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DIRECT ADAPTIVE CONTROL OF UNKNOWN
NONLINEAR SYSTEMS USING A NEW NEURO–FUZZY
METHOD TOGETHER WITH A NOVEL APPROACH
OF PARAMETER HOPPING

Dimitris Theodoridis, Yiannis Boutalis and Manolis Christodoulou

The direct adaptive regulation for affine in the control nonlinear dynamical systems
possessing unknown nonlinearities, is considered in this paper. The method is based on a
new Neuro-Fuzzy Dynamical System definition, which uses the concept of Fuzzy Dynam-
ical Systems (FDS) operating in conjunction with High Order Neural Network Functions
(F-HONNFs). Since the plant is considered unknown, we first propose its approximation
by a special form of a fuzzy dynamical system (FDS) and in the sequel the fuzzy rules are
approximated by appropriate HONNFs. The fuzzy-recurrent high order neural networks
(F-RHONN) are used as models of the unknown plant, practically transforming the origi-
nal unknown system into a F-RHONN model which is of known structure, but contains a
number of unknown constant value parameters. The proposed scheme does not require a-
priori experts’ information on the number and type of input variable membership functions
making it less vulnerable to initial design assumptions, is extremely fast and, hence, can be
applied in several difficult and very demanding real-time engineering applications. When
the F-RHONN model matches the unknown plant, we provide a comprehensive and rigor-
ous analysis of the stability properties of the closed loop system. Convergence of the state
to zero plus boundedness of all other signals in the closed loop is guaranteed without the
need of parameter (weights) convergence, which is assured only if a sufficiency-of-excitation
condition is satisfied. The existence of the control signal is always assured by introducing
a novel method of parameter hopping and incorporating it in weight updating law. Sim-
ulations illustrate the approximation superiority of the proposed scheme in comparison to
other well established approaches. The applicability of the method is also tested on well
known simulated nonlinear plants where it is shown that by following the proposed proce-
dure one can obtain asymptotic regulation. Comparison is also made to simple RHONN
controllers, showing that our approach is superior to the case of simple RHONN’s.
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1. INTRODUCTION

Nonlinear dynamical systems can be represented by general nonlinear dynamical
equations of the form

ẋ = f(x, u). (1)

The mathematical description of the system is required, so that we are able to
control it. Unfortunately, the exact mathematical model of the plant, especially
when this is highly nonlinear and complex, is rarely known and thus appropriate
identification schemes have to be applied which will provide us with an approximate
model of the plant.

It has been established that neural networks and fuzzy inference systems are
universal approximators [12, 23, 52], i. e., they can approximate any nonlinear func-
tion to any prescribed accuracy provided that sufficient hidden neurons and training
data or fuzzy rules are available. Recently, the combination of these two differ-
ent technologies has given rise to fuzzy neural or neuro fuzzy approaches, that
are intended to capture the advantages of both fuzzy logic and neural networks.
Numerous works have shown the viability of this approach for system modeling
([4, 8, 20, 21, 29, 31, 36, 40, 54]). The neural and fuzzy approaches are most of
the time equivalent, differing between each other mainly in the structure of the ap-
proximator chosen. Regarding the approximator structure, linear in the parameters
approximators are used in [3, 31, 45] and nonlinear in [26, 38, 42, 50].

Adaptive control theory has been an active area of research over the past years
([14, 15, 16, 18, 19, 34, 35, 37, 47, 48, 49]). As concerning linear systems, there
have been some researches on stability analysis of adaptive control systems, and
adaptive control of plants [37, 47]. Also, many researchers focus on robust adap-
tive control that guarantees signal boundness in the presence of modelling errors
and bounded disturbances ([14] – [16]). Regarding nonlinear systems, some adaptive
control schemes via feedback linearization have been reported ([18, 19, 34, 48, 49]).
The fundamental idea of feedback linearization is to transform a nonlinear system
into a linear one. Then, linear control techniques are employed to acquire desired
performance.

In the neuro or neuro fuzzy control two main approaches are followed. In the
indirect adaptive control schemes [3, 8, 9, 19, 25, 26, 32, 38, 42, 50]) first the dynamics
of the system are identified and then a control input is generated according to the
certainty equivalence principle. In the direct adaptive control schemes ([2, 7, 10,
28, 39, 41, 43, 44, 53]) the controller is directly estimated and the control input is
generated to guarantee stability without knowledge of the system dynamics. In [26]
both approaches are presented, while in [13] a combined direct and indirect control
scheme is used.

In a fuzzy or neuro-fuzzy scheme, the underlying fuzzy modeling scheme may
be of Mamdani or TSK type and the identification phase usually consists of two
categories: structure identification and parameter identification. Structure identi-
fication involves finding the main input variables out of all possible, specifying the
membership functions, the partition of the input space and determining the number
of fuzzy rules which is often based on a substantial amount of heuristic observation
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to express proper strategy’s knowledge. Most of structure identification methods are
based on data clustering, such as fuzzy C-means clustering [6], mountain clustering
[21], and subtractive clustering [33]. These approaches require that all input-output
data are ready before we start to identify the plant. So these structure identification
approaches are off-line.

Recently [5, 24], high order neural network function approximators (HONNFs)
have been proposed for the identification of nonlinear dynamical systems of the form
(1), approximated by a Fuzzy Dynamical System. This approximation depends on
the fact that fuzzy rules could be identified with the help of HONNFs. The same
rationale has been employed in [51], where a neuro-fuzzy approach for the indirect
control of unknown systems has been introduced.

In this paper HONNFs are also used for the neuro fuzzy direct control of nonlin-
ear dynamical systems. In the proposed approach the underlying fuzzy model is of
Mamdnani type. The structure identification is also made off-line based either on
human expertise or on gathered data. However [56], the required a-priori informa-
tion obtained by linguistic information or data is very limited. The only required
information is an estimate of the centers of the output fuzzy membership functions.
Information on the input variable membership functions and on the underlying fuzzy
rules is not necessary because this is automatically estimated by the HONNFs. This
way the proposed method is less vulnerable to initial design assumptions. The pa-
rameter identification is then easily addressed by HONNFs, based on the linguistic
information regarding the structural identification of the output part and from the
numerical data obtained from the actual system to be modeled.

We consider that the nonlinear system is affine in the control and could be approx-
imated with the help of two independent fuzzy subsystems. Every fuzzy subsystem
is approximated from a family of HONNFs, each one being related with a group of
fuzzy rules. Weight updating laws are given and we prove that when the structural
identification is appropriate then the error reaches zero very fast. Also, an appro-
priate state feedback control law is constructed to achieve asymptotic regulation of
the output, while keeping bounded all signals in the closed loop. The existence of
the control signal is always assured by introducing a method of parameter hopping
and incorporating it in the weight updating law.

The paper is organized as follows. Section 2 presents notation and preliminaries
related to the concept of fuzzy systems (FS) and the terminology used in the re-
maining paper. Moreover, it shows off the drawbacks of traditional fuzzy adaptive
functional representations. Section 3 reports on the ability of HONNFs to act as
fuzzy rule approximators. The direct neuro fuzzy regulation of affine in the control
dynamical systems is presented in Section 4, where the method of parameter hop-
ping is explained and the associated weight adaptation laws are given. Simulation
results are given in Section 5 illustrating the approximation superiority of the pro-
posed scheme in comparison to other well established approaches. The applicability
of the method is also tested on well known simulated nonlinear plants where it is
shown that by following the proposed procedure one can obtain asymptotic regula-
tion. Comparisons are also presented showing that our approach is superior to the
case of simple RHONN controllers.



352 D. THEODORIDIS, Y. BOUTALIS AND M. CHRISTODOULOU

2. NOTATION AND PRELIMINARIES

2.1. Notation

The following notations will extensively be used throughout the paper. | · | denotes
the usual Euclidean norm of a vector. In case y is a scalar |y| denotes its absolute
value.

If A is a matrix, then ‖A‖ denotes the Frobenious matrix norm defined as ‖A‖2 =∑
ij |aij |2 = tr

{
AT A

}
where tr{·} denotes the trace of a matrix.

An important property that will be used in deriving weight updating laws is the
following: For a m×n matrix X̃ and matrices A, B, satisfying the following equality

tr

{
˙̃

XT X̃

}
= AX̃B

then
˙̃

XT = BA ⇒ ˙̃X = AT BT . (2)

2.2. Preliminaries

In this section we briefly present the notion of adaptive fuzzy systems and their
conventional representation. We are also introducing the representation of fuzzy
systems using the fuzzy rule indicator functions, which is used for the development
of the proposed method.

2.2.1. Adaptive Fuzzy Systems

The performance, complexity, and adaptive law of an adaptive fuzzy system repre-
sentation can be quite different depending upon the type of the fuzzy system (Mam-
dani or Takagi–Sugeno). It also depends upon whether the representations is linear
or nonlinear in its adjustable parameters. Adaptive fuzzy controllers depend also
on the type of the adaptive fuzzy subsystems they use. Suppose that the adaptive
fuzzy system is intended to approximate the nonlinear function f(x). In the mam-
dani type, linear in the parameters form, the following fuzzy logic representation is
used [40, 52]:

f(x) =

M∑

l=1

θlξl(x) = θT ξ(x) (3)

where M is the number of fuzzy rules, θ = (θ1, . . . , θM )T , ξ(x) = (ξ1(x), . . . , ξM (x))T

and ξl(x) is the fuzzy basis function defined by

ξl(x) =

∏n
i=1 µF l

i
(xi)

∑M
l=1

∏n
i=1 µF l

i
(xi)

(4)

θl are adjustable parameters, and µF l
i

are given membership functions of the input

variables (can be Gaussian, triangular, or any other type of membership functions).
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In Tagaki–Sugeno formulation f(x) is given by

f(x) =
M∑

l=1

gl(x)ξl(x) (5)

where gl(x) = al,0 + al,1x1 + . . . + al,nxn, with xi, i = 1 . . . n being the elements
of vector x and ξl(x) being defined in (40). According to [40], (5) can also be
written in the linear to the parameters form, where the adjustable parameters are
all al,i, l = 1 . . .M, i = 1 . . . n.

From the above definitions it is apparent in both, Mamdani and Tagaki–Sugeno
forms that the success of the adaptive fuzzy system representations in approximating
the nonlinear function f(x) depends on the careful selection of the fuzzy partitions
of input and output variables. Also, the selected type of the membership functions
and the proper number of fuzzy rules contribute to the success of the adaptive
fuzzy system. This way, any adaptive fuzzy or neuro-fuzzy approach, following a
linear in the adjustable parameters formulation becomes vulnerable to initial design
assumptions related to the fuzzy partitions and the membership functions chosen. In
this paper this drawback is largely overcome by using the concept of rule indicator
functions, which are in the sequel approximated by High order Neural Network
function approximators (HONNFs). This way there is not any need for initial design
assumptions related to the membership values and the fuzzy partitions of the if part.

2.2.2. Fuzzy system description using rule indicator functions

In this paper, we are briefly introducing the representation of fuzzy systems using
the fuzzy rule indicator functions, which is used for the development of the proposed
method.

Let us consider the system with input space u ⊂ Rm and state-space x ⊂ Rn,
with its i/o relation being governed by the following equation

z(k) = f(x(k), u(k)) (6)

where f(·) is a continuous function and the k denotes the temporal variable. In
case the system is dynamic the above equation could be replaced by the following
difference equation

x(k + 1) = f(x(k), u(k)) (7)

where k = 1, 2, . . ..
By setting y = [x, u] and omitting k, Eq. (6) may be rewritten as follows

z = f(y). (8)

In many practical situations, we are unable to measure accurately the states and
inputs of a system of the form in (6); in most cases, we are provided with cheap
sensors, expert’s opinions, e.t.c which provide us with imprecise estimations of the
state and input vectors. Thus, instead of vectors x and u we are provided with some
linguistic variables x̃i and ũi, respectively.
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Let now ỹ := (x̃, ũ) and suppose that each linguistic variable ỹi belongs to a finite
set Li with cardinality ki, i. e. ỹi takes one of ki variables. Let also ỹij denotes the

jth element of the set Li. Then we may define a function h̃i : R → Li to be the
output function of the system in Eq. (8) in the sense that

ỹi = h̃i(yi). (9)

Note that h̃i(·) maps the real axis into a set of linguistic variables Li, and thus h̃i(·)
is not defined in the usual way. In order to overcome such a problem we define the
function h̃i : R → {1, 2, . . . , ki} as follows

h̃i(yi) = ỹij ⇐⇒ hi(yi) = j. (10)

Since hi(·) is very similar to h̃i(·), we will call the function hi(·) the ith output
of the system in Eq. (8). Also, h̃i(·) and consequently hi(·) is related with the
structural identification part mentioned in the introduction and arrive after using
an automatic procedure based on system operation data or after consulting human
experts advising on how to partition the system variables.

Following the standard approach in fuzzy systems theory we associate with each
ỹij a membership function µ̃ij(yi) ∈ [0, 1] which satisfies

µ̃ij(yi) = max
l

µ̃il(yi) ⇐⇒ hi(yi) = j. (11)

From the definition of the functions h̃i(·) [or hi(·)] we have that the space y = x×u
is partitioned in the following way: let y ij be defined as follows

y ij = {yi ∈ R : hi(yi) = j} (12)

i. e. y ij denotes the set of all the variables yi that output the same linguistic variable
ỹij . Thus y is partitioned into disjoint subsets y j1,j2,...,jn+m

defined as follows

y j1,j2,...,jn+m
:= y 1j1

× · · · × y (n+m)jn+m
, ji ∈ {1, 2, . . . , ki}. (13)

In a similar way we may define the sets xij , uij , zij and the sets xj1,j2,...,jn ,
uj1,j2,...,jn and zj1,j2,...,jn . Note now the following fact: for two vectors (x(1), u(1)) ∈
y j1,j2,...,jn+m

and (x(2), u(2)) ∈ y j1,j2,...,jn+m
there maybe

hi(fi(x
(1), u(1))) 6= hi(fi(x

(2), u(2))) (14)

for some i ∈ {1, 2, . . . , n}, i. e. two input vectors belonging to the same subset
y j1,j2,...,jn+m

may point – through the vector – field f(·), to different subsets

zl1,l2,...,ln . Let now Ωl1,l2,...,ln
j1,j2,...,jn+m

be defined as the subset of yj1,j2,...,jn+m that points

– through the vector – field f(·), to the subsets zl1,l2,...,ln , i. e.

Ωl1,l2,...,ln
j1,j2,...,jn+m

:= {(x, u) ∈ y j1,j2,...,jn+m
: h1(z1) = l1, . . . , hn(zn) = ln}
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and define the transition possibilities πl1,...,ln
j1,...,jn+m

as follows

πl1,...,ln
j1,...,jn+m

:=

∫
(x,u)∈Ω

l1,...,ln
j1,...,jn+m

dXdU
∫
(x,u)∈yj1,...,jn+m

dXdU
(15)

where πl1,...,ln
j1,...,jn+m

is a number belonging to a set [0,1] that represents the fraction of

the vectors (x,u) in yj1,...,jn+m that points – through the vector field f(·) to the set
xl1,...,ln . Obviously ∑

l1,...,ln

πl1,...,ln
j1,...,jn+m

= 1. (16)

In order to present the lemma of Section 3, we define the indicator function: Let
I l1,l2,...,ln
j1,j2,...,jn+m

denote the indicator function of the subset Ωl1,l2,...,ln
j1,j2,...,jn+m

, that is,

I l1,...,ln
j1,...,jn+m

(x, u) =

{
α if (x, u) ∈ Ωl1,...,ln

j1,...,jn+m

0 otherwise
(17)

where α denotes the firing strength of the rule.
Using the above definitions, we can see that the system in Eq. (8) is described by

fuzzy rules of the form

Rl1,...,ln
j1,...,jn+m

⇐⇒

IF y1 is ỹ1j1 AND . . .

AND yn+m is ỹ(n+m)jn+m

THEN

z1 is z̃1l1 AND · · · AND zn is z̃nln

with possibility πl1,...,ln
j1,...,jn+m

(18)

where obviously ỹiji = h̃i(yi(k)) and z̃ili = h̃i(zi) = h̃i(fi(x, u)).
In the above notation, if j1 = l1 and j2 = l2 and . . . and jn = ln, then these

points participate to the definition of the same fuzzy rule. If j1 6= l1 or j2 6= l2 or or
jn 6= ln, then these points define alternative fuzzy rules describing this transition.
Consider now the next definition.

Definition 2.1. (FS) A Fuzzy System – (FS) is a set of Fuzzy Rules of the form

(Rl1,l2,...,ln
j1,j2,...,jn+m

); the system in Eq. (6) is called the Underlying System – (US) of the

previously defined FS. Alternatively, the system in Eq. (8) will be called a Generator

of the FS that is described by the rules (Rl1,l2,...,ln
j1,j2,...,jn+m

).

Due to the linguistic description of the variables of the FS it is not rare to have
more than one systems of the form in Eq. (8) to be generators for the FS that is

described by the rules (Rl1,l2,...,ln
j1,j2,...,jn+m

).
Define now the following system

z =
∑

z̄l1,...,ln
j1,...,jn+m

× I l1,...,ln
j1,...,jn+m

(x, u). (19)
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Where z̄l1,...,ln
j1,...,jn+m

∈ Rn be any constant vector containing the centers of each fuzzy

variable zi and satisfy hi(z̄
l1,...,ln
j1,...,jn+m

(i)) = li where z̄l1,...,ln
j1,...,jn+m

(i) denotes the ith

entry of z̄l1,...,ln
j1,...,jn+m

Then, according to [5, 24] the system in (19) is a generator for

the FS (Rl1,l2,...,ln
j1,j2,...,jn+m

).

It is obvious that Eq. (19) can be also valid for dynamic systems. In its dynamical
form it becomes

x(k + 1) =
∑

x̄l1,...,ln
j1,...,jn+m

× I l1,...,ln
j1,...,jn+m

(x(k), u(k)) (20)

Where x̄l1,...,ln
j1,...,jn+m

∈ Rn be any vector satisfying hi(x̄
l1,...,ln
j1,...,jn+m

(i)) = li where x̄l1,...,ln
j1,...,jn+m

(i)

denotes the ith entry of x̄l1,...,ln
j1,...,jn+m

3. THE HONNF’S AS FUZZY RULE APPROXIMATORS

The main idea in presenting the main result of this section lies on the fact that func-
tions of high order neurons are capable of approximating discontinuous functions;
thus, we use high order neural network functions in order to approximate the indi-
cator functions I l1,...,ln

j1,...,jn+m
. However, in order the approximation problem to make

sense the space y := x × u must be compact. Thus, our first assumption is the
following:

(A.1) y := x × u is a compact set.

Notice that since y ⊂ Rn+m the above assumption is identical to the assumption
that it is closed and bounded. Also, it is noted that even if y is not compact we may
assume that there is a time instant T such that (x(k), u(k)) remain in a compact
subset of y for all k < T ; i. e. if y T := {(x(k), u(k)) ∈ y , k < T} We may replace
assumption (A.1) by the following assumption

(A.2) y T is a compact set.

It is worth noticing, that while assumption (A.1) requires the system in Eq. (7)
solutions to be bounded for all u(k) ∈ U and x(0) ∈ X, assumption (A.2) requires
the system in Eq. (7) solutions to be bounded for a finite time period; thus, assump-
tion (A.1) requires the system in Eq. (7) to be bounded input bounded state (BIBS)
stable while assumption (A.2) is valid for systems that are not BIBS stable and,
even more, for unstable systems and systems with finite escape times.

We are now ready to show that high order neural network functions are capable
of approximating the indicator functions I l1,...,ln

j1,...,jn+m
. Let us define the following high

order neural network functions (HONNFs).

N(x, u; w,L) =

L∑

k=1

wk

∏

j∈Ik

Φ
dj(k)
j . (21)
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Where {I1, I2, . . . , IL} is a collection of L not-ordered subsets of {1, 2, . . . ,m+n},
dj(k) are non-negative integers, Φj are sigmoid functions of the state or the input,
which are the elements of the following vector

Φ =




Φ1

...
Φn

Φn+1

...
Φm+n




=




S(x1)
...

S(xn)
S(u1)

...
S(um)




(22)

where

S(u) or S(x) = a
1

1 + e−βx
− γ (23)

and w := [w1 · · · wL]T are the HONNF weights. Eq. (21) can also be written

N(x, u; w,L) =
L∑

k=1

wksk(x, u). (24)

Where sk(x, u) are high order terms of sigmoid functions of the state and/or
input.

The next lemma [24] states that a HONNF of the form in Eq. (24) can approxi-

mate the indicator function I l1,...,ln
j1,...,jn+m

.

Lemma 3.1. Consider the indicator function I l1,...,ln
j1,...,jn+m

and the family of the HON-

NFs N(x, u; w,L). Then for any ε > 0 there is a vector of weights wj1,...,jn+m;l1,...,ln

and a number of Lj1,...,jn+m;l1,...,ln high order connections such that

sup
(x,u)∈ȳ

{I l1,...,ln
j1,...,jn+m

(x, u) − N(x, u; wj1,...,jn+m;l1,...,ln , Lj1,...,jn+m;l1,...,ln)} < ε

where ȳ ≡ y if assumption (A.1) is valid and ȳT ≡ y if assumption (A.2) is valid.

Let us now keep Lj1,...,jn+m;l1,...,ln constant, i. e. let us preselect the number of
high order connections, and let us define the optimal weights of the HONNF with
Lj1,...,jn+m;l1,...,ln high order connections as follows

w̄j1,...,jn+m;l1,...,ln := arg min
w∈Rj1,...,jn+m;l1,...,ln

×
{

sup
(x,u)∈ȳ

∣∣∣I l1,...,ln
j1,...,jn+m

(x, u) − N(x, u; w,Lj1,...,jn+m;l1,...,ln)
∣∣∣
}

and the modelling error as follows

νl1,...,ln
j1,...,jn+m

(x, u) = I l1,...,ln
j1,...,jn+m

(x, u) − N(x, u; wj1,...,jn+m;l1,...,ln , Lj1,...,jn+m;l1,...,ln)
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It is worth noticing that from Lemma 3.1, we have that sup(x,u)∈ȳ

∣∣∣νl1,...,ln
j1,...,jn+m

(x, u)
∣∣∣

can be made arbitrarily small by simply selecting appropriately the number of high
order connections.

Using the approximation Lemma 3.1, it is natural to approximate system in
Eq. (20) by the following dynamical system

z(k + 1) =
∑

x̄l1,...,ln
j1,...,jn+m

(x, u) × N(z(k), u(k); wj1,...,jn+m;l1,...,ln , Lj1,...,jn+m;l1,...,ln).

Let now x(k)[x(0), u(k)] denote the solution in Eq. (20) given that the initial state
at t = 0 is equal to χ(0) and the input is u(k). Similarly we define z(k)[z(0), u(k)].
Also let

ν(z(k), u(k)) =
∑

(x̄l1,...,ln
j1,...,jn+m

(x, u) × νl1,...,ln
j1,...,jn+m

(z(k), u(k))). (25)

Then, it can be easily shown that

z(k)[z(0), u(k)] = x(k)[z(0), u(k)] + ν[z(k), u(k)]. (26)

Note now that from the approximation Lemma 3.1 and the definition of ν(z(k), u(k))
we have that modeling error can be made arbitrarily small provided that (z(k), u(k))
remain in a compact set (e. g. ȳ).

Theorem 3.2. (Kosmatopoulos and Christodoulou [24], Christodoulou et al. [5])

Consider the FDS (Rl1,...,ln
j1,...,jn+m

) and suppose that system in Eq. (7) is its underlying

system. Assume that either assumptions (A.1) or (A.2) hold. Also consider the
HONNF in [5]. Then, for any ε > 0 there exists a matrix Θ∗ and a number L∗ high
order connections and Θ = Θ∗ is a generator for the FDS described by the rules

Rl1,...,ln
j1,...,jn+m

⇐⇒

IF y1 is ỹ1j1 AND · · ·
AND yn+m is ỹ(n+m)jn+m

THEN

χ1 is ỹ1l1 AND · · · AND χn is ỹnln

with possibility π̂l1,...,ln
j1,...,jn+m

where
max

∣∣∣πl1,...,ln
j1,...,jn+m

− _
π

l1,...,ln
j1,...,jn+m

∣∣∣ < ε.

4. DIRECT ADAPTIVE NEURO–FUZZY CONTROL

4.1. Problem formulation and neuro-fuzzy representation

4.1.1. Problem formulation

We consider affine in the control, nonlinear dynamical systems of the form

ẋ = f(x) + G(x) · u
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y = x (27)

where the state x ∈ Rn is assumed to be completely measured, the control u is in
Rn, f is an unknown smooth vector field called the drift term and G is a matrix
with columns the unknown smooth controlled vector fields gi, i = 1, 2, . . . , n and
G = [g1, g2, . . . , gn]. The above class of continuous-time nonlinear systems are called
affine, because in (27) the control input appears linear with respect to G. The main
reason for considering this class of nonlinear systems is that most of the systems
encountered in engineering, are by nature or design, affine. Furthermore, we note
that non affine systems of the form given in (1) can be converted into affine, by
passing the input through integrators, a procedure known as dynamic extension.

The state regulation problem is known as our attempt to force the state to zero
from an arbitrary initial value by applying appropriate feedback control to the plant
input. However, the problem as it is stated above for the system (27), is very
difficult or even impossible to be solved since the vector fields f , gi, i = 1, 2, . . . , n,
are assumed to be completely unknown. To overcome this problem we assume that
the unknown plant can be modeled by the following neuro-fuzzy model, where the
weight values W ∗ and W ∗

1 are unknown.

ẋ = −Ax + XW ∗S(x) + X1W
∗
1 S1(x)u (28)

Therefore, the state regulation problem is analyzed for the system (28) instead of
(27). Since, W ∗ and W ∗

1 are unknown, our solution consists of designing a control law
u(W,W1, x) and appropriate update laws for W and W1 to guarantee convergence of
the state to zero and in some cases,which will be analyzed in the following sections,
boundedness of x and of all signals in the closed loop.

The following mild assumptions are also imposed on (27), to guarantee the exis-
tence and uniqueness of solution for any finite initial condition and u ∈ U .

Proposition 4.1. Given a class U of admissible inputs, then for any u ∈ U and any
finite initial condition, the state trajectories are uniformly bounded for any finite
T > 0. Hence, |x(T )| < ∞.

Proposition 4.2. The vector fields f, gi, i = 1, 2, . . . , n are continuous with respect
to their arguments and satisfy a local Lipchitz condition so that the solution x(t) of
(27) is unique for any finite initial condition and u ∈ U .

4.1.2. Neuro-fuzzy representation

We are using an affine in the control fuzzy dynamical system, which approximates
the system in (27) and uses two fuzzy subsystem blocks for the description of f(x)
and G(x) as follows

f̂(x) = −Ax̂ +
∑

f̄ l1,...,ln
j1,...,jn

× I l1,...,ln
j1,...,jn

(x) (29)

ĝi(x) =
∑

(ḡi)
l1,...,ln
j1,...,jn

× I1
l1,...,ln
j1,...,jn

(x) (30)

where the summation is carried out over the number of all available fuzzy rules, I, I1
are appropriate fuzzy rule indicator functions and the meaning of indices •

l1,...,ln
j1,...,jn

has already been described in Section 2.
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According to Lemma 3.1, every indicator function can be approximated with the
help of a suitable HONNF. Therefore, every I, I1 can be replaced with a correspond-
ing HONNF as follows

f̂(x) = −Ax̂ +
∑

f̄ l1,...,ln
j1,...,jn

× N l1,...,ln
j1,...,jn

(x) (31)

ĝi(x) =
∑

(ḡi)
l1,...,ln
j1,...,jn

× N1
l1,...,ln
j1,...,jn

(x) (32)

where N, N1 are appropriate HONNFs.
In order to simplify the model structure, since some rules result to the same output

partition, we could replace the NNs associated to the rules having the same output
with one NN and therefore the summations in (31), (32) are carried out over the
number of the corresponding output partitions. Therefore, the affine in the control
fuzzy dynamical system in (29), (30) is replaced by the following equivalent affine
Recurrent High Order Neural Network (RHONN), which depends on the centers of
the fuzzy output partitions f̄l and ḡi,l

˙̂x = −Ax̂ +

Npf∑

l=1

f̄ × Nl(x) +

n∑

i=1

(
Npgi∑

l=1

(ḡi)l × N1l(x)

)
ui. (33)

Or in a more compact form

˙̂x = −Ax̂ + XWS(x) + X1W1S1(x)u. (34)

Where A is a n×n stable matrix which for simplicity can be taken to be diagonal as
A = diag[a1, a2, . . . , an] , X, X1 are matrices containing the centres of the partitions
of every fuzzy output variable of f(x) and g(x) respectively, S(χ), S1(χ) are matrices
containing high order combinations of sigmoid functions of the state χ and W,W1

are matrices containing respective neural weights according to (24) and (33). The
dimensions and the contents of all the above matrices are chosen so that XWS(χ) is
a n×1 vector and X1W1S1(χ) is a n×n matrix. Without compromising the generality
of the model we assume that the vector fields in (30) are such that the matrix G
is diagonal. For notational simplicity we assume that all output fuzzy variables are
partitioned to the same number, m, of partitions. Under these specifications X is a
n×n ·m block diagonal matrix of the form X = diag(X1, X2, . . . , Xn) with each Xi

being an m-dimensional raw vector of the form

Xi =
[
f̄ i
1 f̄ i

2 · · · f̄ i
m

]

or in a more detailed form

X =




f̄1
1 · · · f̄1

m 0 · · · 0 0 · · · 0
0 · · · 0 f̄2

1 · · · f̄2
m 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0 f̄n

1 · · · f̄n
m



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where f̄ i
p denotes the center or the fuzzy pth partition of fi. These centers can

be determined manually or automatically with the help of a fuzzy c-means clus-
tering algorithm as a part of the off-line structural identification procedure. Also,

S(χ) =
[
s1(χ) . . . sk(χ)

]T
, where each si(χ) with i = {1, 2, . . . , k}, is a high

order combination of sigmoid functions of the state variables and W is a n · m × k

matrix with neural weights. W assumes the form W =
[
W 1 · · · Wn

]T
, where

each W i is a matrix [wi
j l]m×k

. X1 is a n × n · m block diagonal matrix X1 =

diag(1X1, 1X2, . . . , 1Xn) with each 1Xi being an m-dimensional raw vector of the
form

1Xi =
[
ḡi,i
1 ḡi,i

2 · · · ḡi,i
m

]
,

or in a more detailed form

1X =




ḡ1,1
1 · · · ḡ1,1

m 0 · · · 0 0 · · · 0

0 · · · 0 ḡ2,2
1 · · · ḡ2,2

m 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0 ḡn,n

1 · · · ḡn,n
m




where ḡi i
k denotes the center or the kth partition of gii. W1 is a m · n × n block

diagonal matrix W1 = diag(1W 1, 1W 2, . . . , 1Wn), where each 1W i is a column vector

[1wi
j l]m×1

of neural weights. Finally, S1(χ) is a n × n diagonal matrix with each

diagonal element si(χ) being a high order combination of sigmoid functions of the
state variables.

According to the above definitions the configuration of the F-RHONN approxi-
mator is shown in Figure 1. When the inputs are given into the fuzzy-neural network
shown in Figure 1, the output of layer IV gives indicator function outputs which ac-
tivate the corresponding rules and are calculated by Eq. (24). At layer V, each node
performs a fuzzy rule while layer VI gives the function output.

The approximator of indicator functions, has four layers. At layer I, the input
nodes represent input and state measurable variables. At layer II, the nodes repre-
sent the values of the sigmoidal functions. At layer III, the nodes are the values of
high order sigmoidal combinations. The links between layer III and layer IV are fully

connected by the weighting vectors W =
[
W 1 · · · Wn

]T
, the adjustable param-

eters. Finally, at layer IV the output represents the values of indicator functions.
It has to be mentioned here that the proposed neuro-fuzzy representation, fi-

nally given by (34), offers some advantages over other fuzzy or neural adaptive
representations. Considering the proposed approach from the adaptive fuzzy sys-
tem (AFS) point of view, the main advantage is that the proposed approach is
much less vulnerable in initial AFS design assumptions because there is no need for
a-priori information related to the IF part of the rules (type and centers of member-
ship functions, number of rules). This information is replaced by the existence of
HONNFs. Considering the proposed approach from the NN point of view, the final
representation of the dynamic equations is actually a combination of High Order
Neural Networks, each one being specialized in approximating a function related
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Fig. 1. Configuration of a neuro-fuzzy (F-RHONN) approximator.

to a corresponding center of output state membership function. This way, instead
of having one large HONNF trying to approximate “everything” we have many,
probably smaller, specialized HONNFs. Conceptually, this strategy is expected to
present better approximation results; this is also verified in the simulations section.
Moreover, as it will be seen in Section 4.2.1, due to the particular bond of each
HONNF with one center of an output state membership function, the existence of
the control law is assured by introducing a novel technique of parameter “hopping”
in the corresponding weight updating laws.

4.2. Adaptive regulation – Complete matching

In this subsection we investigate the adaptive regulation problem when the modeling
error term is zero, or in other words, when we have complete model matching. Under
this assumption the unknown system can be written as (28), where x ∈ Rn is the
system state vector, u ∈ Rn are the control inputs, X, X1 are n×n·m block diagonal
matrices, W ∗ is a n·m×k matrix of synaptic weights, W ∗

1 is a m·n×n block diagonal
matrix and A is a n×n matrix with positive eigenvalues which for simplicity can be
taken diagonal. Finally, S(x) is a n-dimensional vector and S1(x) is a n×n diagonal
matrix with each diagonal element si(x) being a high order combination of sigmoid
functions of the state variables.

Let us take a function h(x) : Rn → R+ of class C2 having the following form

h(x) =
1

2
|x|2 =

1

2
xT x (35)
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which involves the state variables. The derivative of the above equation with respect
to time according to Eq. (28) is

ḣ(x) =
∂hT

∂x

∂x

∂t
=

∂hT

∂x
[−Ax + XW ∗S(x) + X1W

∗
1 S1(x)u]

which is linear with respect to W ∗ and W ∗
1 and can be written as

ḣ +
∂hT

∂x
Ax =

∂hT

∂x
XW ∗S(x) +

∂hT

∂x
X1W

∗
1 S1(x)u. (36)

Define now, the estimation error as

v
∆
=

∂hT

∂x
XWS(x) +

∂hT

∂x
X1W1S1(x)u − ḣ − ∂hT

∂x
Ax (37)

v
∆
=

∂hT

∂x
XWS(x)+

∂hT

∂x
X1W1S1(x)u− ∂hT

∂x
XW ∗S(x)− ∂hT

∂x
X1W

∗
1 S1(x)u

⇒ v
∆
=

∂hT

∂x
XW̃S(x)+

∂hT

∂x
X1W̃1S1(x)u (38)

where W and W1 are estimates of W ∗ and W ∗
1 respectively, obtained by update laws

which are to be designed in the sequel. This signal cannot be measured since ḣ is
unknown. To overcome this problem, we use the following filtered version of error v

v = ξ̇ + κξ

and according to Eq. (37) we have that

v = −ḣ +
∂hT

∂x
[−Ax + XWS(x) + X1W1S1(x)u] (39)

ξ̇ + κξ = −ḣ +
∂hT

∂x
[−Ax + XWS(x) + X1W1S1(x)u] (40)

where κ a strictly positive constant. To implement Eq. (40), we take

ξ
∆
= ς − h. (41)

Employing Eq. (41), Eq. (40) can be written as

ς̇ + κς = κh +
∂hT

∂x
[−Ax + XWS(x) + X1W1S1(x)u] (42)

with state ς ∈ R. This method is referred to as error filtering. Furthermore, Eq. (42)
substituting Eq. (35) becomes

ς̇ + κς = κh − xT Ax + xT XWS(x) + xT X1W1S1(x)u. (43)
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To continue, consider the Lyapunov-like function

L =
1

2
ξ2 +

1

2
tr

{
˙̃WT W̃

}
+

1

2
tr

{
˙̃WT

1 W̃1

}
. (44)

Where W̃ = W − W ∗ and W̃1 = W1 − W ∗
1

If we take the derivative of Eq. (44) with respect to time we obtain

L̇ = ξξ̇ + tr
{

ẆT W̃
}

+ tr
{

ẆT
1 W̃1

}
. (45)

Employing Eqs. (40), (45) becomes

L̇ = −κξ2+ξ[−ḣ−xT Ax+xT XWS(x)+xT X1W1S1(x)]+tr
{

ẆT W̃
}

+tr
{

ẆT
1 W̃1

}

which together with Eq. (36) gives

L̇ = −κξ2 + ξ[−xT XW ∗S(x)xT X1W
∗
1 S1(x)u + xT XWS(x) + xT X1W1S1(x)u]

+ tr
{

ẆT W̃
}

+ tr
{

ẆT
1 W̃1

}

or equivalently

L̇ = −κξ2 + ξxT XW̃S(x) + ξxT X1W̃1S1(x)u + tr
{

ẆT W̃
}

+ tr
{

ẆT
1 W̃1

}
. (46)

Hence, if we choose

tr
{

ẆT W̃
}

= −ξxT XW̃S(x) (47)

and
tr

{
ẆT

1 W̃1

}
= −ξxT X1W̃1S1(x)u (48)

L̇ becomes
L̇ = −κξ2 ≤ 0 (49)

which means that L̇ is negative semidefinite. It can be easily verified that Eqs. (47),
(48) after using property (2) of Section 2.1 and making the appropriate operations,
can be element wise written as

a) for the elements of W i

wi
jl = −ξf̄ i

jxisl(x) (50)

b) for the elements of 1W i

ẇi
j1 = −ξḡii

j xiuisi(x) (51)

or equivalently 1Ẇ i = −(1Xi)T ξxiuisi(x) for all i, j = 1, 2, . . . , n and l = 1, 2, . . . , k.

Equations (50) and (51) can be finally written in a compact form as

Ẇ = −ξXT xST (x) (52)
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Ẇ1 = −ξXT
1 x′US1(x) (53)

where ξ is a scalar magnitude, x′ is a diagonal matrix such that x′ =diag [x1, x2, . . . , xn]
and U = diag [u1, u2, . . . , un].

Now we can prove the following lemma

Lemma 4.3. Consider the system

ẋ = −Ax + XW ∗S(x) + X1W
∗
1 S1(x)u

ς̇ = −κς + κh − xT Ax + xT XWS(x) + xT X1W1S1(x)u

ξ
∆
= ς − h

h(x) = 1
2 |x|2 .

The update laws

Ẇ = −ξXT xST (x), Ẇ1 = −ξXT
1 x′US1(x)

guarantee the following properties

• ξ, |x| ,W,W1, ς ∈ L∞

• |ξ| ∈ L2

• limt→∞ ξ(t) = 0, limt→∞ Ẇ (t) = 0, limt→∞ Ẇ1(t) = 0

provided that u ∈ L∞.

P r o o f . From Eq. (49) we have that L ∈ L∞ which implies ξ,W,W1 ∈ L∞. Since
u ∈ L∞ then x ∈ L∞, hence h ∈ L∞. Furthermore, ξ = ζ − h, hence ζ ∈ L∞.
Since L is a monotone decreasing function of time and bounded from below, the
limt→∞ L(t) = L∞ exists so by integrating L̇ from 0 to ∞ we have

∫ ∞

0

|ξ|2 dt =
1

r
|L(0) − L∞| < ∞

which implies that |ξ| ∈ L2. We also have that

ξ̇ = −κξ + xT XW̃S(x) + xT X1W̃1S1(x)u

Hence, ξ̇ ∈ L∞ provided that u ∈ L∞. Having in mind that ξ ∈ L2 ∩ L∞ and
ξ̇ ∈ L∞, applying Barbalat’s Lemma [17] we conclude that limt→∞ ξ(t) = 0. Now,
using the boundedness of u, S(x), S1(x), x and the convergence of ξ(t) to zero, we
have that Ẇ , Ẇ1 also converge to zero. ¤

To proceed further, we observe that ḣ can be written as

ḣ = xT [−Ax + XWS(x) + X1W1S1(x)u] − xT XW̃S(x) − xT X1W̃1S1(x)u.
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Hence, if we choose the control input u to be

u = − [X1W1S1(x)]
−1

XWS(x) (54)

then ḣ becomes

ḣ = −xT Ax − xT XW̃S(x) − xT X1W̃1S1(x)u. (55)

Moreover, Eq. (55) can be written

ḣ ≤ − c

2
|x|2 − ξ̇ − κξ, (56)

where c = 2nλmin(A), with λmin(A) denoting the minimum eigenvalue of matrix A.
Observe that Eq. (56) is equivalent to

ḣ ≤ −ch − ξ̇ − κξ. (57)

Furthermore,

h = ζ − ξ

hence, Eq. (57) becomes
ς̇ ≤ −cς + cξ − κξ

≤ −cς + (c + κ) |ξ| , (58)

which as it will be seen later, can be used to prove that x(t) → 0.

4.2.1. Introduction to the parameter hopping

It is important to say that, in order to apply the control law given by Eq. (54) we

have to assure the existence of [X1W1S1(χ)]
−1

. Since S1(χ) is diagonal with its
elements si(χ) 6= 0 and X1, W1 are block diagonal the existence of the inverse is
assured when 1Xi · 1W i 6= 0, ∀ i = 1, . . . n. Therefore, W1 has to be confined such
that

∣∣1Xi · 1W i
∣∣ ≥ θi > 0, with θi being a design parameter. In case the boundary

defined by the above confinement is nonlinear the updating W1 can be modified
by using a projection algorithm [17]. However, in our case the boundary surface is
linear and the direction of updating is normal to it because ∇

[
1Xi · 1W i

]
= 1Xi.

Therefore, the projection of the updating vector on the boundary surface is of no
use. Instead, using concepts from multidimensional vector geometry we modify the
updating law such that, when the weight vector approaches (within a safe distance
θi) the forbidden hyper-plane 1Xi · 1W i = 0 and the direction of updating is toward
the forbidden hyper-plane, it introduces a hopping which drives the weights in the
direction of the updating but on the other side of the space, where here the weight
space is divided into two sides by the forbidden hyper-plane. This procedure is
depicted in Figure 2, where a simplified 2-dimensional representation is given. The
magnitude of the hopping can be determined following the vectorial proof given
bellow.
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Fig. 2. Pictorial Representation of parameter hopping.

4.2.2. Vectorial proof of parameter hopping

In selecting the terms involved in parameter hopping we start from the vector defini-
tion of a line, of a plane and the distance of a point to a plane. The equation of a line
in vector form is given by r = a + λt, where a is the position vector of a given point
of the line, t is a vector in the direction of the line and λ is a real scalar. By giving
different numbers to λ we get different points of the line each one represented by the
corresponding position vector r. The vector equation of a plane can be defined by
using one point of the plane and a vector normal to it. In this case r · n = a · n = d
is the equation of the plane, where a is the position vector of a given point on the
plane, n is a vector normal to the plane and d is a scalar. When the plane passes
through zero, then apparently d = 0. To determine the distance of a point B with
position vector b from a given plane we consider Figure 4 and combine the above
definitions as follows. Line BN is perpendicular to the plane and is described by
vector equation r = b + λn, where n is the normal to the plane vector. However,
point N also lies on the plane and in case the plane passes through zero

r · n = 0 ⇒ (b + λn) · n = 0 ⇒ λ = −b·n
‖n‖ .

Apparently, if one wants to get the position vector of B́ (the symmetrical of B in
respect to the plane), this is given by

r = b − 2 b·n
‖n‖n.

In our problem b = 1W i, our plane is described by the equation 1Xi · 1W i = 0 and
as it has already been mentioned the normal to it is the vector 1Xi.

Theorem 4.4 below introduces this hopping in the weight updating law.
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Theorem 4.4. Consider the control scheme described from equations 52, 54, 55 and
60. The updating law:

a) For the elements of W i given by (50)

b) For the elements of 1W i given by 51 modified according to the hopping method:

1Ẇ i =





−ξ
(
1Xi

)T
xiuisi(x)

if
∣∣1Xi · 1W i

∣∣ > θi

or 1Xi · 1W i = ±θi

and 1Xi · 1Ẇ i <> 0

−ξ
(
1Xi

)T
xiuisi(x)−

−2
“

1Xi1W i(1Xi)
T

”

tr{(1Xi)T 1Xi}

if 0 < 1Xi · 1W i < θi

and 1Xi · 1Ẇ i > 0
or if − θi < 1Xi · 1W i < 0

and 1Xi · 1Ẇ i < 0

(59)

guarantees the properties of Lemma 4.3 and assures the existence of the control
signal.

P r o o f . In order the properties of lemma 4.3 to be valid it suffices to show that by
using the modified updating law for 1W i the negativeness of the Lyapunov function
is not compromised. Indeed the first part of the modified form of 1Ẇ i is exactly the
same with (51) and therefore according to the development of (51) the negativeness
of V is in effect. The first part is used when the weights are at a certain distance
(condition if

∣∣1Xi · 1W i
∣∣ > θi ) from the forbidden plane or at the safe limit (con-

dition 1Xi · 1W i = ±θi) but with the direction of updating moving the weights far
from the forbidden plane (condition 1Xi · 1Ẇ i <> 0).

In the second part of 1Ẇ i, term − 2
tr{(1Xi)T 1Xi}

1Xi 1W i (1Xi)T determines the

magnitude of weight hopping, which as explained in the vectorial proof of “hopping”
and is depicted in Figure 4 has to be two times the distance of the current weight
vector to the forbidden hyper-plane. Therefore the existence of the control signal
is assured because the weights never reach the forbidden plane. Regarding the
negativeness of V̇ we proceed as follows.

Let that 1W ∗i contains the actual unknown values of 1W i such that
∣∣1Xi · 1W ∗i

∣∣ À θi

and that 1W̃ i = 1W i − 1W ∗i. Then, the weight hopping can be equivalently written
with respect to 1W̃ i as −2θi

1W̃ i/‖1W̃ i‖. Under this consideration the modified

updating law is rewritten as 1Ẇ i = −ξ
(
1Xi

)T
xiuisi1(x) − 2θi

1W̃ i/‖1W̃ i‖. With
this updating law it can be easily verified that

L̇ = −κξ2 − γ1Θ

with Θ being a positive constant expressed as

Θ =
∑

2θi

(
(1W̃ i)T )1W̃ i)

)
/‖1W̃ i‖ ≥ 0
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where the summation includes all weight vectors which require hopping.

Therefore, the negativeness of L̇ is actually strengthened due to the last negative
term. ¤

The inclusion of weight hopping in the weights updating law guarantees that the
control signal does not go to infinity. Apart from that, it is also of practical use
to assure that X1W1S1(x) does not go even temporarily to infinity because in this
case the method may become algorithmically unstable driving at the same time the
control signal to zero failing to control the system. To assure that this situation
does not happen we have again to assure that

∣∣1Xi · 1W i
∣∣ < ρi with ρi being again

a design parameter determining an external limit for 1Xi · 1W i. Following the same
lines of thought with the case of weight hopping introduced above we could again
consider the forbidden hyperplanes being defined by the equation

∣∣1Xi · 1W i
∣∣ = ρi.

When the weight vector reaches one of the forbidden hyper-planes 1Xi · 1W i = ρi

and the direction of updating is toward the forbidden hyper-plane, a new hopping
is introduced which moves the weights to the other forbidden hyper-plane keeping
however the direction of the updating intact. This procedure is depicted in Fig-
ure 3, in a simplified 2-dimensional representation. The magnitude of hopping is
− 2

tr{(1Xi)T 1Xi}
1Xi 1W i (1Xi)T being determined by following again the same vec-

torial proof and Figure 4. By performing hopping when 1Xi · 1W i reaches either the
inner or outer forbidden planes, 1Xi · 1W i is confined to lie in space P defined by
these hyper-planes. The weight updating law for 1W i incorporating the two hopping
conditions can now be expressed as

XW=0
XW=è

XW=-è

w
1

w
2

Weight
updating
direction

XW=ñ

XW=-ñ

P

Outer
Hopping

Fig. 3. Pictorial Representation of inner and outer parameter hopping.
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Fig. 4. Vector explanation of parameter hopping.

1Ẇ i =





−ξ
(
1Xi

)T
xiuisi(x)

if 1Xi · 1W i ∈ P
or 1Xi · 1W i = (±θi or ± ρi)

and 1Xi · 1Ẇ i <> or
>< 0

−ξ
(
1Xi

)T
xiuisi(x)−

− 2
“

1Xi1W i(1Xi)
T

”

tr{(1Xi)T 1Xi}

if 0 < 1Xi · 1W i < θi

and 1Xi · 1Ẇ i > 0
or if − θi < 1Xi · 1W i < 0

and 1Xi · 1Ẇ i < 0
or if 1Xi · 1W i < −ρi

and 1Xi · 1Ẇ i > 0
or if 1Xi · 1W i > ρi

and 1Xi · 1Ẇ i < 0

(60)

The following lemma presents the properties of the hopping algorithm in detail.

Lemma 4.5. The updating law (60) incorporating the two ‘hopping’ conditions,
can only make Lyapunov derivative more negative and in addition guarantee that
1Xi · 1W i ∈ P for all i = 1, 2, . . . , n, provided that 1Xi(0) · 1W i(0) ∈ P .

P r o o f . In order to prove that the hopping modification given by (60) can only
make L̇ more negative, we go with the following cases.

Case 1: Activation of first (inner) hopping condition
∣∣1Xi · 1W i

∣∣ ≤ θi.

This case has already been examined in Theorem 4.4. L̇ is augmented by the
following quantity

<a = −γ1Θ = −γ1

∑
2θi

(
(1W̃ i)T )1W̃ i)

)
/‖1W̃ i‖

where the summation includes all weight vectors which require inner hopping. Ob-
viously <a < 0.

Case 2: Activation of second (outer) hopping condition
∣∣1Xi · 1W i

∣∣ ≥ ρi.
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Following the same lines of proof as with Theorem 4.4 it is easy to conclude that
in this case L̇ is augmented by the following quantity

<b = −γ1Θ1 = −γ1

∑
2ρi

(
(1W̃ i)T )1W̃ i)

)
/‖1W̃ i‖

where the summation includes all weight vectors which require outer hopping. Ob-
viously <b < 0

It is obvious that by following the procedure of inner or outer hopping, once
the initial weights are such that 1Xi(0) · 1W i(0) ∈ P then 1Xi · 1W i will never
leave P . ¤

Lemma 4.6. Let η be a C1 time function defined on [0, T ) where (0 ≤ T ≤ ∞),
satisfying

η̇ ≤ −cη + a(t) + β(t),

where c is a strictly positive constant and a(t) and β(t) are two positive time func-
tions belonging to L2(0, T ) that is

∫ T

0

a2(t) dt ≤ M1 < ∞,

and
∫ T

0

β2(t) dt ≤ M2 < ∞.

Under this assumption, η(t) is upper bounded on (0, T ) and precisely

η(t) ≤ ξ
M1

c

[
η(0) +

√
2
c

√
M2

]
, ∀ t ∈ [0, T ),

moreover, if T is infinite then

lim sup
t→∞

η(t) ≤ 0.

Observe that (58) with κ = 1 becomes

ς̇ ≤ −cς + (1 + κ) |ξ| , (61)

however, from Lemma 2 we have that |ξ| ∈ L2 so (1 + c) |ξ| ∈ L2. Furthermore,
observe that obviously T can be extended to be infinite. Hence, Lemma 4 can be
applied in (61) with M1 = 0 to obtain

lim sup
t→∞

ς(t) ≤ 0. (62)

Moreover, since h = ζ − ξ and h ≥ 0 we have ς(t) ≥ ξ(t), or

−ς(t) ≤ −ξ(t), (63)
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but from Lemma 2 we have
lim
t→∞

ξ(t) = 0. (64)

Hence, (63) together with (62) and (64) prove

lim
t→∞

ς(t) = 0. (65)

Furthermore, since h = ζ − ξ, (64) and (65) yield

lim
t→∞

h (x (t)) = 0,

which by the definition of h(x) finally implies that

lim
t→∞

|x (t)| = 0,

therefore, we have proven the following theorem.

Theorem 4.7. The closed loop system

ẋ = −Ax + XW ∗S(x) + X1W
∗
1 S1(x)u,

ς̇ = −κς + κh − xT Ax + xT XWS(x) + xT X1W1S1(x)u,

u = − [X1W1S1(x)]
−1

XWS(x), ξ
∆
= ς − h,

h(x) = 1
2 |x|2 ,

κ = 1,

together with update laws given by (50) and (60) guarantee that

lim
t→∞

|x (t)| = 0.

From the aforementioned analysis it is obvious that different choices of h(x) and
κ, lead to different adaptive regulators. It is anticipated that appropriate selection
of κ, could attenuate the effects of the uncertainties that may be present.

Remark 4.8. The control law (54) can be also extended to the following form

u = − [X1W1S1(x)]
−1

(XWS(x) + Kx) (66)

where K is a positive definite diagonal matrix defined by the designer. It can be
easily verified that with this control law ḣ becomes ḣ = −xT Λx − xT XW̃S(x) −
xT X1W̃1S1(x)u. where Λ = A + K is a stable matrix. Therefore, c in (56) becomes
c = 2nλmin(Λ), with λmin(Λ) denoting the minimum eigenvalue of the Λ matrix.
Since λmin(A) ≤ λmin(Λ) the proof of theorem 4.7 is still valid with the property of
lim
t→∞

|x (t)| = 0 being actually enhanced. Therefore term Kx is actually acting as a

robustifying term.

Conclusively, in our approach, referred to as direct adaptive fuzzy-RHONN con-
trol, the control law parameters are estimated on-line except from the centers of the
membership function partitions of vector fields f and gi, which are initially deter-
mined off-line. Moreover, it is assumed that the actual system is parametrized using
these parameters and this is an essential part of direct control schemes. The basic
structure of the direct adaptive fuzzy-RHONN controller is shown in Figure 5.
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Controller Plant Model
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of Partitions

u X

Fig. 5. Overall scheme of the proposed direct adaptive neuro-fuzzy control system.

5. SIMULATION RESULTS

To justify our motivation for using the proposed neuro-fuzzy system representa-
tion, its function approximation abilities are first compared to two well established
approaches. The one uses only recurrent high order neural networks (RHONN) for
system function approximation [46], while the other uses conventional fuzzy adaptive
function approximation(Wang [52]). To demonstrate the potency of the proposed
scheme in controlling an unknown plant, we present three simulation results which
both assume only parametric uncertainty in the control phase. The first aims to
test the ability of the proposed direct control scheme to regulate a ‘Dc Motor’ and
shows a very good behavior. The other presents a comparison between the proposed
method and a simple RHONN direct controller [46] on the same ‘Dc Motor’, which
shows off the performance superiority of the proposed method. Finally, the proposed
scheme is tested on a benchmark problem presenting chaotic behavior, which is also
regulated using the proposed scheme.

5.1. Function approximation abilities of F-HONNF against RHONN’s
and Wang’s approximations, using a well known benchmark

Van der Pol oscillator is usually used as a simple benchmark problem for testing
identification and control schemes. It’s dynamical equations are given by

ẋ1 = x2 (67)

ẋ2 = x2 ·
(
a − x2

1

)
· b − x1 + u. (68)

It is our intention to compare the approximation abilities of the proposed Neuro-
Fuzzy approach with Wang [52] adaptive Fuzzy approach and RHONN [46]. Eq. (68)
is similar with Eq. (27), so we assume that f(x) and g(x) can be approximated using
Wang’s approach and Eq. (3) or alternatively by the XWS and X1W1S1 term of
Eq. (34) in the proposed approach, or WS and W1S1 for RHONN approach [46]
respectively. The weight updating laws are chosen to be: For the Wang approach
([52], page 115)

θ̇f = −γ1e
T Pbcξ(x) (69)

θ̇g = −γ2e
T Pbcξ(x)uc (70)

where only the simplified approach, without parameter projection case was necessary
to be used.
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For the RHONN approach we use the adaptive laws, which are described in
[46], page 37. For the proposed F-HONNF approach we use the following adaptive
laws [51]

Ẇ = −XT PeST (71)

Ẇ1 = −XT
1 PEUST

1 (72)

where E = diag(e1, . . . , en) is a diagonal matrix containing the state variable er-
rors. Numerical training data were obtained by using Eq. (68) with initial conditions[
x1(0) x2(0)

]
=

[
1 1

]
, and a persistently exciting input u = 1 + 0.8 sin(0.001t).

The approximation of the dynamical equations using conventional fuzzy system
approach requires a very large number of fuzzy rules for the approximation of the
unknown functions. Choosing 40 or more membership functions for each variable
xi results in very accurate fuzzy representation. This representation requires 1600
rules, which in turn leads to a parameter explosion when using an adaptive scheme
like that of Eq. (3) and consequently, it takes plenty of time for the simulations.

We are using the proposed approach with Eq. (34) to approximate Van der Pol
oscillator. The proposed Neuro-Fuzzy model was chosen to use 5 output parti-
tions of f and 5 output partitions of g. The number of high order sigmoidal terms
(HOST) used in HONNF’s were chosen to be first 2 (s(x1), s(x2)) and secondly 5
(s(x1), s(x2), s(x1) ·s(x2), s

2(x1), s
2(x2)) for two different simulations with the same

benchmark. Therefore, the number of adjustable weights is 20 or 50 respectively,
which is a much smaller number to that used in the conventional fuzzy approach.

In order our model to be equivalent with regard to other parameters except the
adjustable weights we have chosen terms γ1Pbc in Eq. (69), (70) and P (the updating
learning rate) in Eq. (71), (72) to have the same values. Also, the RHONN model
given from [46] is constructed with the same learning parameters and number of high
order terms with these of F-HONNF approach. The parameters of the sigmoidal
terms were chosen to be a1 = 0.1, a2 = 6, b1 = b2 = 1 and c1 = c2 = 0. Figures 6
and 7 shows the approximation of states x1 and x2 respectively while Figure 8 and 9
gives the evolution of errors x1 and x2.
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Fig. 6. Evolution of variable x1 for Wang, RHONN and F-HONNF approach.
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Table 1. Comparison of Wang, RHONN and FHONNF approaches

for Van der Pol oscillator with 2 HOST.

Wang RHONN FHONNF
MSE x1 0.1038 0.0303 0.0058
MSE x2 0.1401 0.0259 0.0087

Table 2. Comparison of Wang, RHONN and FHONNF approaches

for Van der Pol oscillator with 5 HOST.

Wang RHONN FHONNF
MSE x1 0.1038 0.0180 0.0013
MSE x2 0.1401 0.0149 0.0018

The mean squared error (MSE) for Wang’s, RHONN and F-HONNF approaches
were measured and are shown in Tables 1 and 2, demonstrating a significant (order
of magnitude) increase in the approximation performance , although no a-priori
information regarding fuzzy partitions and membership functions of the inputs were
used.

Conclusively, the comparison between Wang and F-HONNF’s leads to a huge
superiority of F-HONNF’s regarding the number of adjustable parameters and the
approximation abilities. With respect to the RHONN approach the proposed F-
HONNF approach is also much better.

5.2. Direct control of DC Motor with parametric uncertainties

In this section we apply the proposed approach to control the speed of a 1 KW DC
motor with a normalized model described by the following dynamical equations [46]

Ta
dIa

dt
= −Ia − ΦΩ + Va

Tm
dΩ

dt
= ΦIa − K0Ω − mL

Tf
dΦ

dt
= −If + Vf

Φ =
aIf

1 + bIf
. (73)

The states are chosen to be the armature current, the angular speed and the
stator flux x =

[
Ia Ω Φ

]
. As control inputs the armature and the field voltages
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u =
[
Va Vf

]
are used. With this choice, we have




ẋ1

ẋ2

ẋ3


 =




− 1
Ta

x1 − 1
Ta

x2x3

1
Tm

x1x3 − K0

Tm
x2 − mL

Tm

− 1
Tf

x3

a−βx3


 +




1
Ta

0

0 0

0 1
Tf




[
u1

u2

]
. (74)

Which is of a nonlinear, affine in the control form.
In many control schemes of the literature Vf is assumed constant. This may

naturally occur when the field is produced by a permanent magnet or when it may be
separately excited but is intentionally kept constant. This assumption may facilitate
things because if Vf is constant then Φ is constant and the above nonlinear 3rd order
system can be linearized and reduced to a second order form having 2 states (x1 = Ia

and x2 = Ω), with the value Φ being included as a constant parameter.

Ta
dIa

dt
=−Ia − ΦΩ + V

Tm
dΩ

dt
=ΦIa − K0Ω − mL. (75)

In the more general case however Vf is not considered constant and this scheme
can also be used for armature and field weakening control of the separately excited Dc
motor. Moreover, if the motor characteristics are not exactly known we may consider
that the nonlinear model is unknown and therefore its control can be accomplished
using the proposed neuro-fuzzy approach. In this case the regulation problem of a
DC motor is translated as follows: Find a state feedback to force the angular velocity
Ω and the armature current Ia to go to zero, while the magnetic flux varies.

We first assume that the system is described, within a degree of accuracy, by a
2nd order nonlinear neuro-fuzzy system of the form (34), where x1 = Ia and x2 = Ω.
So, the number of states and inputs is n = 2, the number of fuzzy output partitions
of each fi is m = 6 and the depth of high order sigmoid terms k = 5. In this case
si(x) assume high order connection up to the second order. The number of fuzzy
partitions of each gii is selected to be m = 3 using only first order sigmoid term.

˙̂x1=−a1x̂1 + X1W ∗1S(x) + 1X11W ∗1s(x1)u1 (76)

˙̂x2=−a2x̂2 + X2W ∗2S(x) + 1X21W ∗2s(x2)u2 (77)

or in a more detailed form according to the simulation parameters given above

ẋ1=−a1x̂1 + f̄1
1

(
W 1∗

1,1s1(x) + · · · + W 1∗
1,5s5(x)

)
+ · · ·

· · · + f̄1
6

(
W 1∗

6,1s1(x) + · · · + W 1∗
6,5s5(x)

)
+

(
ḡ1,1
1

1W 1∗
1,1 + · · · + ḡ1,1

3
1W 1∗

3,1

)
s(x1)u1

ẋ2=−a2x2 + f̄2
1

(
W 2∗

1,1s1(x) + · · · + W 2∗
1,5s5(x)

)
+ · · · + f̄2

6

(
W 2∗

6,1s1(x) + · · ·
· · · + W 2∗

6,5s5(x)
)

+
(
ḡ2,2
1

1W 2∗
1,1 + · · · + ḡ2,2

3
1W 2∗

3,1

)
s(x2)u2.

However, in the simulations carried out, the actual system is simulated by using
the complete set of equations (74). The produced control law (54) is applied on this
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Table 3. Parameter values

for the DC motor.

Parameter Value
1/T a 148.88 sec−1

1/Tm 42.91 sec−1

K0/Tm 0.0129 N · m/rad
Tf 31.88 sec
mL 0.0
a 2.6
β 1.6

Table 4. Initial variable values

for the DC motor.

Parameter Value
Ia 0.3 p · u
Ω 0.3 p · u
Φ 0.98 p · u
W i 0
1W i 1

system, which in turn produces states x1, x2, which are in the sequel used in the
updating laws of the controller’s weights. In our example control laws are having
the form

u1=− f̄1
1

(
W 1

1,1s1(x) + · · · + W 1
1,5s5(x)

)
+ · · · + f̄1

6

(
W 1

6,1s1(x) + · · · + W 1
6,5s5(x)

)
(
ḡ1,1
1

1W 1
1,1 + · · · + ḡ1,1

3
1W 1

3,1

)
s(x1)

u2=− f̄2
1

(
W 2

1,1s1(x) + · · · + W 2
1,5s5(x)

)
+ · · · + f̄2

6

(
W 2

6,1s1(x) + · · · + W 2
6,5s5(x)

)
(
ḡ2,2
1

1W 2
1,1 + · · · + ḡ2,2

3
1W 2

3,1

)
s(x2)

.

We simulated a 1KW DC motor with parameter values that can be seen in Table 3.

In the control phase, we use the parameters ai = 0.2 and the range of partitions
f1[−182.5667, 0], f2[−19.3627, 30.0566], g11[148, 150] and g22[42, 44]. The initial val-
ues of all variables can be seen in Table 4, where p.u (per unit) denotes relevance to
the nominal value of the variable. W i = 0 and 1W i = 1 denote that weight matrices
W i and 1W i have initial values 0′s and 1′s respectively. Figures 10 and 11 show the
convergence of states x1 and x2 to zero.
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Fig. 10. Convergence of x1 to zero for the Fuzzy-RHONN Model

without dynamic uncertainties.
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Fig. 11. Convergence of x2 to zero for the Fuzzy-RHONN Model

without dynamic uncertainties.
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Fig. 12. Convergence of x1 and x2 to zero for RHONN Model.
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Fig. 13. Convergence of x2 and x2 to zero for Fuzzy-RHONN Model.

5.3. Comparison between RHONN and Fuzzy-RHONN Models
for controlling a DC Motor

As concerning comparison abilities about controlling a DC Motor, Figures 12 and 13
give the evolution of the states x1 and x2, which are the angular velocity and ar-
mature current of the RHONN and Fuzzy-RHONN models, with time respectively.
During the simulations we observe that the RHONN Model converge to zero despair-
ingly slow (after 8 minutes and 32 seconds for 0.3 seconds simulation time) according
to the time we measured with a computer clock, while the proposed adaptive control
algorithm converge to zero very fast (after 2,66 seconds for the same simulation time)
following the same steps. This shows that our method is superior when it comes
to real time problems. Hence applications such as plane control, ESP automobile
control etc. can be handled out by our method very efficiently. Specially, a huge
difference between the two approximations can be seen in Figures 14 and 15 where
we can observe that the evolution of the control input u1 for the RHONN Model
has been exploded while the Fuzzy-RHONN has smooth development, a fact that
shows the superiority of our neuro-fuzzy method. Our method thus can be used in
several critical engineering applications.

5.4. Direct control of Lorenz system with parametric uncertainties

The Lorenz system was derived to model the two-dimensional convection flow of
a fluid layer heated from below and cooled from above. The model represents the
Earth’s atmosphere heated by the ground’s absorption of sunlight and losing heat
into space. It can be described by the following dynamical equations

ẋ1 = σ(x2 − x1)

ẋ2 = ρx1 − x2 − x1x3

ẋ3 = −βx3 + x1x2 (78)

where x1, x2 and x3 represent measures of fluid velocity, horizontal and vertical tem-
perature variations, correspondingly. The parameters σ, ρ and β are positive which
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Fig. 14. Evolution of u1 and u2 for RHONN Model.
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Fig. 15. Evolution of u1 and u2 for Fuzzy-RHONN Model.
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Fig. 17. Evolution of control inputs u1 (red line), u2 (blue line) and u3 (green line)

for the Lorenz model.

represent the Prandtl number, Rayleigh number and geometric factor, correspond-
ingly. Selecting σ = 10, ρ = 28 and β = 8/3 the system presents three unstable
equilibrium points and the system trajectory wanders forever near a strange invari-
ant set called strange attractor presenting thus a chaotic behavior [55].

However, the Lorenz system including control inputs can be expressed as [55]

ẋ1 = σ(x2 − x1) + u1

ẋ2 = ρx1 − x2 − x1x3 + u2

ẋ3 = −βx3 + x1x2 + u3. (79)

The control objective is to derive appropriate state feedback control law to regu-
late the system to one of its equilibria, which is (0, 0, 0). In particular, we consider
that (79) has the following initial condition

x0 = [−0.5, 0.8, 2]T .

The main parameters for the control law (66) and the learning laws (50), (60) are
selected as

A = diag(20, 10, 40)

K = diag(21, 38, 40).

The parameters of the sigmoidals that have been used are α1 = α2 = α3 = 1,
β1 = β2 = β3 = 1 and γ1 = γ2 = γ3 = 0.

In the sequel, we first assume that the system is described, within a degree of
accuracy, by a neuro-fuzzy system of the form (34) with the number of states being
n = 3, the number of fuzzy partitions being p = 5 and the depth of high order sigmoid
terms k = 9. In this case si(x) assume high order connection up to the second order.
Figure 16 shows the convergence of states x1, x2 and x3 to zero exponentially fast.
Also, Figure 17 shows the smooth evolution of the control inputs.
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6. CONCLUSIONS

A direct adaptive control scheme was considered in this paper, aiming at the regu-
lation of non linear unknown plants. The approach is based on a new Neuro-Fuzzy
Dynamical Systems definition, which uses the concept of Fuzzy Dynamical Sys-
tems (FDS) operating in conjunction with High Order Neural Network Functions
(F-HONNFs). Since the plant is considered unknown, we first propose its approxi-
mation by a special form of an affine in the control fuzzy dynamical system (FDS)
and in the sequel the fuzzy rules are approximated by appropriate HONNFs. The
fuzzy-recurrent high order neural networks are used as models of the unknown plant,
practically transforming the original unknown system into a F-RHONN model which
is of known structure, but contains a number of unknown constant value parameters
known as synaptic weights. The proposed scheme does not require a-priori experts’
information on the number and type of input variable membership functions mak-
ing it less vulnerable to initial design assumptions, is computationally extremely
fast and thus can be used in several critical and real-time engineering applications.
Weight updating laws for the involved HONNFs are provided, which guarantee that
the system states reach zero exponentially fast, while keeping all signals in the closed
loop bounded. A novel method of parameter hopping developed for the first time
by the authors, assures the existence of the control signal and is incorporated in
the weight updating law. Simulations illustrate the potency of the method both in
approximation abilities as well as in controlling unknown nonlinear plants such as
the DC-Motor and Lorentz system. Compared to simple RHONN direct control, the
proposed method proves to be superior.

(Received July 11, 2008.)
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