ2
1λ

2
2 − λ2

4

)

+ y
(

λ1λ
2
2 − λ2

3λ4

)

+ z (λ2 − λ3λ4)
]

+ O
(

e4
)

.

5. Approximations and comparisons

Having done the formal calculations for the objects of interest, we will now
approximate our results and compare the respective commutators and associators.
In doing so we will have to make extensive use of the following remark.

Remark 3. Note that if λ = 1 + O
(

e4
)

, then λk = 1 + O
(

e4
)

for any integer k.
And thus a multiplication by any power of λ is essentially a multiplication by the
identity plus an additional summand of order O

(

e4
)

.

In order to have easy access to versions of the Remarks 1 and 2 which will
prove to be useful in the following approximations, we formulate two lemmata.

Lemma 1. If λr(x,y) and λr(y,x) are of order 1 + O
(

e4
)

, then

x/y = −y/x

up to O
(

e4
)

.
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Proof: Using Remark 3 for λr(x,y) and λr(y,x) we get

x/y = 〈x− y, x′ − y′〉+ O
(

e4
)

and

y/x = 〈y − x, y′ − x′〉+ O
(

e4
)

,

and are done. �

Lemma 2. If λr(x,y) and d(y,x) are of order 1 + O
(

e4
)

, and x− y is of order

O
(

e2
)

, then

x/y = y\x

up to O
(

e4
)

.

Proof: Using Remark 3 for λr(x,y) and d(y,x) we get

x/y = 〈x− y, x′ − y′〉+ O
(

e4
)

and

y\x =
〈

x− y, x′ − y′ − e2y′x′(x− y)
〉

+ O
(

e4
)

.

Then we are done, since e2y′x′(x − y) is already of order O
(

e4
)

by the second
part of the assumption. �

5.1 The commutators. Let us start by having a closer look at the fudge factor

λR = 1− e2
(

yλ̄2
1 + xλ̄1

) [

x′
(

λ−1

1 − 1
)

− y′
(

λ̄−1

1 − 1
)]

of the right commutator [x,y]
R
. Since

• λ2
1 = 1 + e22yx′ + O

(

e4
)

,

• λ−1
1 = 1− e2yx′ + O

(

e4
)

⇒ (λ−1
1 − 1) = −e2yx′ + O

(

e4
)

,

and similarly

• λ̄2
1 = 1 + e22xy′ + O

(

e4
)

,

• (λ̄−1

1 − 1) = −e2xy′ + O
(

e4
)

,

we have

λR = 1− e4(x + y)
(

xy′2 − yx′2
)

+ O
(

e6
)

.

Thus

λR = 1 + O
(

e4
)

.

By Remark 3, the second component of [x,y]
R

now becomes

(8)
x′

(

λ−1
1 − 1

)

+ y′
(

1− λ̄−1
1

)

+ O
(

e4
)

= e2
(

xy′2 − yx′2
)

+ O
(

e4
)

.

Further, we have

λ2
1 − λ̄1 =

[

1 + e22yx′ + O
(

e4
)] [

1 + O
(

e4
)]

−
[

1 + e2xy′
]
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= e2 (2yx′ − xy′) + O
(

e4
)

and

λ1 − λ̄2
1 =

(

1 + e2yx′
)

−
(

1 + e22xy′
)

+ O
(

e4
)

= e2 (yx′ − 2xy′) + O
(

e4
)

.

Thus

(9)
x
(

λ2
1 − λ̄1

)

+ y
(

λ1 − λ̄2
1

)

= e22xy
[

(x′ − y′) + y2x′ − x2y′
]

+ O
(

e4
)

.

Hence applying Remark 3 we see that

(10) [x,y]
R

= e2
〈

2xy (x′ − y′) + y2x′ − x2y′, xy′2 − yx′2
〉

+ O
(

e4
)

.

Now, we would like to compare [x,y]
R

and [y,x]
R

with the help of Lemma 1.

All that is left to show is that the fudge factor λ̄R of [y,x]
R

is of order 1+O
(

e4
)

.
But

λ̄R = 1 + e2
(

xλ2
1 + yλ1

) [

x′
(

λ−1

1 − 1
)

− y′
(

λ̄−1

1 − 1
)]

,

and by (8) we have

[

x′
(

λ−1
1 − 1

)

− y′
(

λ̄−1
1 − 1

)]

= O
(

e2
)

.

Thus

λ̄R = 1 + O
(

e4
)

,

whence

[x,y]
R

= − [y,x]
R

up to O
(

e4
)

by Lemma 1.
Next, we will make use of Lemma 2 in order to compare the commutators in

the left loop reduct with the ones we have just exhibited in the right loop reduct.
First, notice that

(11)
[xy]

1
− [yx]

1
=

(

xλ2
1 + yλ1

)

−
(

yλ̄2
1 + xλ̄1

)

= O
(

e2
)

by (9).

Secondly, consider the fudge factor of the left commutator [x,y]
L
:

(12)

λL = 1 + e2 ·
(

y′λ̄−1

1 + x′
) [(

yλ̄2
1 + xλ̄1

)

−
(

xλ2
1 + yλ1

)]

+ O
(

e4
)

= 1− e2 ·
(

y′λ̄−1

1 + x′
)

([xy]
1
− [yx]

1
) + O

(

e4
)

= 1 + O
(

e4
)

by (11).
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Thus the assumptions of Lemma 2 are satisfied, and we conclude that

[x,y]
R

= [x,y]
L

up to O
(

e4
)

. Similarly, we consider [y,x]
L

with fudge factor

(13)

λ̄L = 1 + e2 ·
(

x′λ−1
1 + y′

) [(

xλ2
1 + yλ1

)

−
(

yλ̄2
1 + xλ̄1

)]

+ O
(

e4
)

= 1 + e2 ·
(

x′λ−1

1 + y′
)

([xy]
1
− [yx]

1
) + O

(

e4
)

= 1 + O
(

e4
)

by (11).

Obviously [yx]1− [xy]1 is also of order O
(

e4
)

by (11), and we can apply Lemma 2
again to see that

[y,x]
R

= [y,x]
L

up to O
(

e4
)

.

5.2 The right associators. It turns out that the associators are related in a
very similar fashion. Let us first focus on the right loop, and thus on (x,y, z)R and
(x,y, z)∗

R
. As before, we will first determine the approximation of (x,y, z)R, and

then use Lemma 1 to determine (x,y, z)∗
R

. Consider the fudge factor of (x,y, z)R:

λ5 = 1− e2
[

xλ2
4 +

(

yλ2
3 + zλ3

)

λ4

] [

x′
(

λ−1

1 λ−1

2 − λ−1

4

)

+ y′
(

λ−1

2 − λ−1

3

)]

.

Since

λ−1

1 λ−1

2 − λ−1

4

=
(

1− e2yx′ + O
(

e4
)) (

1− e2z(x′ + y′) + O
(

e4
))

−
(

1− e2x′(y + z) + O
(

e4
))

= 1− e2x′z − e2y′z − e2x′y − 1 + e2x′y + e2x′z + O
(

e4
)

= −e2y′z + O
(

e4
)

and

λ−1

2 − λ−1

3

=
(

1− e2z(x′ + y′) + O
(

e4
))

−
(

1− e2zy′ + O
(

e4
))

= −e2x′z + O
(

e4
)

,

we have

x′
(

λ−1

1 λ−1

2 − λ−1

4

)

+ y′
(

λ−1

2 − λ−1

3

)

= −e2x′y′z − e2x′y′z + O
(

e4
)

= e2 (−2x′y′z) + O
(

e4
)

= O(e2).
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Hence

λ5 = 1 + O
(

e4
)

.

Using Remark 3, we now directly conclude that the second component of (x,y, z)R

is

(14)
x′

(

λ−1

1 λ−1

2 − λ−1

4

)

+ y′
(

λ−1

2 − λ−1

3

)

+ O
(

e4
)

= e2 (−2x′y′z) + O
(

e4
)

,

and the first component of (x,y, z)R is

x
(

λ2
1λ

2
2 − λ2

4

)

+ y
(

λ1λ
2
2 − λ2

3λ4

)

+ z (λ2 − λ3λ4) + O
(

e4
)

.

We will reuse this formula for all the other associators later on. So let us now
calculate this in detail. First of all,

x
(

λ2
1λ

2
2 − λ2

4

)

= x
[ (

1 + e22yx′ + O
(

e4
)) (

1 + e2 (2zx′ + 2zy′) + O
(

e4
))

−
(

1 + e2 (2yx′ + 2zx′) + O
(

e4
)) ]

= x
[

1 + e2 (2yx′ + 2zx′ + 2zy′)− 1− e2 (2yx′ + 2zx′) + O
(

e4
)]

= e22xzy′ + O
(

e4
)

.

Secondly,

y
(

λ1λ
2
2 − λ2

3λ4

)

= y
[ (

1 + e2yx′
) (

1 + e2 (2zx′ + 2zy′) + O
(

e4
))

−
(

1 + e22zy′ + O
(

e4
)) (

1 + e2 (yx′ + zx′) + O
(

e4
)) ]

= y
[

1 + e2 (yx′ + 2zx′ + 2zy′)

−1− e2 (2zy′ + yx′ + zx′) + O
(

e4
)]

= e2yzx′ + O
(

e4
)

.

And finally

z (λ2 − λ3λ4) = z
[ (

1 + e2 (zx′ + zy′) + O
(

e4
))

−
(

1 + e2zy′
) (

1 + e2 (yx′ + zx′) + O
(

e4
)) ]

= z
[

1 + e2 (zx′ + zy′)− 1− e2 (zy′ + yx′ + zx′) + O
(

e4
)]

= −e2yzx′ + O
(

e4
)

.

Thus the first component of (x,y, z)R is

(15)

(

λ2
1λ

2
2 − λ2

4

)

+ y
(

λ1λ
2
2 − λ2

3λ4

)

+ z (λ2 − λ3λ4)

= e2 [2xzy′ + yzx′ − yzx′] + O
(

e4
)

= e2 (2xzy′) + O
(

e4
)

.

Finally, we conclude that

(x,y, z)R = e2
〈

2xzy′,−2x′zy′
〉

+ O
(

e4
)

= e22zy′
〈

x,−x′
〉

+ O
(

e4
)

.
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Now, we would like to apply Lemma 1 to find out about (x,y, z)∗
R

. Therefore
we only need to show that

λ∗

5 = 1 + O
(

e4
)

,

which is immediate, since we have seen in (14) that

x′
(

λ−1

1 λ−1

2 − λ−1

4

)

+ y′
(

λ−1

2 − λ−1

3

)

= O
(

e2
)

,

and λ∗

5 is by definition

1 + e2
[

(xλ2
1 + yλ1)λ

2
2 + zλ2

]

·
[

x′
(

λ−1

1 λ−1

2 − λ−1

4

)

+ y′
(

λ−1

2 − λ−1

3

)]

.

So we have

(x,y, z)∗
R

= (x,y, z)R

up to O
(

e4
)

.

5.3 The left associators. Now, we will apply Lemma 2 to the results in the
right loop reduct we just obtained to derive approximations for (x,y, z)L and
(x,y, z)∗

L
. Therefore, we need to show that the assumptions of Lemma 2 are

satisfied. First, notice that

(16)

[

(xy · z)
]

1
− [(x · yz)]

1

= x
(

λ2
1λ

2
2 − λ2

4

)

+ y
(

λ1λ
2
2 − λ2

3λ4

)

+ z (λ2 − λ3λ4)

= O
(

e2
)

by (15). Secondly, since this factor appears in both of the fudge factors

d = 1− e2
[

x′λ−1

4 + (y′λ−1

3 + z′)
]

×
[

x
(

λ2
1λ

2
2 − λ2

4

)

+ y
(

λ1λ
2
2 − λ2

3λ4

)

+ z (λ2 − λ3λ4)
]

+ O
(

e4
)

and

d∗ = 1 + e2
(

x′λ−1

1 λ−1

2 + y′λ−1

2 + z′
)

×
[

x
(

λ2
1λ

2
2 − λ2

4

)

+ y
(

λ1λ
2
2 − λ2

3λ4

)

+ z (λ2 − λ3λ4)
]

+ O
(

e4
)

,

we conclude that d and d∗ are of order 1 + O
(

e4
)

. So applying Lemma 2 to
(x,y, z)R and (x,y, z)L, and (x,y, z)∗

R
and (x,y, z)∗

L
respectively, we get

(x,y, z)R = (x,y, z)L and (x,y, z)∗
R

= (x,y, z)∗
L

up to O
(

e4
)

.
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6. Symmetry theorems

Having made the approximations, we now observe the following symmetries.

Theorem 1. To within e4 in a Catalan loop, we have

[x,y]
R

= [x,y]
L

= − [y,x]
L

= − [y,x]
R

and

(x,y, z)R = (x,y, z)L = −(x,y, z)∗
L

= −(x,y, z)∗
R

.

Now set ←−x =
〈

x′, x
〉

.

Theorem 2. To within e4 in a Catalan loop, we have

(x,y, z)R =
(

x,←−z ,←−y
)

R

and
(←−x ,y, z

)

R
= −
←−−−−−
(x,y, z)R.

7. The special case of e = 2

Let R = Z/2n+1
Z (as in the motivating case, see [4]). Then e = 2 is certainly

nilpotent in R, with annihilator E = {0, 2n}. Furthermore,

(x,y, z)R = e3zy′
〈

x,−x′
〉

+ O
(

e4
)

and

[x,y]
R

= e2
〈

x′y2 − y′x2, xy′2 − yx′2
〉

+ e3
〈

xy (x′ − y′) , 0
〉

+ O
(

e4
)

.

Now we will have a closer look at the Catalan loop on

G =
((

Z/23+1
Z
)

/
{

0, 23
})2

=
(

Z/23
Z
)2

,

which turns out to be a group. It is convenient to set n = 〈n, n〉 for integers n.

Theorem 3. The Catalan loop (G, ·,0) is a group.

Proof: Note that

(x,y, z)R = e3zy′
〈

x,−x′
〉

+ O
(

e4
)

= 0,

since e3 = 8 = 0 in Z/23
Z. Thus we have associativity, and are done, since the

Catalan loop (G, ·, /, \,0) is a two-sided loop. �

Considering the commutator

[x,y]
R

= e2
〈

x′y2 − y′x2, xy′2 − yx′2
〉

,
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we see that (G, ·,0) is certainly non-abelian, since

[(0, 1), (1, 0)]
R

= (4, 4) 6= 0.

It turns out that the commutator subgroup [G, G] of G only consists of 0 and
4 as we will see in the following:

Proposition 1. [G, G] = {0,4}.

Proof: First, we will show that

[x,y]
R

= 4 ·
〈

x′y2 − y′x2, xy′2 − yx′2
〉

is either 0 or 4. In other words, we need to prove that

(17) x′y2 − y′x2 and xy′2 − yx′2

are either both even or both odd. In the following, the equalities are all to be
taken modulo 2.

(1) Assume x′y = y′x. This is the case if and only if x′y2 = y′x2 and xy′2 =
yx′2, since x = x2. Thus both sums in (17) yield an even result, since a
sum is even if and only if its two summands are either both even or both
odd.

(2) Otherwise, x′y 6= y′x iff x′y2 6= y′x2 and xy′2 6= yx′2. Thus both sums in
(17) yield an odd result.

So [G, G] is generated by 0 and 4. But any multiplication involving only these two
elements is componentwise addition, since the fudge factors involved are equal to
1. Hence [G, G] is equal to {0,4}. �

Theorem 4. The abelianization G/[G, G] is isomorphic to Z8 ⊕ Z4.

Proof: First, note that (0, 1)[G, G] is an element of order 8 in G/[G, G] and
generates the set

〈(0, 1)[G, G]〉 =
{

(0, n)[G, G]
∣

∣ n = 0, 1, . . . , 7
}

,

since (0, 1)n = (0, n) in G and [G, G] = {0,4} by Proposition 1. As an abelian
group of order 25, the commutator quotient G/[G, G] is then either isomorphic
to Z8 ⊕ Z2 ⊕ Z2 or to Z8 ⊕ Z4. Secondly, consider the quotient of G/[G, G] by
〈(0, 1)[G, G]〉. Note that in this quotient, the second component of a representative
of any coset can be chosen to be 0, while the first component can be chosen to be
between 0 and 3. Hence the quotient of G/[G, G] by 〈(0, 1)[G, G]〉 consists of the
elements

((n, 0)[G, G]) 〈(0, 1)[G, G]〉

with n = 0, 1, 2, 3. Now, we can see that ((1, 0)[G, G])〈(0, 1)[G, G]〉 is an element
of order 4 in (G/[G, G])/〈(0, 1)[G, G]〉, since (1, 0)n = (n, 0) in G. Hence G/[G, G]
is isomorphic to Z8 ⊕ Z4. �
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Finally, let us consider the center of G:

Z(G) =
{

x ∈ G
∣

∣ [x,y]
R

= 0 for all y ∈
(

Z/23
Z
)2

}

.

Proposition 2. Z(G) =
{

x = 〈x, x′〉 ∈ G
∣

∣ x and x′ are even
}

.

Proof: From the formula for [x,y]
R

we see that

x ∈ Z(G) iff 4 ·
〈

x′y2 − y′x2, xy′2 − yx′2
〉

= 0.

Or equivalently:

x ∈ Z(G) iff x′y2 − y′x2 and xy′2 − yx′2 are even for all y.

Using the equivalences given in Case (1) of the proof of Proposition 1, we have

(18) x ∈ Z(G) iff x′y ≡ y′x mod 2 for all y,

since x ≡ x2 mod 2 for all x. Choosing y = 1 in (18) now shows that both
components of x have to be equal modulo 2. Then setting y = (0, 1) in (18)
yields that x is necessarily even. This condition is certainly sufficient, and we are
done. �

Theorem 5. The central quotient G/Z(G) is isomorphic to the Vierergruppe.

Proof: By Proposition 2 the central quotient is of order

(

23 · 23
)

/
(

22 · 22
)

= 4.

Thus G/Z(G) is either the cyclic group of order four or the Vierergruppe. But
G/Z(G) is not cyclic, since G is not abelian. �

8. Future work

Given the approximations for the commutators and associators, and the sym-
metries observed in Section 6, it becomes of interest to find formulae using higher
orders of approximation. In order to do that, one may refer to the general formu-
lae given in Section 4. Eventually, we hope for a pattern to be recognized in order
to characterize the structure of Catalan loops following the analysis of Section 7
for the group case.
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