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KYBERNET IK A — VOLUME 4 5 ( 2 0 0 9 ) , N U MBE R 6 , P AG E S 9 0 1 – 9 1 1

JOINT RANGE OF RÉNYI ENTROPIES

Peter Harremoës

The exact range of the joined values of several Rényi entropies is determined. The
method is based on topology with special emphasis on the orientation of the objects stud-
ied. Like in the case when only two orders of the Rényi entropies are studied, one can
parametrize the boundary of the range. An explicit formula for a tight upper or lower
bound for one order of entropy in terms of another order of entropy cannot be given.

Keywords: generalized Vandermonde determinant, orientation, Rényi entropies, Shannon
entropy

AMS Subject Classification: 94A17, 62B10

1. INTRODUCTION

Let P = (p1, p2, . . . , pn) be a probability vector. For α ∈ R\{0, 1} the Rényi entropy
of P of order α is defined as a number in [0;∞] given by the equation

Hα (P ) =
1

1 − α
log

(∑

i

pα
i

)
.

This definition is extended by continuity so that

H−∞ (P ) = − log min
i

pi ;

H0 (P ) = log(number of pi 6= 0);

H1 (P ) = −
∑

i

pi log pi ;

H∞ (P ) = − log max
i

pi .

The Rényi entropy H0 is essentially the Hartley entropy, and was one among other
sources of inspiration to Shannon’s information theory. The Rényi entropy of order
∞ is also called the min-entropy and essentially related to the “probability of error”.
The Rényi entropy H2 is related to index of coincidence and other quantities used
for special purposes in crypto analysis, physics etc. [2, 8].
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Fig. 1. Range P → (H2 (P ) , H1 (P )) for a four element set.

The uniform distributions are mapped into the diagonal.

For all α the Rényi entropy Hα has the nice property of being additive on product
measures. In noiseless source coding for finite systems one wants to avoid very long
code words. For such systems the Rényi entropy of some order α < 1 (depending
on the memory of the system) determines how much the source can be compressed.
Rényi entropies are also related to general cut-off rates and “guess-work moments”
[1, 4].

The relation between H0 and H1 is given by the simple inequality

H1 (P ) ≤ H0 (P ) .

This is a special case of the general result that

α → Hα (P )

is a strictly decreasing function except for uniform distributions where it is constant,
which follows from a simple application of Jensen’s Inequality. The relation between
H1 and H∞ has been determined independently in various articles [3, 5, 6, 11, 15].
The relation between the Shannon entropy and H2 has been studied in [7] and in
more detail in [8]. The result is illustrated in Figure 1 and by the following theorem.

Theorem 1. The lower bound on H1 (P ) given H2 (P ) is attained by a mixture of
uniform distributions on k and k + 1 points where k is determined by the condition
log k ≤ H2 (P ) < log (k + 1) . The upper bound on H1 (P ) is attained by a mixture
of the uniform distribution on n points and a uniform distribution on a singleton.

We shall generalize this result and determine the joint range of several Rényi
entropies. In general the boundary can be parametrized, but upper and lower
bounds of entropy of one order in terms of entropy of another order cannot be
given by explicit formulas. The reason is that the inverse of the function s →
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Hα (sUk + (1 − s) Uk+1) , where Uk and Uk+1 are uniform distributions, is in gen-
eral not an elementary function.

Recently the joint range of Rényi entropies has been used to determine the relative
Bahadur efficiency of various power divergence statistics [9, 10]. In these papers the
joint range of H1 and Hα was used with a reference to [8] where the general result
for comparison of two Rényi entropies was mentioned without proof. In some cases
in physics, joint values of H2 (P ) and H3 (P ) can be measured or computed and one
is interested in bounds on H1 [16]. In order to get bounds on H1 one is interested
in the exact range of the mapping

Ψ : P → (H3 (P ) ,H2 (P ) ,H1 (P )) .

The methods developed in [8] will be refined in order to be able to describe the
joint range of in principle any number of Rényi entropies of positive order. We
restrict our attention to non-negative orders because these are the most important
for applications and because Rényi entropies of negative orders are not continuous
near uniform distributions. Although the method is very general, we shall only go
into details in the cases where two or three Rényi entropies are compared. The
main result is that the range has a boundary, which can be parametrized by certain
mixtures of uniform distributions.

2. REDUCTION TO MIXTURES OF UNIFORM DISTRIBUTIONS

A probability vector P on a set with n elements can be parametrized by its point
probabilities as (p1, p2, . . . , pn) where pj ≥ 0 and

n∑

j=1

pj = 1.

The Rényi entropies are symmetric in their entries. Therefore we may restrict our
attention to probability vectors with decreasing entries, i. e. p1 ≥ p2 ≥ · · · ≥ pn ≥ 0.
Here we shall assume that n is fixed so that that H0 (P ) ≤ log n. In order to study
the range of P → (Hα1 (P ) ,Hα2 (P ) , · · · ,Hαm (P )) we first consider the related
map

P →




1
1−α1

log
(∑

pα1
j

)

1
1−α2

log
(∑

pα2
j

)

...
1

1−αm
log

(∑
pαm

j

)
∑

pj




. (1)

We will assume that the orders are chosen in decreasing order like α1 > α2 > . . . >
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αn. The matrix of partial derivatives with respect to p1, p2, . . . , pn is




α1

1−α1

p
α1−1
1

P

p
α1
j

α1

1−α1

p
α1−1
2

P

p
α1
j

· · · α1

1−α1

p
α1−1
n−1

P

p
α1
j

α1

1−α1

pα1−1
n

P

p
α1
j

α2

1−α2

p
α2−1
1

P

p
α2
j

α2

1−α2

p
α2−1
2

P

p
α2
j

· · · α2

1−α2

p
α2−1
n−1

P

p
α2
j

α2

1−α2

pα2−1
n

P

p
α2
j

...
...

. . .
...

...
αm

1−αm

pαm−1
1

P

pαm
j

αm

1−αm

pαm−1
2

P

pαm
j

· · · αm

1−αm

pαm−1
n−1

P

pαm
j

αm

1−αm

pαm−1
n

P

pαm
j

1 1 · · · 1 1




.

If this matrix has rank m+1 in a neighborhood of a point P =(p1, p2, . . . , pn) , then
the map (1) restricted to such a neighborhood is open, i. e. it maps open sets into
open sets and a neighborhood of P is mapped into a neighborhood of the image.
This follows from the inverse map theorem [13], pp. 221–223 and is often termed the
open map theorem1.

Next we show that if P has m + 1 different point probabilities then P is mapped
into an interior point in the range. Therefore, assume that P has m + 1 different
point probabilities, i. e. n = m + 1. Then

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1

1−α1

p
α1−1
1

P

p
α1
j

α1

1−α1

p
α1−1
2

P

p
α1
j

· · · α1

1−α1

pα1−1
m

P

p
α1
j

α1

1−α1

p
α1−1
m+1

P

p
α1
j

α2

1−α2

p
α2−1
1

P

p
α2
j

α2

1−α2

p
α2−1
2

P

p
α2
j

· · · α2

1−α2

pα2−1
m

P

p
α2
j

α2

1−α2

p
α2−1
m+1

P

p
α2
j

...
...

. . .
...

...
αm

1−αm

pαm−1
1

P

pαm
j

αm

1−αm

pαm−1
2

P

pαm
j

· · · αm

1−αm

pαm−1
m

P

pαm
j

αm

1−αm

pαm−1
m+1

P

pαm
j

1 1 · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2)

=

(
m∏

i=1

αi

1 − αi
·

m∏

i=1

1∑
j pα1

j

)
∣∣∣∣∣∣∣∣∣∣∣

pα1−1
1 pα1−1

2 · · · pα1−1
m pα1−1

m+1

pα2−1
1 pα2−1

2 · · · pα2−1
m pα2−1

m+1
...

...
. . .

...
...

pαm−1
1 pαm−1

2 · · · pαm−1
m pαm−1

m+1

1 1 · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣

Note that the last row can be written as
(

pα−1
1 pα−1

2 · · · pα−1
m pα−1

m+1

)
with

α = 1. The last determinant is an exponential Vandermonde determinant. By a result
of Robbin and Salamon an exponential Vendermonde determinant is non-negative
[12]. It is positive if and only if p1 > p2 > . . . > pn.

We see that if 1 > αm > · · · > αm > 0 then the determinant (2) is positive. It is
easy to check that this is also the case with the relaxed condition αm > · · · > αm > 0.

The extreme points in the set of ordered probability vectors are the uniform
distributions. Let Uk denote the uniform distribution

(
1
k , 1

k , · · · , 1
k , 0, 0, · · · , 0

)
. Let

k1, k2, . . . , k` be a sequence of different numbers in {1, 2, · · · , n} . Then the simplex

1 There are several different theorems called “The Open Map Theorem”. This is just one of
them.
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formed by convex combinations of Uk1 , Uk2 , . . . , Uk`
will be denoted ∆k1,k2,··· ,k`

and
be given an orientation according to the sequence Uk1 , Uk2 , . . . , Uk`

. Observe that if
k1 < k2 < . . . < km+1 then the mapping ∆k1,k2,··· ,km+1 → Rm defined by

P →




1
1−α1

log
(∑

pα1
j

)

1
1−α2

log
(∑

pα2
j

)

...
1

1−αm
log

(∑
pαm

j

)




has positive orientation if α1 > α2 > · · · > αm > 0.

3. JOINT RANGE OF TWO RÉNYI ENTROPIES

First we consider distributions on a set with n elements. We determine the joint
range of Hα1 and Hα2 where we assume that α1 > α2 > 0. First we shall also assume
that α1, α2 ∈ ]0; ∞[ \ {1} . Let Φ denote the map

P →
(

Hα1 (P )
Hα2 (P )

)
.

Assume that k1 < k2 < k3. Then Φ
(
Ukj

)
lies on the diagonal {(x, x) : x ≥ 0} ,

and these points are ordered,

Hα (Uk1) < Hα (Uk2) < Hα (Uk3)

where α = α1 or α = α2. We know that Ha1 (P ) ≤ Hα2 (P ) with equality if and only
if P is a uniform distribution. We know that Φ maps interior points of ∆k1,k2,k3

into interior points of the range of Φ so boundary points of the range of Φ must
have preimages that are boundary points of ∆k1,k2,k3

. We follow the conventions
from homology theory [14] and calculate boundary with orientation. The boundary
of Φ (∆k1,k2,k3

) is

∂Φ(∆k1,k2,k3) = Φ∂ (∆k1,k2,k3)

= Φ (∆k2,k3 − ∆k1,k3 + ∆k1,k2)

= Φ (∆k1,k2 + ∆k2,k3 + ∆k3,k1) ,

which is just another way to write the closed curve from Uk1 to Uk2 to Uk3 and back
to Uk1 . Therefore any point on the boundary of the range of Φ must be the image
of a mixture of two uniform distributions.

Assume that k1 < k2 < k3 < k4. Then the simplices ∆k1,k2,k3 and ∆k1,k3,k4 are
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both positively oriented and

∂Φ(∆k1,k2,k3 + ∆k1,k3,k4) = Φ∂ (∆k1,k2,k3 + ∆k1,k3,k4)

= Φ

(
∂∆k1,k2,k3

+∂∆k1,k3,k4

)

= Φ

(
∆k2,k3 − ∆k1,k3 + ∆k1,k2

+∆k3,k4 − ∆k1,k4 + ∆k3,k4

)

= Φ

(
∆k2,k3 − ∆k1,k3 + ∆k1,k2

+∆k3,k4 − ∆k1,k4 + ∆k1,k3

)

= Φ(∆k1,k2 + ∆k2,k3 + ∆k3,k4 + ∆k4,k1) .

We see that Φ (∆k1,k3) does not contribute to this boundary. Similarly Φ (∆k2,k4)
does not contribute to the boundary. We may formulate this result as ∆a,b does not
contribute to the range if it is a diagonal in a quadruple. The non-diagonal simplices
are ∆1,2,∆2,3, · · · , ∆n−1,n and ∆n,1. These form a closed curve

∆1,2 + ∆2,3 + · · · + ∆n−1,n + ∆n,1

and the boundary is the image of this curve, i. e.

Φ (∆1,2 + ∆2,3 + · · · + ∆n−1,n + ∆n,1) .

This result easily extends to the cases where one or more of the orders equal 1 or
∞. The lower bound does not depend on n so we get the following theorem.

Theorem 2. Assume α1 > α2 > 0. Then the lower bound on Hα2 (P ) given
Hα1 (P ) is attained by a mixture of uniform distributions on k and k + 1 points
where k is determined by the condition log k ≤ Hα1

(P ) < log (k + 1) .

For distributions on sets with n elements we also get a tight upper bound, but if
we have no restriction on n the situation is a little more complicated.

Theorem 3. Assume α1 > α2 > 0. If P is a distribution on a set with n elements
and Hα1 (P ) is fixed then a upper bound on Hα2 is attained for a mixture of the
uniform distributions U1 and Un. If no restriction on n is given and if Hα1 (P ) > 0
is fixed then a tight upper bound on Hα2 (P ) is given by

Ha2 (P ) <

{
∞, if α1 ≤ 1;

α2

α2−1
α1−1

α1
Hα1

(P ) , if α1 > 1.

P r o o f . If we have no restriction on n then the range is

∞⊕

n=2

Φ(∆1,n,n+1)
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so we just have to determine the asymptotics of Φ (∆1,n) . The curve ∆1,n has
the parametrization Pt =

(
t
n , t

n , · · · , t
n , t

n + 1 − t
)
, t ∈ [0; 1] . Therefore the curve

Φ (∆n,1) has the parametrization

(
1

1−α1
log

(
(n − 1)

(
t
n

)α1
+

(
t
n + 1 − t

)α1
)

1
1−α2

log
(
(n − 1)

(
t
n

)α2
+

(
t
n + 1 − t

)α2
)

)
.

We have to study the asymptotics of this curve for n tending to infinity. There are
several cases and they need separate analysis.

Case α2 > 1. We also have α1 > 1 so for a fixed value of t we get

(
1

1−α1
log

(
(n − 1)

(
t
n

)α1
+

(
t
n + 1 − t

)α1
)

1
1−α2

log
(
(n − 1)

(
t
n

)α2
+

(
t
n + 1 − t

)α2
)

)
→

(
α1

1−α1
log (1 − t)

α2

1−α2
log (1 − t)

)

for n tending to infinity. Hence the straight line with slope α2

α2−1
α1−1

α1
is the

boundary of the range.

Case α1 ≥ 1 and α2 ≤ 1. First we assume that α1 < 1. For a fixed value of the
parameter t the Rényi entropy Ha2 tends to a constant as above but Hα1 tends
to infinity. For a fixed value of Hα1 (P ) > 0 the lower bound Hα2 (P ) > 0 is
tight. This bound is also tight for α1 = 1 and can be obtained by letting α1

tend to 1 from above or below.

Case 0 < α1 ≤ 1. First assume that α2 < 1. If t = n1−1/α2 then

(
1

1−α1
log

(
(n − 1)

(
t
n

)α1
+

(
t
n + 1 − t

)α1
)

1
1−α2

log
(
(n − 1)

(
t
n

)α2
+

(
t
n + 1 − t

)α2
)

)

=




1
1−α1

log
(
n− α1

α2 · n−1
n +

(
n−1/α2 + 1 − n1−1/α2

)α1
)

1
1−α2

log
(

n−1
n +

(
n−1/α2 + 1 − n1−1/α2

)α2
)


 .

We see that the second coordinate tends to 1
1−α2

log 2, while the first coordi-
nate tends to 0. Therefore for a fixed value of Hα1 (P ) > 0 the upper bound
Hα2

(P ) > 0 is tight. Tightness of this bound also holds for α2 = 1, which can
be seen by letting α2 tend to 1 from above or below. ¤

4. JOINT RANGE OF THREE RÉNYI ENTROPIES

Determining the range of three Rényi entropies is done in a similar way as in the
previous section. We consider the map Ψ given by

P →




Hα1 (P )
Hα2 (P )
Hα3 (P )



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where α1 > α2 > α3 > 0. First we consider the situation where the domain consist
of distributions on n points. The boundary points of Ψ must be images of mixtures
of three uniform distributions, i. e. in the range of Ψ restricted to some simplex
∆k,`,m. As we shall see most of these simplices do not contribute to the boundary
but are “interior walls” in the range.

If 1 < k < ` < m < n then the restriction of Ψ to the simplex ∆1,k,`,m or to the
simplex ∆k,`,m,n conserves orientation. Therefore

∂Ψ(∆1,k,`,m + ∆k,`,m,n) = ∂Ψ(∂∆1,k,`,m + ∂∆k,`,m,n)

= ∂Ψ

(
∆k,`,m − ∆1,`,m + ∆1,k,m − ∆1,k,`

+∆`,m,n − ∆k,m,n + ∆k,`,n − ∆k,`,m

)

= ∂Ψ

(
−∆1,`,m + ∆1,k,m − ∆1,k,`

+∆`,m,n − ∆k,m,n + ∆k,`,n

)
.

We see that ∆k,`,m gives no contribution to the boundary and therefore only sim-
plices ∆k,`,m with either k = 1 or m = n give a contributions to the boundary.

If 1 < k < ` < m < n then the restriction of Ψ to the simplices ∆1,k,`,m or to
∆1,k,m,n conserves orientation. Therefore

∂Ψ(∆1,k,`,m + ∆1,k,m,n) = ∂Ψ(∂∆1,k,`,m + ∂∆1,k,m,n)

= ∂Ψ

(
∆k,`,m − ∆1,`,m + ∆1,k,m − ∆1,k,`

+∆k,m,n − ∆1,m,n + ∆1,k,n − ∆1,k,m

)

= ∂Ψ

(
∆k,`,m − ∆1,`,m − ∆1,k,`

+∆k,m,n − ∆1,m,n + ∆1,k,n

)
.

We see that the simplex ∆1,k,m gives no contribution to the boundary of the range
of Ψ if m < n and if k < m − 1.

If 1 < k < ` < m < n then the restriction of Ψ to the simplices ∆1,k,m,n or to
∆k,`,m,n conserves orientation. Therefore

∂Ψ(∆1,k,m,n + ∆k,`,m,n) = ∂Ψ(∂∆1,k,m,n + ∂∆k,`,m,n)

= ∂Ψ

(
∆k,m,n − ∆1,m,n + ∆1,k,n − ∆1,k,m

+∆`,m,n − ∆k,m,n + ∆k,`,n − ∆k,`,m

)

= ∂Ψ

(
−∆1,m,n + ∆1,k,n − ∆1,k,m

+∆`,m,n + ∆k,`,n − ∆k,`,m

)
.

We see that the simplex ∆k,m,n gives no contribution to the boundary of the range
of Ψ if k > 1 and if k < m − 1.

If 1 < k < ` < m < n then the restriction of Ψ to the simplices ∆1,k,`,n or to
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∆1,`,m,n conserves orientation. Therefore

∂Ψ(∆1,k,`,n + ∆1,`,m,n) = ∂Ψ(∂∆1,k,`,n + ∂∆1,`,m,n)

= ∂Ψ

(
∆k,`,n − ∆1,`,n + ∆1,k,n − ∆1,k,`

+∆`,m,n − ∆1,m,n + ∆1,`,n − ∆1,`,m

)

= ∂Ψ

(
∆k,`,n + ∆1,k,n − ∆1,k,`

+∆`,m,n − ∆1,m,n − ∆1,`,m

)
.

We see that the simplex ∆1,`,n gives no contribution to the boundary of the range
of Ψ except if ` = 2 or ` = n − 1.

Thus the boundary of the range consist of images of the simplices ∆1,m,m+1 and
of the form ∆m−1,m,n, where m = 2, 3, · · · , n − 1. Here we notice that

∂

(
n−1⊕

m=2

∆m−1,m,n +
n−1⊕

m=2

∆1,m+1,m

)
=

n−1⊕

m=2

∂∆m−1,m,n +
n−1⊕

m=2

∂∆1,m+1,m

=
n−1⊕

m=2

(∆m,n − ∆m−1,n + ∆m−1,m)

+
n−1⊕

m=2

(∆m+1,m − ∆m+1,1 + ∆m,1)

= 0,

so that
n−1⊕

m=2

∆m−1,m,n +
n−1⊕

m=2

∆1,m+1,m

is a closed surface, and that the range of Ψ has the image of this surface as boundary.
It is possible to describe the situation in more detail. Let Φ denote the map

P →
(

Hα1 (P )
Hα2 (P )

)
.

Then Φ restricted to
m⊕

m=2

∆1,m,m+1 is a homeomorphism. If

Φ (P ) =

(
a
b

)

then there exists a unique m and unique weights x, y, z ≥ 0 that sum up to 1 such

that P = x · U1 + y · Um + z · Um+1. For any distribution Q with Φ (Q) =

(
a
b

)
we

have Hα3
(Q) ≤ Hα3

(P ) . Thus,

n−1⊕

m=2

∆1,m,m+1
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Fig. 2. The left diagram depictures the image of ∆125+∆235+∆345. The right diagram

is the image of ∆132 + ∆143 + ∆154. Orientations are indicated. If an extra dimension

Hα3 is added these two surfaces form the boundary of the image of ∆12345. In these plots

α1 = 5 and α2 = 1/2 were used.

gives a tight lower bound on Hα3 in terms of Hα1 and Hα2 . We notice that this lower
bound does not depend on n. Similarly, the upper bound on Hα3 for fixed Hα1 and
Hα2 is determined by the surface

n−1⊕

m=2

∆m−1,m,n

and just as in the case of two Rényi entropies the upper bound does depend on n.

5. DISCUSSION

The result can be seen as a generalization of the result in [8]. The essential step in the
whole construction is the positivity of the exponential Vandermonde determinant.
Therefore the construction can be iterated so that one in principle can determine
the boundary of the range of any number of Rényi entropies of positive order.

ACKNOWLEDGEMENT

I thank Karol Zyczkowski for useful discussions. His paper [16] was an important inspiration

for this article. He, Flemming Topsøe, and Christian Schaffner have also contributed with

several important remarks to this paper. The author was supported by grants from Villum

Kann Rasmussen Foundation, The Banach Center, INTAS (project 00-738), Danish Natural

Research Council, and the European Pascal Network of Excellence.

(Received April 16, 2009.)



Joint Range of Rényi Entropies 911
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