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NEW ESTIMATES AND TESTS OF INDEPENDENCE
IN SEMIPARAMETRIC COPULA MODELS

Salim Bouzebda and Amor Keziou

We introduce new estimates and tests of independence in copula models with unknown mar-
gins using φ-divergences and the duality technique. The asymptotic laws of the estimates
and the test statistics are established both when the parameter is an interior or a boundary
value of the parameter space. Simulation results show that the choice of χ2-divergence has
good properties in terms of efficiency-robustness.

Keywords: dependence function, multivariate rank statistics, semiparametric inference,
copulas, boundary, divergences, duality

Classification: 62F03, 62F10, 62F12, 62H12, 62H15

1. INTRODUCTION AND MOTIVATIONS

Copulas are a useful tool to model dependent data as they allow to separate the
dependence properties of the data from their marginal properties and to construct
multivariate models with marginal distributions of arbitrary form. In particular,
parametric models for copulas with unknown margins have been intensively investi-
gated during the last decades. In the monographs by [29] and [19] the reader finds
detailed accounts of the theory as well as surveys of commonly used copulas.

It is known that some commonly used dependence measures such as Pearson’s
correlation coefficient, Kendall’s tau and Spearman’s rho cannot completely capture
the dependence structure among variables. Copulas have become popular in applied
statistics, because of the fact that they constitute a flexible and robust way to model
dependence between the margins of random vectors.

In this framework, semiparametric inference methods, based on pseudo-likelihood,
have been applied to copulas by a number of authors (see, e. g., [38, 42, 43] and
the references therein). Throughout the available literature, investigations on the
asymptotic properties of parametric estimators, as well as the relevant test statistics,
have privileged the case where the parameter is an interior point of the admissible
domain. However, for most parametric copula models of interest, the boundaries of
the admissible parameter spaces include some important parameter values, typically
among which, that corresponding to the independence of margins. We find in [19]
many examples of parametric copulas, for which marginal independence is verified
for some specific values of the parameter θ, on the boundary ∂Θ of the admissible
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parameter set Θ ⊆ Rp, p ≥ 1.
This paper concentrates on this specific problem. We aim, namely, to investigate

parametric inference procedures, in the case where the parameter belongs to the
boundary of the admissible domain. In particular, it will become clear, that the
usual limit laws both for parametric copula estimators and test statistics become
invalid under these limiting cases, and, in particular, under marginal independence.
Motivated by this observation, we will introduce a new semiparametric inference
procedure based on φ-divergences and the duality technique extending the paper
by [4] to the general context of φ-divergences for multivariate copulas with multi-
variate parameter. The proposed method extends the pseudo-maximum likelihood
procedure introduced by [15]. It will be seen that the last method corresponds to
the particular choice of the KLm-divergence. We obtain a class of estimates and
test statistics depending upon the divergence. We are interested by comparing the
proposed estimates (including the pseudo-maximum likelihood one) in terms of effi-
ciency and robustness according to the choice of the divergence. We will show that
the proposed estimators, under suitable conditions, remain asymptotically normal,
even under the marginal independence assumption for appropriate choice of the di-
vergence. This will allow us to introduce test statistics of independence, whose study
will be made, both under the null and the alternative hypotheses. Let

F (x1, . . . , xd) := P{X1 ≤ x1, . . . , Xd ≤ xd}

be a d-dimensional distribution function, and Fi(xi) := P(Xi ≤ xi), i = 1, . . . , d,
the marginal distributions of F (·). It is well known since the work of [40] that there
exists a distribution function C(·) on [0, 1]d with uniform marginals such that

C(u) := C(u1, . . . , ud) := P {F1(X1) ≤ u1, . . . , Fd(Xd) ≤ ud} . (1.1)

See also [7, 8, 9, 10, 28, 33] and [36]. We can refer to [39], where the author sketches
the proof of (1.1), develops some of its consequences, and surveys some of the work
on copulas. Formally, copulas can be defined in the common way as follows.

Definition 1.1. An d-dimensional copula is a function C : [0, 1]d → [0, 1] with the
following properties

1. C(·) is grounded, i. e., for every u = (u1, . . . , ud), C(u) = 0 if at least one
coordinate ui = 0, i = 1, . . . , d;

2. C(·), is d-increasing, i. e., for every u ∈ [0, 1]d and v ∈ [0, 1]d such that u ≤ v,
the C-volume VC[u,v] of the box [u,v] is non negative (see [29]);

3. C(1, . . . , 1, ui, 1, . . . , 1) = ui for all ui ∈ [0, 1]d, ui = 0, i = 1, . . . , d.

Many useful multivariate models for dependence between X1, . . . , Xd turn out to
be generated by parametric families of copulas of the form {Cθ; θ ∈ Θ}, typically
indexed by a vector valued parameter θ ∈ Θ ⊆ Rp (see, e. g., [22, 23, 29], and [18]
among others). In the sequel, we assume that Cθ(·) admits a density cθ(·) with

respect to the Lebesgue measure λ on Rd, i. e., cθ(·) = ∂d

∂u1...∂ud
Cθ(·). The non-

parametric approach to copula estimation has been initiated by [7], who introduced
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and investigated the empirical copula process. In addition, [8, 9, 10] described the
limiting behavior of this empirical process see, also [12] and the references therein.
The empirical copula process has been studied in full generality in [13] and [41].

In the present paper, we consider the estimation and test problems for semi-
parametric copula models with unknown general margins. Let (X1k, . . . , Xdk)

⊤, for
k = 1, . . . , n, be a d-variate sample with distribution function FθT,F1,...,Fd

(·, . . . , ·) =
CθT(F1(·), . . . , Fd(·)) where θT ∈ Θ is used to denote the true unknown value of the
parameter. In order to estimate θT, some semiparametric estimation procedures,
based on the maximization, on the parameter space Θ, of properly chosen pseudo-
likelihood criterion, have been proposed by [15, 24, 30, 38, 43] and [42] among others.
In each of these papers, some asymptotic normality properties are established for

√
n
(
θ̃ − θT

)

where θ̃ = θ̃n denotes a properly chosen estimator of θT. This is achieved, provided
that θT lies in the interior, denoted by Θ̊, of the parameter space Θ ⊆ Rp. On
the other hand, the case where θT ∈ ∂Θ := Θ − Θ̊ is a boundary value of Θ,
has not been studied in a systematical way until present. Moreover, it turns out
that, for the above-mentioned estimators, the asymptotic normality of

√
n
(
θ̃− θT

)
,

may fail to hold for θT ∈ ∂Θ; indeed, under some regularity conditions, when θ
is univariate, we can prove that the limit law is the distribution of Z11(Z≥0) where
Z is a centered normal variable, and that the limit law of the generalized pseudo-
likelihood ratio statistic is a mixture of chi-square laws with one degree of freedom
and Dirac measure at zero; see [2]. Furthermore, when the parameter is multivariate,
the derivation of the limit distributions under the null hypothesis of independence,
becomes much more complex; see [37]. Also, the limit distributions are not standard
which yields formidable numerical difficulties to calculate the critical value of the
test.

We cite below some examples of parametric copulas, for which marginal indepen-
dence is verified for some specific values of the parameter θ, on the boundary ∂Θ of
the admissible parameter set Θ. We start with examples for which θ varies within
subsets of R. Such is the case for the extreme value copulas, namely

CA(u1, u2) := exp

{
log u1u2A

(
log u1

log u1u2

)}
, (1.2)

where A(·) is a convex function on [0, 1], satisfying

A : [0, 1] 7→ [1/2, 1] such that max(t, 1− t) ≤ A(t) ≤ 1 for all 0 ≤ t ≤ 1.

For
A(t) := Aθ(t) = (tθ + (1 − t)θ)1/θ; θ ∈ [1,∞[ (1.3)

we have [16] family of copulas, which is one of the most popular model used to model
bivariate extreme values. For

Aθ(t) = 1− (t−θ + (1− t)−θ)−1/θ; θ ∈ [0,∞[ (1.4)
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we obtain [14] family of copulas. Finally for

Aθ(t) = tΦ

(
θ−1 +

1

2
θ log

(
t

1− t

))
+ (1− t)Φ

(
θ−1 − 1

2
θ log

(
t

1− t

))
, (1.5)

where θ ∈ [0,∞[ and Φ(·) denoting the standard normal N(0, 1) distribution func-
tion, we obtain the [17] family of copulas. A useful family of copulas, due to [18], is
given, for 0 < u1, u2 < 1, by

Cθ(u1, u2) := 1−
[
(1− u1)

θ + (1 − u2)
θ − (1− u1)

θ(1− u2)
θ
]1/θ

; θ ∈ [1,∞[.(1.6)

The Gumbel–Barnett copulas are given, for 0 < u1, u2 < 1, by

Cθ(u1, u2) := u1u2 exp {−(1− θ)(log u1)(log u2)} ; θ ∈ [0, 1]. (1.7)

The Clayton copulas of positive dependence are such that, for 0 < u1, u2 < 1,

Cθ(u1, u2) =
(
u−θ
1 + u−θ

2 − 1
)−1/θ

; θ ∈]0,∞[. (1.8)

Parametric families of copulas with parameter θ varying in Rp, for some p ≥ 2,

include the following classical examples. Below, we set θ =
(
θ1, θ2

)⊤ ∈ R2.

Cθ(u1, u2) :=

{
1+
[
(u−θ1

1 − 1)θ2+(u−θ1
2 − 1)θ2

]1/θ2}−1/θ1

, θ∈]0,∞[×[1,∞[; (1.9)

Cθ(u1, u2) := exp
{
−
[
θ2

−1 log
(
exp

(
−θ2(log u1)θ1

)
(1.10)

+ exp
(
−θ2(log u2)θ1

)
− 1
)]1/θ1}

, θ ∈ [1,∞[×]0,∞[.

For other examples of the kind, we refer to [19].

For each of the above examples, the independence case CθT(u1, u2) = u1u2 (or
A(t) = 1) occurs at the boundary of the parameter space Θ, i. e., when θT = 1
for the models (1.3), (1.6) and (1.7), θT = 0 for the models (1.4), (1.5) and (1.8),
θT = (0, 1)⊤ for the bivariate parameter model (1.9), and θT = (1, 0)⊤ for the
bivariate parameter model (1.10). In the sequel, we will denote by θ0 the value of
the parameter (when it exists), corresponding to the independence of the marginals,
i. e., the value of the parameter for which we have

Cθ0(u) :=
d∏

i=1

ui, for all u ∈ (0, 1)d.

Hence, θ0 = 1 for the models (1.3), (1.6) and (1.7), θ0 = 0 for the models (1.4), (1.5)
and (1.8), θ0 = (0, 1)⊤ for the model (1.9), and θ0 = (1, 0)⊤ for the model (1.10).
Note that for the models (1.4), (1.5), (1.8), (1.9) and (1.10), Cθ0(u1, u2) = u1u2
is naturally defined to be the limit of Cθ(·) when θ tends to θ0 with values in Θ.
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Recall that cθ(·) := ∂d

∂u1...∂ud
Cθ(·) is the density of Cθ(·) and we define cθ0(·) to be

the limit of cθ(·) when θ tends to θ0 with values in Θ. Hence, we can show that for
all the above models cθ0(u1, u2) = 1 for all 0 < u1, u2 < 1.

In contrast with the preceding examples, where θ0 ∈ ∂Θ is a boundary value of
Θ, the case where θ0 is an interior point of Θ may, at times, occur, but is more
seldom. An example where θ0 ∈ Θ̊ is given by the Farlie–Gumbel–Morgenstern
(FGM) copula, defined by

Cθ(u1, u2) := u1u2 + θu1u2(1− u1)(1− u2), θ ∈ Θ := [−1, 1], (1.11)

and for which θ0 = 0 ∈ Θ̊ =]− 1, 1[.

In the present article, we will treat parametric estimation of θT, and tests of the
independence assumption θT = θ0. We consider both the case where θ0 ∈ Θ̊ is an
interior point of Θ, and the case where θ0 ∈ ∂Θ is a boundary value of Θ. Our
approach is novel in this setting and it will become clear later on from our results,
that the asymptotic normality of the estimate based on φ-divergences holds, even
under the independence assumption, when, either, θ0 is an interior, or a boundary
point of Θ, independently of the dimension of the parameter space. The proposed
test statistics of independence using φ-divergences are also studied, under the null
hypothesis H0 of independence, as well as under the alternative hypothesis. The
asymptotic distributions of the test statistics under the alternative hypothesis are
used to derive an approximation to the power functions. An application of the
forthcoming results will allow us to evaluate the sample size necessary to guarantee
a pre-assigned power level, with respect to a specified alternative. To establish our
results, we use similar arguments as those developed by [42] in connection with the
instrumental statements on rank statistics established by [35] and [32] among others,
combined with a new technique, (based on the law of iterated logarithm given in
Lemma A.1 below) to show both existence and consistency of our estimates and
test statistics. In Section 5, we investigate the finite-sample performance of the
newly proposed estimators. To avoid interrupting the flow of the presentation, all
mathematical developments are relegated to the appendix.

2. A NEW INFERENCE PROCEDURE

Recall that the φ-divergence between a bounded signed measureQ, and a probability
P on D , when Q is absolutely continuous with respect to P, is defined by

Dφ(Q,P) :=

∫

D

φ

(
dQ

dP
(x)

)
dP(x),

where φ is a convex function from ] − ∞,∞[ to [0,∞] with φ(1) = 0. We will
consider only φ-divergences for which the function φ is strictly convex and satisfies:
the domain of φ, domφ := {x ∈ R : φ(x) < ∞} is an interval with end points
aφ < 1 < bφ, φ(aφ) = limx↓aφ

φ(x) and φ(aφ) = limx↑bφ φ(x). The Kullback–
Leibler, modified Kullback–Leibler, χ2, modified χ2 and Hellinger divergences are
examples of φ-divergences; they are obtained respectively for φ(x) = x log x− x+1,
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φ(x) = − logx+x−1, φ(x) = 1
2 (x−1)2, φ(x) = 1

2
(x−1)2

x and φ(x) = 2(
√
x−1)2. We

extend the definition of these divergences on the whole space of all bounded signed
measures via the extension of the definition of the corresponding φ functions on the
whole real space R as follows: when φ is not well defined on R− or well defined but
not convex on R, we set φ(x) = +∞ for all x < 0. Observe for the χ2-divergence,
the corresponding φ function is defined on whole R and strictly convex. We refer to
[25] for a systematic theory of divergences. We denote by φ∗ the Fenchel–Legendre
transform of the convex function φ, i. e., the function defined by

t ∈ R 7→ φ∗(t) := sup
x∈R

{tx− φ(x)} .

From [31], Section 26, we can prove that it is strictly convex, its domain is an interval
(a∗φ, b

∗
φ) with

a∗φ < 0 < b∗φ, a∗φ = lim
x→−∞

φ(x)

x
, b∗φ = lim

x→+∞
φ(x)

x
,

and it satisfies φ∗(0) = 0,

φ∗(a∗φ) = lim
t↓a∗

φ

φ∗(t) and φ∗(b∗φ) = lim
t↑b∗φ

φ∗(t).

Furthermore, it holds that φ is the Fenchel–Legendre transform of φ∗. In the sequel,
for all θ, we denote by Dφ(θ, θT) the φ-divergences between Cθ(·) and CθT(·), i. e.,

Dφ(θ, θT) :=

∫

I

φ

(
dCθ

dCθT

(u)

)
dCθT(u) =

∫

I

φ

(
cθ(u)

cθT(u)

)
dCθT(u), (2.1)

where I = (0, 1)d. Denote Cn(·) the empirical copula associated to the data, i. e.,

Cn(u) :=
1

n

n∑

k=1

d∏

i=1

11{Fin(Xik)≤u1}, u ∈ I, (2.2)

and

Fin(t) :=

{
n

n+ 1

}
1

n

n∑

k=1

11]−∞,t](Xik) =
1

n+ 1

n∑

k=1

11]−∞,t](Xik), i = 1, . . . , d,

where 11A stands for the indicator function of the event A. The rescaling by the
factor n/(n + 1), avoids difficulties arising from potential unboundedness of cθ(u)
when one of ui’s tends to 1. Observe that the plug-in estimate

∫

I

φ

(
dCθ

dCn
(u)

)
dCn(u)

of Dφ(θ, θT) is not well defined since Cθ(·) is not absolutely continuous with respect
to Cn(·). In order to avoid this difficulty, and to estimate the divergences Dφ(θ, θT)
for a given θ ∈ Θ in particular for θ = θ0, we will make use of the dual representation
of φ-divergences obtained by [1] Theorem 4.4 and [20] Theorem 2.3. By this, when
φ is differentiable, we readily obtain that Dφ(θ0, θT) can be rewritten into

Dφ(θ0, θT) := sup
f∈F

{∫

I

f dCθ0 −
∫

I

φ∗(f) dCθT

}
, (2.3)
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where F is an arbitrary class of measurable functions fulfilling the following two
conditions:

∀f ∈ F ,

∫
|f | dCθ0 <∞

and
φ′(dCθ0/dCθT) = φ′(cθ0/cθT) ∈ F .

Furthermore, the sup in the above display is unique and is achieved at f = φ′(cθ0/cθT).
Note that for the specific value θ0, corresponding to the independence, we have
cθ0(u) = 1, ∀u ∈ I. So, by the above statement, taking the class of functions

F = {u ∈ I 7→ φ′ (1/cθ(u)) ; θ ∈ Θ} ,

we obtain the formula

Dφ(θ0, θT)

= sup
θ∈Θ

{∫

I

φ′
(
cθ0
cθ

)
dCθ0(u)−

∫

I

[
cθ0
cθ
φ′
(
cθ0
cθ

)
− φ

(
cθ0
cθ

)]
dCθT(u)

}

= sup
θ∈Θ

{∫

I

φ′
(

1

cθ

)
du1 . . . dud −

∫

I

[
1

cθ
φ′
(

1

cθ

)
− φ

(
1

cθ

)]
dCθT(u)

}
, (2.4)

whenever ∫

I

|φ′ (1/cθ)| du1 . . . dud <∞ for all θ ∈ Θ.

Furthermore, the sup is unique and reached at θ = θT. Hence, the divergence
Dφ(θ0, θT) and the parameter θT can be estimated respectively by

sup
θ∈Θ

{∫

I

φ′
(

1

cθ

)
du1 . . . dud −

∫

I

[
1

cθ
φ′
(

1

cθ

)
− φ

(
1

cθ

)]
dCn(u)

}
(2.5)

and

arg sup
θ∈Θ

{∫

I

φ′
(

1

cθ

)
du1 . . .dud −

∫

I

[
1

cθ
φ′
(

1

cθ

)
− φ

(
1

cθ

)]
dCn(u)

}
, (2.6)

in which CθT(·) is replaced by Cn(·). Note that this class of estimates contains the
maximum pseudo-likelihood (MPL) estimator proposed by [30]; it is obtained for the
KLm-divergence taking φ(x) = − log(x) + x− 1. Under some regularity conditions,
we can prove that these estimates are consistent and asymptotically normal in the
same way as the MPL estimate when the parameter θT is an interior point of the
parameter space Θ. The interest of divergence remains in the fact that a properly
choice of the divergence may ameliorate the MPL estimator in terms of efficiency-
robustness. The results in [2] show that, for Θ = [θ0,∞), and when the true value
θT of the parameter is equal to θ0 (corresponding to the independence assumption),
the classical asymptotic normality property of the MPL estimate is no more satisfied.
To overcome this difficulty, in what follows, we enlarge the parameter space Θ into
a wider space Θe ⊃ Θ. This is tailored to let θ0 become an interior point of Θe.
More precisely, set

Θe :=

{
θ ∈ Rp such that

∫

I

|φ′(1/cθ(u))| du1 . . . dud <∞
}
. (2.7)
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So, applying (2.3), with the class of functions

F := {u ∈ I 7→ φ′(1/cθ(u)); θ ∈ Θe} ,

we obtain

Dφ(θ0, θT)= sup
θ∈Θe

{∫

I

φ′
(

1

cθ

)
du−

∫

I

[
1

cθ
φ′
(

1

cθ

)
−φ

(
1

cθ

)]
dCθT(u)

}
. (2.8)

Furthermore, the sup in this display is unique and reached in θ = θT. Hence, we
propose to estimate Dφ(θ0, θT) by

D̂φ(θ0, θT) := sup
θ∈Θe

∫

I

m(θ,u) dCn(u), (2.9)

and to estimate the parameter θT by

θ̂n := arg sup
θ∈Θe

{∫

I

m(θ,u) dCn(u)

}
, (2.10)

where

m(θ,u) :=

∫

I

φ′
(

1

cθ(u)

)
du−

{
φ′
(

1

cθ(u)

)
1

cθ(u)
− φ

(
1

cθ(u)

)}
.

In the sequel we denote by ∂
∂θm(θ,u) the p-dimensional vector with entries ∂

∂θi
m(θ,u)

and ∂2

∂θ2m(θ,u) the p×p-matrix with entries ∂2

∂θi∂θj
m(θ,u). In what follows, we give

some examples of divergences and the associated estimates.

2.1. Examples

• Our first example is the common used modified Kullback–Leibler divergence

φ(x) = − log x+ x− 1

φ′(x) = − 1

x
+ 1

xφ′(x)− φ(x) = log x.

The estimate of DKLm(θ0, θT) is given by

D̂KLm(θ0, θT) = sup
θ∈Θe

{
−
∫

I

log

(
1

cθ(u)

)
dCn(u)

}

= sup
θ∈Θe

{∫

I

log (cθ(u)) dCn(u)

}

and the estimate of the parameter θT is given by

θ̂n := arg sup
θ∈Θe

{∫

I

log (cθ(u)) dCn(u)

}
,

which coincides with the MPL one.
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• The second one is the Kullback–Leibler divergence

φ(x) = x log x− x+ 1

φ′(x) = log x

xφ′(x) − φ(x) = x− 1.

The estimate of DKL(θ0, θT) is given by

D̂KL(θ0, θT) = sup
θ∈Θe

{∫

I

log

(
1

cθ(u)

)
du−

∫

I

(
1

cθ(u)
− 1

)
dCn(u)

}

and the estimate of the parameter θT is defined as follows

θ̂n := arg sup
θ∈Θe

{∫

I

log

(
1

cθ(u)

)
du−

∫

I

(
1

cθ(u)
− 1

)
dCn(u)

}
.

• The third one is the χ2-divergence

φ(x) =
1

2
(x − 1)2

φ′(x) = x− 1

xφ′(x) − φ(x) =
1

2
x2 − 1

2
.

The estimate of Dχ2(θ0, θT) is given by

D̂χ2(θ0, θT) = sup
θ∈Θe

{∫

I

(
1

cθ(u)
− 1

)
du

−
∫

I

1

2

((
1

cθ(u)

)2

− 1

)
dCn(u)

}

and the estimate of the parameter θT is defined by

θ̂n := arg sup
θ∈Θe

{∫

I

(
1

cθ(u)
− 1

)
du−

∫

I

1

2

((
1

cθ(u)

)2

− 1

)
dCn(u)

}
.

• The last example is the Hellinger divergence

φ(x) = 2(
√
x− 1)2

φ′(x) = 2− 1√
x

xφ′(x)− φ(x) = 2
√
x− 2.

The estimate of DH(θ0, θT) is given by

D̂H(θ0, θT) = sup
θ∈Θe

{∫

I

(
2− 2

√
cθ(u)

)
du−

∫

I

2

(
1√
cθ(u)

− 1

)
dCn(u)

}
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and the estimate of the parameter θT is defined by

θ̂n := arg sup
θ∈Θe

{∫

I

(
2− 2

√
cθ(u)

)
du−

∫

I

2

(
1√
cθ(u)

− 1

)
dCn(u)

}
.

All the above examples are particular cases of the so-called “power divergences”,
introduced by [5] (see also [25] Chapter 2), which are defined through the class of
convex real valued functions

x ∈ R∗
+ → ϕγ(x) :=

xγ − γx+ γ − 1

γ(γ − 1)

for γ in R\ {0, 1}. The estimate of Dγ(θ0, θT) is given by

D̂γ(θ0, θT) = sup
θ∈Θe

{∫

I

1

γ − 1

((
1

cθ(u)

)γ−1

− 1

)
du

−
∫

I

1

γ

((
1

cθ(u)

)γ

− 1

)
dCn(u)

}

and the parameter estimate is defined by

θ̂n := arg sup
θ∈Θe

{∫

I

1

γ − 1

((
1

cθ(u)

)γ−1

− 1

)
du

−
∫

I

1

γ

((
1

cθ(u)

)γ

− 1

)
dCn(u)

}
.

Remark 2.1. Divergences measures have been intensively used in estimation and
test in the framework of the discrete parametric models with independent identically
distributed data; the estimates of the divergences and the parameter are obtained
by the plug-in method; see [25] including the references therein. For continuous
parametric models the plug-in procedure does not lead to well defined estimates;
[3, 20, 26] introduce new estimates and tests, using the dual representation of diver-
gences, extending the maximum likelihood procedure.

Remark 2.2. We give an example of copulas for which the likelihood-based proce-
dure fails. We consider the Gumbel copulas Cθ(·) given in (1.3), it’s corresponding
density copula is defined by

cθ(u1, u2) := Cθ(u1, u2)(u1u2)
−1 (ũ1ũ2)

(θ−1)

(ũ1
θ + ũ2

θ)(2−1/θ)

[
(ũ1

θ+ũ2
θ)(1/θ)+θ−1

]
, (2.11)

where x̃ = − logx. We can show that cθ(·) may takes negative values for some
θ ∈ Θe. In fact c0.7(u1, u2) is negative for (u1, u2) ∈ [0.9, 1]2, hence the likelihood
function is not well defined. The choice of the χ2-divergence is particularly well
adapted to this situation for example.
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3. THE ASYMPTOTIC BEHAVIOR OF THE ESTIMATES

In this section, we provide the consistency of the estimates (2.10). We also state
their asymptotic normality and evaluate their limiting variance. Statistics of the
form

Ψn :=

∫

I

ψ(u) dCn(u),

belong to the general class of multivariate rank statistics. Their asymptotic proper-
ties have been investigated at length by a number of authors, among whom we may
cite [34, 35] and [32]. In particular, the previous authors have provided regularity
conditions, imposed on ψ(·), which imply the asymptotic normality of Ψn. The
corresponding arguments have been modified by [15], as to establish almost sure
convergence of the estimators that they consider (see, e. g., [15] Proposition A.1).
In the same spirit, the limiting behavior, as n tends to the infinity, of the estima-
tors and test statistics which we will introduce later on, will make an instrumental
use of the general theory of multivariate rank statistics, and rely, in particular, on
Proposition A.1 in [15]. The existence and consistency of our estimators will be
established through an application of the law of the iterated logarithm for empiri-
cal copula processes, in combination with general arguments from multivariate rank
statistics theory (we refer to [6, 12] and references therein). We will use the following
notations

K1(θ,u) := φ′
(

1

cθ(u)

)

and
K2(θ,u) :=

{
φ′
(

1

cθ(u)

)
1

cθ(u)
− φ

(
1

cθ(u)

)}
.

Definition 3.1. (i) Let Q be the set of continuous functions q on [0, 1] which
are positive on (0, 1), symmetric about 1/2, increasing on [0, 1/2] and satisfy∫ 1

0
{q(t)}−2 dt <∞.

(ii) A function r : (0, 1) → (0,∞) is called u-shaped if it is symmetric about 1/2
and increasing on (0, 1/2].

(iii) For 0 < β < 1 and u-shaped function r, we define

rβ(t) =

{
r(βt) if 0 < t ≤ 1/2;

r{1− β(1− t)} if 1/2 < t ≤ 1/2.

If for β > 0 in a neighborhood of 0, there exists a constant Mβ, such that
rβ ≤ Mβr on (0, 1), then r is called a reproducing u-shaped function. We
denote by R the set of reproducing u-shaped functions.

Typical examples of elements in Q and R are given by

q(t) = [t(1 − t)]
ζ
, 0 < ζ < 1/2, r(t) = ̺ [t(1− t)]

−ς
, ς ≥ 0, ̺ ≥ 0.

We make use of the following conditions.
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(C.1) There exists a neighborhood N(θT) ⊂ Θe of θT such that the first and the
second partial derivatives with respect to θ ofK1(θ,u) are dominated onN(θT)
by some λ-integrable functions;

(C.2) There exists a neighborhood N(θT) of θT, such that for all θ ∈ N(θT), the
functions ∂

∂θi
m(θ,u) : (0, 1)d → R are continuously differentiable, and there

exist functions ri ∈ R, r̃i ∈ R and q ∈ Q (i, j = 1, . . . , d, i 6= j and
ℓ, ℓ′, ℓ′′ = 1, . . . , p) with

(i)
∣∣∣ ∂
∂θℓ

m(θ,u)
∣∣∣ ≤

d∏

i=1

ri(ui),
∣∣∣ ∂2

∂θℓ∂ui
m(θ,u)

∣∣∣ ≤ r̃i(ui)

d∏

i6=j

rj(uj);

(ii)
∣∣∣ ∂3

∂θℓ∂θℓ′∂θℓ′′
K2(θ,u)

∣∣∣ ≤
d∏

i=1

ri(ui);

(iii)
∣∣m(θ,u)

∣∣ ≤
d∏

i=1

r(ui),
∣∣∣ ∂
∂ui

m(θ,u)
∣∣∣ ≤ r̃i(ui)

d∏

i6=j

rj(uj);

(iv)
∣∣∣ ∂
∂θℓ

m(θ,u)
∣∣∣
2

≤
d∏

i=1

ri(ui),
∣∣∣ ∂2

∂θℓ∂θℓ′
m(θ,u)

∣∣∣ ≤
d∏

i=1

ri(ui)

and
∫

I

{
d∏

i=1

ri(ui)

}2

dCθT(u) <∞,

∫

I



qi(ui)r̃i(ui)

d∏

i6=j

rj(uj)



 dCθT(u) <∞, for i = 1, . . . , d;

(C.3) The matrix
∫
I
(∂2/∂2θ)m(θ,u) dCθT(u) is non singular;

(C.4) The function u ∈ I 7→ ∂
∂θ m(θT,u) is of bounded variation on I.

The main result to be proved here may now be stated precisely as follows.

Theorem 3.2. Assume that conditions C.1 –C.4 hold.

1. Let B(θT , n
−1/3) :=

{
θ ∈ Θe, ‖θ − θT ‖ ≤ n−1/3

}
, then as n tends to infinity,

with probability one, the function θ 7→
∫
I
m(θ,u) dCn(u) attains its maximum

value at some point θ̂n in the interior of B(θT , n
−1/3), which implies that the

estimate θ̂n is consistent and satisfies

∫

I

∂

∂θ
m(θ̂n,u) dCn(u) = 0.
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2.
√
n(θ̂n−θ) converges in distribution to a centered multivariate normal random

variable with covariance matrix

Ξφ = S−1MS−1, (3.1)

with
S := −

∫

I

∂2

∂θ2
m(θT,u) dCθT(u), (3.2)

and

M := Var

[
∂

∂θ
m(θT, F1(X1), . . . , Fd(Xd)) +

d∑

i=1

Wi(θT, Xi)

]
, (3.3)

where

Wi(θT, Xi) :=

∫

I

{
11{Fi(Xi)≤ui} − ui

}
∂2

∂θ∂ui
m (θT,u) dCθT(u), i = 1, . . . , d.

The proof of Theorem 3.2 is postponed to the Appendix.

Remark 3.3. The aim of Theorem 3.2 part (a) is not to establish the optimal rate
of the estimate but merely the existence and the consistency (a.s.) of the estimate.
We have considered n1/3 because it works well, indeed, in Taylor expansion (A.11),
in the proof, the third term of the RHS is O(1) only for this rate, which is the major
key of the demonstration.

4. NEW TESTS OF INDEPENDENCE

One of our motivation is to build a statistical test of independence, based on φ-
divergence. In the framework of the parametric copula model, the null hypothesis,
i. e., the independence case

Cθ0(u1, . . . , ud) =
d∏

i=1

ui

corresponds to
H0 : θT = θ0.

We consider the composite alternative hypothesis

H1 : θT 6= θ0.

Since, θ0 is a boundary value of the parameter space Θ, we can see that the conver-
gence in distribution of the corresponding pseudo-likelihood ratio statistic to a χ2

random variable does not hold; see [2]. We give now a solution to this problem. We
propose the following statistics

Tn :=
2n

φ′′(1)
D̂φ(θ0, θT). (4.1)

We will see that the proposed statistic converges in distribution, under the null
hypothesis H0, to a χ2 random variable with p degrees of freedom, which permits
to build a test of H0 against H1 asymptotically of level α. The limit law of Tn is
given also under the alternative hypothesis H1. We will use the following additional
conditions.
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(C.5) We have

lim
θ→θ0

∂2

∂θℓ∂ui
m(θ,u) = 0,

and there exists a neighborhood N(θ0) of θ0 and there exist functions ri ∈ R,
r̃i ∈ R and qi ∈ Q (i = 1, . . . , d and ℓ = 1, . . . , p), such that for all θ ∈ N(θ0),

∣∣∣ ∂2

∂θℓ∂ui
m(θ,u)

∣∣∣ < r̃i(ui)

d∏

j 6=j

r(uj)

and ∫

I



qi(ui)r̃i(ui)

d∏

i6=j

rj(uj)



 dCθT(u) <∞.

Remark 4.1. When θT = θ0, under the conditions (C.1) and (C.5) we can see that
S and M can be written as

S = M =

∫

I

[
∂

∂θ
m(θT,u)

] [
∂

∂θ
m(θT,u)

]⊤
dCθT(u).

The following theorem gives the limiting law of the statistics Tn under the both
hypothesis H0 and H1.

Theorem 4.2. (1) Assume that conditions C.1 –C.5 hold. If θT = θ0, then the
statistic Tn converges in distribution to a χ2 variable with p degrees of freedom.

(2) Assume that conditions C.1 –C.5 hold. If θT 6= θ0, then

√
n
(
D̂φ(θ0, θT )−Dφ(θ0, θT )

)

converges in distribution to a centered normal variable with variance

σ2
φ(θ0, θT) := Var

[
m(θT, F1(X1), . . . , Fd(Xd)) +

d∑

i=1

Yi(θT, Xi)

]
, (4.2)

where

Yi(θT, Xi) :=

∫

I

{
11{Fi(Xi)≤ui} − ui

}
∂

∂ui
m (θT,u) cθT(u) du1 . . . dud, i = 1, . . . , d.

The proof of Theorem 4.2 is postponed to the Appendix.

Remark 4.3. An application of Theorem 4.2, leads to reject the null hypothesis
H0 : θT = θ0, whenever the value of the statistic Tn exceeds q1−α, namely, the
(1− α)-quantile of the χ2 law with p degrees of freedom. The corresponding test is
then, asymptotically of level α, when n → ∞. The critical region is, accordingly,
given by

CR := {Tn > q1−α} .
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The fact that this test is consistent follows from Theorem 4.2. Further, this theorem
can be used to give an approximation to the power function θT ∈ Θ 7→ β(θT) :=
PθT {CR} in a similar way to [21]. We so obtain that

β(θT) ≈ 1− Φ

( √
n

σφ(θ0, θT)

(q1−α

2n
−Dφ(θ0, θT )

))
, (4.3)

where Φ denotes, as usual, the cumulative distribution function of aN (0, 1) standard
normal random variable. A useful consequence of (4.3) is the possibility of computing
an approximate value of the sample size ensuring a specified power β(θT), with
respect to some pre-assigned alternative θT 6= θ0. Let n0 be the positive root of the
equation

β = 1− Φ

( √
n

σφ(θ0, θT)

(q1−α

2n
−Dφ(θ0, θT )

))
,

which can be rewritten into

n0 =
(a+ b)−

√
a(a+ 2b)

2Dφ(θ0, θT )2
,

where a := σφ(θ0, θT)
(
Φ−1(1 − β)

)2
and b := q1−αDφ(θ0, θT ). The sought-after

approximate value of the sample size is then given

n∗ := ⌊n0⌋+ 1,

where ⌊u⌋ denote the integer part of u.

Remark 4.4. For point estimation, the estimator based on φ-divergence when we
extend the parameter space, may not have a meaningful interpretation and most
probably has a larger mean square error. However, from Theorem 3.2 and 4.2, it
is clear that an asymptotic 1 − α confidence interval or region, Rα about θ can be
easily constructed using the intersection method as described in [11].

Remark 4.5. The above regularity conditions are satisfied for a large number of
single-parameter families of bivariate copulas including the standard bivariate nor-
mal, the Farlie–Gumbel–Morgenstern system, and copulas of the Archimedean va-
riety such as those of Ali–Mikhail–Haq and Frank; see, e. g., [15] and [42]. Note
that the score functions for some copulas are unbounded near the origin or the point
(1, 1), so we need to know the above regularity conditions, at least theoretically as
be mentioned in [42].

Remark 4.6. The parameters (3.2) and (3.3) may be consistently estimated re-
spectively by the sample mean of

∂2

∂θ2
m(θ̂n, F1n(X1,k), . . . , Fdn(Xd,k)), k = 1, . . . , n, (4.4)

and the sample variance of

∂
∂θ m

(
θ̂n, F1n(X1,k), . . . , Fdn(Xd,k)

)
+

d∑

i=1

Wi(θ̂n, Xi,k), k = 1, . . . , n, (4.5)
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as was done in [15]. The asymptotic variance (4.2) can be consistently estimated in
the same way.

Remark 4.7. The set Θe defined in (2.7) is generally with non empty interior

Θ̊e. In particular, we may check that θ0 (the value corresponding to independence)

belongs to Θ̊e, since the integral in (2.7) is finite; it is equal to zero when θ = θ0,
for any copula density cθ(·). However, it is hard to determine the whole set Θe

for some copulas, but in order to test the independence, we need only to prove the
existence of a neighborhood N(θ0) of θ0 for which the integral in (2.7) is finite since

we calculate the estimate θ̂n in (2.10) by Newton–Raphson algorithm using θ0 as
initial point. The explicit calculation of the integral in (2.7) may be complicated
for some copulas, in such cases we use the Monte Carlo method to compute this
integral.

5. SIMULATIONS

In this section, we report the results from simulation experiments carried out to
assess the performance of the proposed estimators. To this end, we have consid-
ered the FGM copula. For the experiment considered here, we compute the MPL,
KL-divergence, χ2-divergence, Hellinger divergence and some power divergence es-
timates, and report their variance value, bias and mean-squared error. In order to
compare the robustness of the proposed estimates we consider several scenarios of
contamination. To be more precise, we considered ǫ-contaminated models, where a
proportion ǫ of observations were replaced by atypical ones generated from a con-
taminating distribution F ∗(·, ·). We set ǫ equal to 0%, 5%, and 10%, and F ∗(·, ·)
as the bivariate normal distribution with correlation coefficient ρ = 0 and very small
variances, acting as a point mass contamination as in [27]. The sample size is n = 500
and the estimates are obtained from 1000 independent runs.

(i) Under no contamination: All procedures showed reasonable accuracy. The
Hellinger and χ2-divergence estimates seem to be as good as the MPL estimator.
This is more evident as the sample size gets larger; see Table 1.

(ii) Under 5% and 10% contamination: MPL estimator is recommended when there
is no contamination but its performance may deteriorate rapidly if the sample is
pooled, see Tables 2 and 3. In the contaminated case the power divergence estimator
with γ = 2.5 is superior with respect to the others. It seems that the χ2-divergence
estimate behaves well also for contaminated data.

From the three Tables 1, 2 and 3, we can see that the χ2-divergence estimates is a
good trad-off between efficiency and robustness.

In future work, it would be interesting to provide a complete investigation of robust-
ness of semiparametric copula estimator which requires nontrivial mathematics, this
would go well beyond the scope of the present paper.
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Table 1. No contamination: ǫ = 0.00.

θT = 0.01, n = 500, rep = 1000
Divergence Estimate Variance Bias MSE
γ = −0.5 0.0924 0.0177 0.0076 0.0177
γ = 0 (MPL) 0.0920 0.0176 0.0080 0.0176
γ = 0.5 (H) 0.0916 0.0175 0.0084 0.0176
γ = 1 (KL) 0.0913 0.0175 0.0087 0.0176
γ = 1.5 0.0911 0.0176 0.0089 0.0177
γ = 2 (χ2) 0.0911 0.0178 0.0089 0.0179
γ = 2.5 0.0912 0.0181 0.0088 0.0181

Table 2. Contamination: ǫ = 0.05.

θT = 0.01, n = 500, rep = 1000
Divergence Estimate Variance Bias MSE
γ = −0.5 0.0949 0.0191 0.0051 0.0191
γ = 0 (MPL) 0.0921 0.0181 0.0079 0.0181
γ = 0.5 (H) 0.0895 0.0172 0.0105 0.0173
γ = 1 (KL) 0.0873 0.0164 0.0127 0.0166
γ = 1.5 0.0853 0.0158 0.0147 0.0160
γ = 2 (χ2) 0.0835 0.0153 0.0165 0.0155
γ = 2.5 0.0820 0.0149 0.0180 0.0152

Table 3. Contamination: ǫ = 0.10.

θT = 0.01, n = 500, rep = 1000
Divergence Estimate Variance Bias MSE
γ = −0.5 0.0916 0.0191 0.0084 0.0191
γ = 0 (MPL) 0.0867 0.0171 0.0133 0.0173
γ = 0.5 (H) 0.0825 0.0155 0.0175 0.0158
γ = 1 (KL) 0.0787 0.0141 0.0213 0.0146
γ = 1.5 0.0754 0.0130 0.0246 0.0136
γ = 2 (χ2) 0.0724 0.0120 0.0276 0.0128
γ = 2.5 0.0698 0.0112 0.0302 0.0121

6. CONCLUDING REMARKS

We have introduced a new estimation and test procedure in parametric copula mod-
els with unknown margins. The method is based on divergences between copulas
and the duality technique. It generalizes the maximum pseudo-likelihood one, and
applies both when the parameter is an interior or a boundary value, in particular
for testing the null hypothesis of independence. Simulation results show that the
χ2-divergence estimate is a good trade-off between efficiency and robustness. It will
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be interesting to investigate theoretically the problem of the choice of the divergence
which leads to an “optimal” (in some sense) estimate or test in terms of efficiency
and robustness.

APPENDIX

First we give a technical Lemma which we will use to prove our results.

Lemma A.1. Let FθT,F1,...,Fd
(·) have a continuous margins and letCθT(·) have con-

tinuous partial derivatives. Assume that ξ(·) is a continuous function, with bounded
variation. Then

∫

I

ξ(u) d (Cn(u) −C(u)) = O
(
n−1/2(log logn)1/2

)
(a.s.). (A.1)

P r o o f o f L emma A.1. Recall that the modified empirical copula Cn(·), is
slightly different from the empirical copula Cn(·), introduced by [6], and defined by

Cn(u) = Fn

(
F−1
1n (u1), . . . , F

−1
dn (ud)

)
for u ∈ (0, 1)d, (A.2)

where F−1
in (·) for i = 1, . . . , d denote the empirical quantile functions, associated

with Fin(·) for i = 1, . . . , d, respectively, and defined by

F−1
in (t) := inf{x ∈ R | Fin(x) ≥ t}, i = 1, . . . , d.

Note that the subtle difference lies in the fact that Cn(·) is left-continuous with
right-hand limits, whereas Cn(·) on the other hand is right continuous with left-
hand limits. The difference between Cn(·) and Cn(·), however, is small

sup
u∈I

|Cn(u)−Cn(u)| =
1

n
. (A.3)

As in the proof of Lemma 5.1 in [2], using integration by parts, we can prove that
there exists a constant κ > 0, depending upon d only, such that

∣∣∣∣
√
n

∫

I

ξ(u) d(Cn −C)(u)

∣∣∣∣ ≤ κ
√
n sup

u∈I
|(Cn −C)(u)|

∫

I

d |ξ(u)| .
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In fact, by Fubini’s Theorem, we can write
∣∣∣∣
√
n

∫

I

ξ(u1, . . . , ud) d(Cn −C)(u1, . . . , ud)

∣∣∣∣

=

∣∣∣∣
√
n

∫

I

{∫ u1

0

· · ·
∫ ud

0

dξ(s1, . . . , sd)

}
d(Cn −C)(u1, . . . , ud)

∣∣∣∣

=

∣∣∣∣
√
n

∫

I

{∫

I

11{s1≤u1} . . . 11{sd≤ud}dξ(s1, . . . , sd)

}
d(Cn −C)(u1, . . . , ud)

∣∣∣∣

=

∣∣∣∣
√
n

∫

I

{∫

I

11{s1≤u1} . . . 11{sd≤ud}d(Cn −C)(u1, . . . , ud)

}
dξ(s1, . . . , sd)

∣∣∣∣

=

∣∣∣∣
√
n

∫

I

{
∆1

s (Cn −C)(u1, . . . , ud)
}

dξ(s1, . . . , sd)

∣∣∣∣

≤ (2d − 1)
√
n sup

u∈I
|(Cn −C)(u)|

∫

I

d |ξ(u)| ,

where for a and b in I

∆b
a(Cn −C)(u) := ∆bd

ad
∆bd−1

ad−1
· · ·∆b2

a2
∆b1

a1
(Cn −C)(u)

and for j = 1, . . . , d

∆bj
aj
(Cn −C)(u) := (Cn −C)(u1, . . . , uj−1, bj , uj−1, . . . , ud)

−(Cn −C)(u1, . . . , uj−1, aj , uj−1, . . . , ud).

One may check (see Theorem 3.1 in [6]) that there exists a constant γ (depending
upon C(·) only) such that, with probability 1,

lim sup
n→∞

{
n

log logn

}1/2

sup
u∈I

|Cn(u)−C(u)| = γ <∞. (A.4)

From this and (A.3), applying (A.4), we obtain
∫

I

ξ(u) d(Cn −C)(u) = O
(
n−1/2(log logn)1/2

)
(a.s.).

�

P r o o f o f T h e o r em 3.2. (1) Under the Assumptions (C.1) and (C.2.ii), a simple
calculation gives ∫

I

∂

∂θ
m(θ,u) dCθT(u) = 0, (A.5)

and ∫

I

∂2

∂θ2
m(θ,u) dCθT(u) = −

∫

I

φ′′
(

1

cθT

)
ċθT ċ

⊤
θT

c3θT
dλ = −S. (A.6)

We see that the matrix S is symmetric and positive using the fact that the second
derivative φ

′′
(·) is nonnegative by the assumption that the function φ(·) is convex.

Hence, S is positive definite by (C.3). Introduce the statistic Φn(θT) defined by

Φn(θT) :=

∫

I

∂

∂θ
m(θ,u) dCn(u), (A.7)
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and combine (A.5) and condition (C2)(i) with Theorem 2.1 in [35] to show that, as
n→ ∞ √

nΦn(θT)
d→ N (0,M), (A.8)

where M is defined in (3.3). We can refer also to the Proposition 3 in [42] for the
same result in (A.8). Denote

Υn(θT) :=

∫

I

∂2

∂θ2
m(θ,u) dCn(u), (A.9)

we make use of (A.6) and (C.2.iv) in connection with Proposition A.1 of [15], one
finds

Υn(θT) → −S, (a.s.). (A.10)

We recall that S is in (3.2). Now, for any θ = θT + vn−1/3 with ‖v‖ ≤ 1, consider a
Taylor expansion of

∫
I
m(θ,u) dCn(u) in θ around θT, and use (A.10), and (C.2.ii)

to obtain

n

∫

I

m(θ,u)dCn(u)− n

∫

I

m(θT ,u) dCn(u)

= n2/3v⊤Φn(θT) + 2−1n1/3vSv⊤ +O(1) (a.s.) (A.11)

uniformly in v with ‖v‖ ≤ 1. On the other hand, since
∫

I

∂

∂θℓ
m(θT,u)

2 dCθT(u) <∞,

and ∂
∂θℓ

m(θ, ·) is of bounded variation by assumption (C.4)(ℓ = 1, . . . , p), using
Lemma A.1 we can show that

∫

I

∂

∂θℓ
m(θT,u) dCn(u) = O

(
n−1/2(log logn)1/2

)
(a.s.). (A.12)

Therefore, using (A.11) and (A.12), we obtain for any θ = θT+vn−1/3 with ‖v‖ = 1:

n

∫

I

m(θ,u) dCn(u)− n

∫

I

m(θT ,u) dCn(u)

≤ O(n1/6(log logn)1/2)− 2−1ϑn1/3 +O(1) (a.s.), (A.13)

where ϑ is the smallest eigenvalue of the matrix S. Observe that ϑ is positive since S
is symmetric, positive and non singular by assumption (C.3). Using (A.13) and the
fact that the function θ 7→

∫
I
m(θT,u) dCn(u) is continuous, we conclude that as

n → ∞, with probability one, θ 7→
∫
I m(θT,u) dCn(u) reaches its maximum value

at some point θ̂n fulfills ∫

I

∂

∂θ
m(θ̂n,u) dCn(u) = 0

and
‖θ̂n − θT‖ = O(n−1/3).

(2) Using the first part of Theorem 3.2, by a Taylor expansion of
∫

I

∂

∂θ
m(θ̂n,u) dCn(u),
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in θ̂n around θT, we obtain

0 =

∫

I

∂

∂θ
m(θ̂n,u) dCn(u)

=

∫

I

∂

∂θ
m(θT,u) dCn(u) + (θ̂n − θT )

⊤
∫

I

∂2

∂θ2
m(θT,u) dCn(u) + o(n−1/2).

Hence, √
n(θ̂n − θT ) = − [Υn(θT)]

−1 √
nΦn(θT) + oP (1). (A.14)

Using (A.8) and (A.10), by Slutsky theorem, we conclude then

√
n(θ̂n − θT ) → N (0,Ξφ), (A.15)

where we recall that Ξφ is defined in (3.1). �

P r o o f o f T h e o r em 4.2. (1) Assume that θT = θ0. Hence, from (A.14), using
(A.6), we obtain

√
n
(
θ̂n − θT

)
= −S−1

√
nΦn(θT) + oP (1). (A.16)

On the other hand, expanding in Taylor series

2n

φ′′(1)
D̂φ(θ0, θ̂n) =

2n

φ′′(1)

∫

I

m(θ̂n,u) dCn(u)

in θ̂n around θT, in connection with the fact that
∫
Im(θT,u) dCn(u) = 0, we get

2n

φ′′(1)
D̂φ(θ0, θ̂n) =

2n

φ′′(1)
Φn(θT)(θ̂n−θT)−

n

φ′′(1)
(θ̂n−θT)⊤Υn(θT)(θ̂n−θT)+oP (1).

Using (A.6), (A.16) and the fact that S = φ
′′
(1)IθT (IθT denotes the Fisher infor-

mation matrix) when θT = θ0 to obtain

2n

φ′′(1)
D̂φ(θ0, θ̂n) =

1

φ′′(1)

√
nΦn(θT)I−1

θT

√
nΦn(θT).

Finally, use the convergence in (A.8) and the fact that M = φ
′′
(1)IθT when θT = θ0,

to conclude that 2n
φ′′(1)D̂φ(θ0, θT) converges in distribution to a χ2 variable with p

degrees of freedom when θT = θ0.

(2) Assume that θT 6= θ0, using Taylor expansion again of

D̂φ(θT, θ0) =

∫

I

m(θ̂n,u) dCn(u)

in θ̂n around θT, combined with the fact that
∫

I

∂

∂θ
m(θT,u) dCθT(u) = 0,
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we obtain from part (2) of Theorem 3.2
∫

I

m(θ̂n,u) dCn(u) =

∫

I

m(θT,u) dCn(u) + oP (n
−1/2).

Hence, √
n
(
D̂φ(θ0, θT)−Dφ(θ0, θT)

)

=
√
n

(∫

I

m(θT,u) dCn(u) −
∫

I

m(θT,u) dCθT(u)

)
+ oP (1),

which under assumption (C.2.iii) by Theorem 2.1 in [35] once more, converges to a
centred normal variable with variance given in (4.2). �
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