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KYBERNET IK A — VOLUME 4 5 ( 2 0 0 9 ) , NU MB ER 1 , P AG E S 1 3 7 – 1 5 0

A STUDY ON DECENTRALIZED H∞ FEEDBACK
CONTROL SYSTEMS WITH LOCAL QUANTIZERS

Guisheng Zhai, Ning Chen and Weihua Gui

In this paper, we study decentralized H∞ feedback control systems with quantized sig-
nals in local input-output (control) channels. We first assume that a decentralized output
feedback controller has been designed for a multi-channel continuous-time system so that
the closed-loop system is Hurwitz stable and a desired H∞ disturbance attenuation level is
achieved. However, since the local measurement outputs are quantized by a general quan-
tizer before they are passed to the controller, the system’s performance is not guaranteed.
For this reason, we propose a local-output-dependent strategy for updating the quantizers’
parameters, so that the closed-loop system is asymptotically stable and achieves the same
H∞ disturbance attenuation level. We also extend the discussion and the result to the case
of multi-channel discrete-time H∞ feedback control systems.

Keywords: decentralized H∞ feedback control system, quantizer, quantization, matrix in-
equality, output feedback
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1. INTRODUCTION

In classical feedback control theory, various signals or data in the control loop have
been assumed to be passed directly without data loss, except in saturated systems.
However, this is not true in many real applications. For example, in networked
control systems [2, 4] where all signals are transferred through network, package
dropouts or data transfer rate limitations always happen. Another important as-
pect, which is well known in signal processing area, is signal quantization. Since
quantization always exists in computer based control systems, many researchers
have begun to study the analysis and design problems for control systems involv-
ing various quantization methods. Ref. [3] addressed the problem of stabilizing an
unstable linear system by means of quantized state feedback, i. e., state feedback
where the measurements of the system state are quantized. The quantizer in [3]
takes value in a countable set. Ref. [1] defined a quantizer taking value in a finite
set and considered quantized feedback stabilization for linear systems. It has been
shown there that if it is possible to change the sensitivity of the quantizer on the
basis of available quantized measurements, then a hybrid control strategy, for both
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continuous- and discrete-time systems, can be designed to guarantee global asymp-
totic stability. While the approach in [1] relies on the possibility of making discrete
online adjustments of quantizer parameters, Ref. [7] extended the approach for more
general nonlinear systems with general types of quantizers involving the states of the
system, the measured outputs, and the control inputs. The idea and results in [7] are
applied for stabilization of discrete-time LTI systems with quantized measurement
outputs in [8].

Later, Ref. [9] considered the stabilization problem for a discrete-time LTI system
via state feedback involving both quantized states and control inputs. As assumed
in [7], the system considered in [9] is supposed to be stabilizable and a stabilizing
state feedback has been designed without taking quantization into account. How-
ever, the system’s states are quantized before they are passed to the controller, and
the control inputs are quantized before they are passed to the system. This is a nat-
ural setting in networked control systems, where all informations (reference inputs,
plant outputs, control inputs, etc.) are exchanged through a network among control
system components (sensors, controllers, actuators, etc.). Due to the quantization
effects, the desired system stability can not be guaranteed. For this reason, Ref. [9]
defined the two quantizers with general forms as in [7] and then proposed a hybrid
quantized state feedback strategy where the values of the quantizer parameters are
updated at discrete instants of time. Further, they extended the results to H∞
feedback control systems in [10], dealing with both state feedback and dynamic out-
put feedback. The key point is to propose a state-dependent (or output-dependent)
strategy for updating the quantizer’s parameter, so that the system is asymptoti-
cally stable and achieves the same H∞ disturbance attenuation level. It was also
noted in [10] that the control strategies of updating the quantizer’s parameter are
dependent on time in the existing works [1, 7, 8, 9], and such control strategies can
not be applied for the case of H∞ control systems since the value of the disturbance
inputs is not available and thus we can not drive the state into an invariant region,
as done in [7, 8, 9]. As a great contrast, the control strategy in [10] is state or output
dependent, which is usually regarded to have more robustness.

In this paper, we extend the discussion in [10] to decentralized H∞ feedback con-
trol systems, as depicted in Figure. As also noted later, although the discussion and
the result are valid for the case where there are more than three input-output chan-
nels, we assume for notation simplicity that the number of input-output (control)
channels is two. Each channel has its own measurement output yi and generates
its own control input ui through a local controller. The word “local” here means
that although the controller’s structure (coefficient matrices) is computed in an of-
fline manner using the whole system’s various information, the controller’s output ui

only depends on the measurement output yi of the ith channel, while independent
on other channel’s measurement output.

Now, as in our previous work, we assume that for the system, a decentralized
static output feedback controller has been designed such that the closed-loop sys-
tem is stable and some H∞ disturbance attenuation level is achieved. However, the
measurement outputs yi are quantized before they are passed to the controller, and
due to the quantization effects, the desired system stability and H∞ disturbance
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attenuation level can not be guaranteed. Here, we suppose that the quantizers are
in a generalized form and there is a zoom parameter which can adjusted. Then, we
propose to update the quantizers’ parameters in a reasonable decentralized online
manner, i. e., to change the parameter’s value depending on each control channel’s
measurement output information. We show that under some flexible sufficient con-
dition, there exists a decentralized control strategy for updating each quantizer’s
zoom parameter, such that the closed-loop system is asymptotically stable and the
same H∞ disturbance attenuation level is achieved.
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Fig. Decentralized feedback control system with quantized local measurement outputs.

The rest of this paper is organized as follows. Section 2 gives the definition and the
property of generalized quantizer. Section 3 formulates the control problem in the
case of decentralized continuous-time system and proposes a local-output-dependent
strategy for updating the quantizers’ parameters, so that the closed-loop system
is asymptotically stable and achieves the same H∞ disturbance attenuation level.
Section 4 extends the discussion to the case of decentralized discrete-time system,
and obtain nontrivial parallel results. Section 5 gives some important remarks and
observations, and finally Section 6 concludes the paper.

2. QUANTIZER DESCRIPTION

First, we give the definition of a quantizer with general form as introduced in [7]. Let
z ∈ Rl be the variable being quantized. A quantizer is defined as a piecewise constant
function q : Rl → D, where D is a finite subset of Rl. This leads to a partition of
Rl into a finite number of quantization regions of the form {z ∈ Rl : q(z) = i},
i ∈ D. These quantization regions are not assumed to have any particular shapes.
We assume that there exist positive real numbers M and ∆ such that the following
conditions hold:
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1. If

|z| ≤ M (1)

then |q(z) − z| ≤ ∆ . (2)

2. If |z| > M , then |q(z)| > M − ∆.

Throughout this paper, we denote by | · | the standard Euclidean norm in the n-
dimensional vector space Rn, and denote by ‖ · ‖ the corresponding induced matrix
norm in Rn×n. Condition 1 gives a bound on the quantization error when the
quantizer does not saturate. Condition 2 provides a way to detect the possibility
of saturation. We will refer to M and ∆ as the range of q and the quantization
error, respectively. We also assume that q(x) = 0 for x in some neighborhood of the
origin. The example of satisfying the above requirements is given by the quantizer
with rectangular quantization regions in [1, 6].

In the control strategy to be developed below, we will use quantized measurements
of the form

qµ(z)
4
= µq

(
z

µ

)
, (3)

where µ > 0 is the parameter. The extreme case of µ = 0 is regarded as setting the
output of the quantizer as zero. The range of this quantizer is Mµ and the quanti-
zation error is ∆µ. We can view µ as a “zoom” variable: increasing µ corresponds to
zooming out and essentially obtaining a new quantizer with larger range and larger
quantization error, while decreasing µ corresponds to zooming in and obtaining a
quantizer with smaller range but also smaller quantization error. We will update
µ later depending on the system local state (or the local measurement output). In
this sense, it can be considered as another state of the resultant closed-loop system.

3. CONTINUOUS–TIME SYSTEM DESIGN

Although the discussion in this paper can be easily extended to the case where there
are more than two control channels in the system, we focus our attention on the
case of two channels (as in Figure) which are described by





ẋ = Ax + B1w + B21u1 + B22u2

z = C1x + Dw

y1 = C21x

y2 = C22x

(4)

where x ∈ Rn is the system’s state, u1 ∈ Rm1 and u2 ∈ Rm2 are the control inputs
of channel 1 and 2, respectively, w ∈ Rh is the disturbance input, z ∈ Rp is the con-
trolled output, y1 ∈ Rq1 and y2 ∈ Rq2 are the local measurement outputs of channel
1 and 2, respectively. The matrices A, B1, B21, B22, C1, C21, C22 and D are constant
and of appropriate dimension. We assume that the triple (A, [B21 B22], [C

T
21 CT

22]
T )

is stabilizable and detectable.
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Suppose that for the system (4), we have designed a decentralized controller
composed of two local static output feedbacks

u1 = K1y1 , u2 = K2y2 (5)

so that the closed-loop system, composed of (4) and (5), is stable and the H∞ norm
of the transfer function from w to z is less than a specified level γ. More precisely,
the closed-loop system is written as{

ẋ = Aclx + B1w

z = C1x + Dw
(6)

where Acl = A + B21K1C21 + B22K2C22. Then, the hypothesis is that, without
taking quantization into consideration, the gains K1 and K2 in (5) are designed so
that Acl is Hurwitz stable and ‖D+C1(sI −Acl)

−1B1‖∞ < γ . Therefore, according
to the well known Bounded Real Lemma [5], there exists a positive definite matrix
P satisfying the matrix inequality




AT
clP + PAcl PB1 CT

1

BT
1 P −γI DT

C1 D −γI


 < 0 (7)

or equivalently,



AT
clP + PAcl + 1

γ CT
1 C1 PB1 + 1

γ CT
1 D

BT
1 P + 1

γ DT C1 −γI + 1
γ DT D


 < 0 . (8)

Since (8) is a matrix inequality, we can always find a positive definite matrix R
such that 


AT

clP + PAcl + 1
γ CT

1 C1 + R PB1 + 1
γ CT

1 D

BT
1 P + 1

γ DT C1 −γI + 1
γ DT D


 < 0 . (9)

Throughout this paper, we will let λm(·) and λM (·) denote the smallest and the
largest eigenvalue of a symmetric matrix, respectively. Then, for any positive definite
matrix W , the inequalities

λm(W ) |x|2 ≤ xT Wx ≤ λM (W ) |x|2 (10)

hold for any x.
Here, as depicted in Figure, we deal with the case where only quantized local

output information is available. For this reason, we modify the static output feedback
(5) using the quantized information of y1 and y2 as

u1 = K1µ1q1

(
y1

µ1

)
, u2 = K2µ2q2

(
y2

µ2

)
. (11)

For any fixed positive scalars µ1 and µ2, the closed-loop system composed of the
system (4) and the quantized output feedback (11) is given by

{
ẋ = Aclx + B1w + F (µ, y)

z = C1x + Dw ,
(12)
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where F (µ, y) = F1(µ1, y1) + F2(µ2, y2)

F1(µ1, y1)
4
= µ1B21K1

(
q1(

y1

µ1
) − y1

µ1

)

F2(µ2, y2)
4
= µ2B22K2

(
q2

(
y2

µ2

)
− y2

µ2

)
.

(13)

Now, the control problem is very natural. Due to the existence of quantization error,
the stability of the closed-loop system and the desired H∞ disturbance attenuation
level γ is not guaranteed. For this reason, we formulate our control problem as
follows:

Decentralized Quantizer Design Problem. Design a decentralized control
strategy which adjusts µ1 depending on the local output y1 and adjusts µ2 de-
pending on the local output y2 appropriately, so that the stability of the closed-loop
system and the same H∞ disturbance attenuation level γ is achieved.

We are in the position to state and prove the first main result in this paper.

Theorem 1. Assume that for the two quantizers Mi is chosen large enough com-
pared to ∆i so that

Mi > 4∆i
‖PB2iKi‖‖C2i‖

λm(R)
, i = 1, 2 . (14)

Then, there exists a control strategy for updating µi, which is dependent on the
local measurement output yi, such that the closed-loop system (12) is asymptotically
stable and the H∞ disturbance attenuation level γ is achieved.

P r o o f . Since
yi
µi

= C2ix
µi

(i = 1, 2) is quantized before being passed to the feed-

back, we obtain by using the properties of general quantizers in (1) and (2) that
whenever |yi| ≤ Miµi, the inequality

∣∣∣∣
yi

µi
− q

(
yi

µi

)∣∣∣∣ ≤ ∆i (15)

is true. We consider the Lyapunov function candidate

V (x) = xT Px (16)

for the closed-loop system (12). By using the matrix inequality (9), we obtain that
when |yi| ≤ Miµi, the derivative of V (x) along solutions of (12) satisfies

V̇ = (Aclx + B1w + F (µ, y))
T

Px + xT P (Aclx + B1w + F (µ, y))

=
[

xT wT
] [

AT
clP + PAcl PB1

BT
1 P 0

] [
x
w

]
+ 2xT PF (µ, y)

≤
[

xT wT
] [ −R − 1

γ CT
1 C1 − 1

γ CT
1 D

− 1
γ DT C1 γI − 1

γ DT D

] [
x
w

]
+ 2xT PF (µ, y)
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≤ − 1

γ
zT z + γwT w − xT Rx + 2xT P (F1(µ1, y1) + F2(µ2, y2))

≤ − 1

γ
zT z + γwT w

−1

2
λm(R)|x|

(
|x| − 4∆1

‖PB21K1‖
λm(R)

µ1

)

−1

2
λm(R)|x|

(
|x| − 4∆2

‖PB22K2‖
λm(R)

µ2

)

≤ − 1

γ
zT z + γwT w

−1

2
λm(R)

|x|
‖C21‖

(
|y1| − 4∆1

‖PB21K1‖‖C21‖
λm(R)

µ1

)

−1

2
λm(R)

|x|
‖C22‖

(
|y2| − 4∆2

‖PB22K2‖‖C22‖
λm(R)

µ2

)
. (17)

According to (14), we can always find a scalar ε ∈ (0, 1) such that

Mi > 4∆i
‖PB2iKi‖‖C2i‖

λm(R)
× 1

1 − ε
, (18)

which is equivalent to

1

1 − ε
× 4∆i

‖PB2iKi‖‖C2i‖
λm(R)

µi < Miµi . (19)

Therefore, for any nonzero yi, we can find a positive scalar µi such that

1

1 − ε
× 4∆i

‖PB2iKi‖‖C2i‖
λm(R)

µi ≤ |yi| ≤ Miµi . (20)

This is also true in the case of yi = 0, where we set µi = 0 as an extreme case and
consider the output of the quantizer as zero.

In other words, since we can always choose µi so that (20) is satisfied, (17) holds
and thus

V̇ ≤ − 1

γ
Γ(t) − 1

2
ελm(R)

( |x|
‖C21‖

|y1| +
|x|

‖C22‖
|y2|

)
, (21)

where Γ = zT z − γ2wT w.
First, by setting w = 0 in (21), we see clearly that the closed-loop system is

asymptotically stable.
Next, since V (t) ≥ 0, we obtain from (21) that V̇ ≤ − 1

γ Γ(t), and thus for any
t > t0,

V (t) − V (t0) ≤ − 1

γ

∫ t

t0

Γ(τ) dτ . (22)

Using V (t) ≥ 0 again, we obtain

∫ t

t0

zT (τ)z(τ) dτ ≤ γV (t0) + γ2

∫ t

t0

wT (τ)w(τ) dτ , (23)
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which implies that the H∞ disturbance attenuation level γ is achieved. This com-
pletes the proof. ¤

Since decentralized state feedback is the special case of decentralized static output
feedback, we briefly summarize the result as follows.

Suppose we have designed a decentralized state feedback

u1 = K1x , u2 = K2x (24)

so that the closed-loop system, composed of (4) and (24), is stable and the H∞ norm
of the transfer function from w to z is less than a specified level γ. Now, the inputs
to the quantizers are the system state instead of local measurement outputs.

If we use the same notation Acl = A+B21K1 +B22K2 as before (without causing
confusion) to denote the closed-loop system matrix, the same matrix inequality (8)
holds and thus (9) holds with some positive definite matrix R. Then, using similar
calculation as for Theorem 1, we obtain easily the following corollary.

Corollary 1. Assume that for the two quantizers Mi is chosen large enough com-
pared to ∆i so that

Mi > 4∆i
‖PB2iKi‖

λm(R)
, i = 1, 2 . (25)

Then, there exists a control strategy for updating µi, which is dependent on the
system state x, such that the closed-loop system is asymptotically stable and the
H∞ disturbance attenuation level γ is achieved.

4. DISCRETE–TIME SYSTEM DESIGN

Consider the multi-channel discrete-time system described by





x(k + 1) = Ax(k) + B1w(k) + B21u1(k) + B22u2(k)

z(k) = C1x(k) + Dw(k)

y1(k) = C21x(k)

y2(k) = C22x(k)

(26)

where all the notations have the same meaning as before but now all vectors are in
discrete-time form.

Suppose that for the system (26), we have designed a decentralized static output
feedback (5) such that the closed-loop system, composed of (26) and (5), is Schur
stable and the H∞ norm of the transfer function from w to z is less than a specified
level γ. Therefore, Acl is Schur stable and ‖D+C1(zI−Acl)

−1B1‖∞ < γ . According
to the Bounded Real Lemma for discrete-time systems [5], there exists a positive
definite matrix P satisfying the matrix inequality




−P PAcl PB1 0

AT
clP −P 0 CT

1

BT
1 P 0 −γI DT

0 C1 D −γI


 < 0 . (27)
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Since this is a matrix inequality, we can always find a positive matrix R such that




−P PAcl PB1 0

AT
clP −P + R 0 CT

1

BT
1 P 0 −γI DT

0 C1 D −γI


 < 0 . (28)

The above matrix inequality is equivalent to




−P PAcl PB1

AT
clP −P + R + 1

γ CT
1 C1

1
γ CT

1 D

BT
1 P 1

γ DT C1 −γI + 1
γ DT D


 < 0 (29)

and



AT
clPAcl − P + R + 1

γ CT
1 C1 AT

clPB1 + 1
γ CT

1 D

BT
1 PAcl + 1

γ DT C1 −γI + BT
1 PB1 + 1

γ DT D


 < 0 . (30)

Furthermore, since P > 0, we can always find a positive number ξ > 1 such that




(1 − ξ2)P PAcl PB1

AT
clP 0 0

BT
1 P 0 0


 ≤ 0 , (31)

or equivalently,




P PAcl PB1

AT
clP 0 0

BT
1 P 0 0


 ≤




ξ2P 0 0

0 0 0

0 0 0


 . (32)

Again, we assume that only quantized local output information is available in the
feedback, and thus the static output feedback (5) is modified using the quantized
information of y as in (11). For any fixed positive scalars µ1 and µ2, the closed-loop
system composed of the system (26) and the quantized output feedback (11) is given
by {

x(k + 1) = Aclx(k) + B1w(k) + F (µ, y(k))

z(k) = Cx(k) + Dw(k) .
(33)

We now state and prove the second main result in this paper.

Theorem 2. Assume that for the two quantizers Mi is chosen large enough com-
pared to ∆i so that

Mi > 2ξ∆i‖C2i‖
√

‖KT
i BT

2iPB2iKi‖
λm(R)

, i = 1, 2 . (34)
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Then, there exists a control strategy for updating µi, which is dependent on the
local measurement output yi, such that the closed-loop system (33) is asymptotically
stable and the H∞ disturbance attenuation level γ is achieved.

P r o o f . Since
yi
µi

= C2ix
µi

(i = 1, 2) is quantized before being passed to the feed-

back, we obtain that whenever |yi| ≤ Miµi, the inequality

∣∣∣∣
yi(k)

µi(k)
− q

(
yi(k)

µi(k)

)∣∣∣∣ ≤ ∆i (35)

is true. We consider the same Lyapunov function candidate (16) for the closed-loop
system (33). By using the matrix inequalities (30) and (32), we obtain that when
|yi(k)| ≤ Miµi(k), the difference of V (x) along solutions of (33) satisfies

V (x(k + 1)) − V (x(k))

= (Aclx + B1w + F (µ, y))
T

P (Aclx + B1w + F (µ, y)) − xT Px

=
[

xT wT
]
[

AT
clPAcl − P AT

clPB1

BT
1 PAcl BT

1 PB1

] [
x
w

]

+2FT (µ, y)P (Aclx + B1w) + FT (µ, y)PF (µ, y)

≤
[

xT wT
]
[

−R − 1
γ CT

1 C1 − 1
γ CT

1 D

− 1
γ DT C1 γI − 1

γ DT D

] [
x
w

]

+2FT (µ, y)P (Aclx + B1w) + FT (µ, y)PF (µ, y)

≤ − 1

γ
zT z + γwT w − xT Rx

+2FT (µ, y)P (Aclx + B1w) + FT (µ, y)PF (µ, y)

= − 1

γ
zT z + γwT w − xT Rx

+




F
x
w




T



P PAcl PB1

AT
clP 0 0

BT
1 P 0 0







F
x
w


 (36)

≤ − 1

γ
zT z + γwT w − xT Rx + ξ2FT PF

= − 1

γ
zT z + γwT w − xT Rx + ξ2(FT

1 + FT
2 ) P (F1 + F2)

≤ − 1

γ
zT z + γwT w − xT Rx + 2ξ2(FT

1 PF1 + FT
2 PF2)

≤ − 1

γ
zT z + γwT w − xT Rx + 2ξ2µ2

1∆
2
1‖KT

1 BT
21PB21K1‖

+2ξ2µ2
2∆

2
2‖KT

2 BT
22PB22K2‖
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≤ − 1

γ
zT z + γwT w

−λm(R)

2


|x|2 −


2ξ∆1

√
‖KT

1 BT
21PB21K1‖
λm(R)

µ1




2



−λm(R)

2


|x|2 −


2ξ∆2

√
‖KT

2 BT
22PB22K2‖
λm(R)

µ2




2

 . (37)

Since we need using the measurement output information, we use |yi| = |C2ix| ≤
‖C2i‖|x| in the above inequality to obtain

V (x(k + 1)) − V (x(k)) ≤ − 1

γ
zT z + γwT w

− λm(R)

2‖C21‖2


|y1|2 −


2ξ∆1‖C21‖

√
‖KT

1 BT
21PB21K1‖

λm(R)
µ1




2



− λm(R)

2‖C22‖2


|y2|2 −


2ξ∆2‖C22‖

√
‖KT

2 BT
22PB22K2‖

λm(R)
µ2




2

 . (38)

According to (34), we can always find a scalar ε ∈ (0, 1) such that

Mi > 2ξ∆i‖C2i‖
√

‖KT
i BT

2iPB2iKi‖
λm(R)

× 1√
1 − ε

, (39)

which is equivalent to

1√
1 − ε

× 2ξ∆i‖C2i‖
√

‖KT
i BT

2iPB2iKi‖
λm(R)

µi < Miµi . (40)

Therefore, for any nonzero yi, we can find a positive scalar µi such that

1√
1 − ε

× 2ξ∆i‖C2i‖
√

‖KT
i BT

2iPB2iKi‖
λm(R)

µi ≤ |yi| ≤ Miµi . (41)

In other words, since we can always choose µi so that (41) is satisfied, (38) holds
and thus

V̇ ≤ − 1

γ
Γ(t) − 1

2
ελm(R)

( |y1|2
‖C21‖2

+
|y2|2

‖C22‖2

)
. (42)

The remaining proof, concerning the asymptotic stability and the H∞ disturbance
attenuation level, is the same as in Theorem 1, and is thus omitted. ¤

Similarly to Corollary 1, the following result is obtained easily from (37), corre-
sponding to the case of state feedback.
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Corollary 2. Assume that for the two quantizers Mi is chosen large enough com-
pared to ∆i so that

Mi > 2ξ∆i

√
‖KT

i BT
2iPB2iKi‖

λm(R)
, i = 1, 2 . (43)

Then, there exists a control strategy for updating µi, which is dependent on the
system state x, such that the closed-loop system is asymptotically stable and the
H∞ disturbance attenuation level γ is achieved.

5. REMARKS AND OBSERVATION

In this section, we provide two important remarks and two observations concerning
the results in the previous sections.

Remark 1. Both the condition (14) in Theorem 1 and the condition (34) in The-
orem 2 are flexible, in the sense that we can choose the matrices P , R (and Ki)
so that these conditions are satisfied. These matrices are not independent and they
must satisfy the matrix inequality (9) or (29), but we still have much design freedom
since these are inequalities and we can incorporate some optimization requirement
when solving (9) or (29).

Remark 2. The extension from continuous-time system to discrete-time system
is not trivial. To deal with the quantization error term, we introduce a parameter ξ
in (32) to estimate the final term in (36) and to deal with the interference between
F and (x,w). The parameter ξ is also flexible, and we can choose it appropriately
such that the condition (34) is satisfied.

Observation 1. In Theorems 1 and 2, in order to obtain the conditions and the
updating strategies of the zooming parameters, we divide the term λm(R)|x|2 into
1
2λm(R)|x|2 + 1

2λm(R)|x|2 and then use each of them to deal with the local quan-

tization error term in (17) and (37). However, in real applications, we can have
more flexibility by dividing the term λm(R)|x|2 into β1λm(R)|x|2 + β2λm(R)|x|2
with βi > 0 and β1 + β2 ≤ 1. In doing so, the condition (14) can be modified as

Mi > 2∆i
‖PB2iKi‖‖C2i‖

βiλm(R)
, i = 1, 2 , (44)

and the condition (34) can be modified as

Mi >
ξ∆i‖C2i‖

βi

√
‖KT

i BT
2iPB2iKi‖

λm(R)
, i = 1, 2 . (45)

When there are more than three control channels, the above idea of introducing βi’s
will gain much more flexibility so as to satisfy (14) or (34) for all channels. In fact,
this can be interpreted as a kind of cooperation among all control channels in a
pre-designed decentralized control system.
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Observation 2. As also mentioned in Section 3, we note that all the discussion
and the results can be easily extended to the case where there are more than two
control channels in the system (4), i. e.,




ẋ = Ax + B1w +
N∑

i=1

B2iui

z = C1x + Dw

yi = C2ix , i = 1, · · · , N

(46)

where N ≥ 2 is the number of control channels, ui ∈ Rmi is the control input of
the ith channel, and yi ∈ Rqi is the local measurement output of the ith channel.
This is a decentralized system since the control input ui of the ith channel is only
dependent on the measurement output yi of the same channel.

Specifically, if we set the coefficient matrices in (46) as

A =

2

6

6

6

4

A11 A12 · · · A1N

A21 A22 · · · A2N

· · · · · · · · · · · ·
AN1 AN2 · · · ANN

3

7

7

7

5

, B1 =

2

6

6

6

4

B11 0 · · · 0

0 B12 · · · 0

· · · · · · · · · · · ·
0 0 · · · B1N

3

7

7

7

5

,

B2i =

2

6

6

6

6

6

6

4

0

· · ·
B̄2i

0

0

3

7

7

7

7

7

7

5

, C1 =

2

6

6

6

4

C11 0 · · · 0

0 C12 · · · 0

· · · · · · · · · · · ·
0 0 · · · C1N

3

7

7

7

5

, D =

2

6

6

6

4

D1 0 · · · 0

0 D2 · · · 0

· · · · · · · · · · · ·
0 0 · · · DN

3

7

7

7

5

,

(47)

where all the matrices have appropriate size, and divide the state x, the disturbance
input w and the controlled output z appropriately, then the system (46) becomes




ẋi = Aiixi + B1iwi + B̄2iui +
N∑

j=1,j 6=i

Aijxj

zi = C1ixi + Diwi

yi = C2ixi , i = 1, · · · , N

(48)

which is obviously the well known large scale interconnected system. Therefore, it is
an easy matter to apply the discussion and the results in this paper to quantized de-
centralized H∞ feedback control for the above large scale interconnected dynamical
systems.

6. CONCLUSION

In this paper, we have studied stabilization and H∞ disturbance attenuation prob-
lem for multi-channel feedback control systems where the states or the measurement
outputs are quantized before they go to the controller. We have proposed a local-
state-dependent (or local-output-dependent) control strategy for updating the quan-
tizers’ parameters on line so that the overall closed-loop system is asymptotically
stable and achieves the same H∞ disturbance attenuation level as in the case where
no quantization is involved.
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Our next interest is the H∞ disturbance attenuation problem for multi-channel
feedback control systems with two local quantizers (quantization of both states/outputs
and control inputs) for each control channel, as mentioned in [9]. Furthermore, the
application of these results for design of large-scale networked control systems is an
interesting and challenging problem.
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