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TIMELIKE B2-SLANT HELICES IN MINKOWSKI SPACE E4
1

Ahmad T. Ali and Rafael López

Abstract. We consider a unit speed timelike curve α in Minkowski 4-space
E4

1 and denote the Frenet frame of α by {T,N,B1,B2}. We say that α is
a generalized helix if one of the unit vector fields of the Frenet frame has
constant scalar product with a fixed direction U of E4

1. In this work we study
those helices where the function 〈B2, U〉 is constant and we give different
characterizations of such curves.

1. Introduction and statement of results

A helix in Euclidean 3-space E3 is a curve where the tangent lines make a
constant angle with a fixed direction. A helix curve is characterized by the fact that
the ratio τ/κ is constant along the curve, where τ and κ denote the torsion and
the curvature, respectively. Helices are well known curves in classical differential
geometry of space curves [8] and we refer to the reader for recent works on this
type of curves [4, 12]. Recently, Izumiya and Takeuchi have introduced the concept
of slant helix by saying that the normal lines make a constant angle with a fixed
direction [5]. They characterize a slant helix if and only if the function

(1) κ2

(κ2 + τ2)3/2

( τ
κ

)′
is constant. The article [5] motivated generalizations in a twofold sense: first, by
considering arbitrary dimension of Euclidean space [7, 9]; second, by considering
analogous problems in other ambient spaces, for example, in Minkowski space En

1
[1, 3, 6, 11, 13].

In this work we consider the generalization of the concept of helix in Minkowski
4-space, when the helix is a timelike curve. We denote by E4

1 the Minkowski 4-space,
that is, E4

1 is the real vector space R4 endowed with the standard Lorentzian metric
〈 , 〉 = −dx2

1 + dx2
2 + dx2

3 + dx2
4 ,

where (x1, x2, x3, x4) is a rectangular coordinate system of R4. An arbitrary vector
v ∈ E4

1 is said spacelike (resp. timelike, lightlike) if 〈v, v〉 > 0 or v = 0 (resp.
〈v, v〉 < 0, 〈v, v〉 = 0 and v 6= 0). Let α : I ⊂ R → E4

1 be a (differentiable) curve
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with α′(t) 6= 0, where α′(t) = dα/dt(t). The curve α is said timelike if all its
velocity vectors α′(t) are timelike. Then it is possible to re-parametrize α by a new
parameter s, in such way that 〈α′(s), α′(s)〉 = −1, for any s ∈ I. We say then that
α is a unit speed timelike curve.

Consider α = α(s) a unit speed timelike curve in E4
1. Let {T(s),N(s),B1(s),

B2(s)} be the moving frame along α, where T,N,B1 and B2 denote the tangent, the
principal normal, the first binormal and second binormal vector fields, respectively.
Here T(s), N(s), B1(s) and B2(s) are mutually orthogonal vectors satisfying

〈T,T〉 = −1, 〈N,N〉 = 〈B1,B1〉 = 〈B2,B2〉 = 1 .
Then the Frenet equations for α are given by

(2)


T′
N′
B′1
B′2

 =


0 κ1 0 0
κ1 0 κ2 0
0 −κ2 0 κ3
0 0 −κ3 0




T
N
B1
B2

 .
Recall the functions κ1(s), κ2(s) and κ3(s) are called respectively, the first, the

second and the third curvatures of α. If κ3(s) = 0 for any s ∈ I, then B2(s) is
a constant vector B and the curve α lies in a three-dimensional affine subspace
orthogonal to B, which is isometric to the Minkowski 3-space E3

1.
We will assume throughout this work that all the three curvatures satisfy

κi(s) 6= 0 for any s ∈ I, 1 ≤ i ≤ 3.

Definition 1.1. A unit speed timelike curve α : I → E4
1 is said to be a generalized

(timelike) helix if there exists a constant vector field U different from zero and a
vector field X ∈ {T,N,B1,B2} such that the function

s 7−→ 〈X(s), U〉 , s ∈ I
is constant.

In this work we are interested in generalized timelike helices in E4
1 where the

function 〈B2, U〉 is constant. Motivated by the concept of slant helix in E4 [9], we
give the following

Definition 1.2. A unit speed timelike curve α is called a B2-slant helix if there
exists a constant vector field U such that the function 〈B2(s), U〉 is constant.

Our main result in this work follows similar ideas as in [6] for timelike helices in
E4

1. In this sense, we have the following characterization of B2-slant helices in the
spirit of the one given in equation (1) for a slant helix in E3:

A unit speed timelike curve in E4
1 is a B2-slant helix if and only if

the function
1
κ2

1

(κ3

κ2

)′ 2
−
(κ3

κ2

)2

is constant.
When α is a lightlike curve, similar computations have been given by Erdogan and
Yilmaz in [2].
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2. Basic equations of timelike helices

Let α be a unit speed timelike curve in E4
1 and let U be a unit constant vector

field in E4
1. For each s ∈ I, the vector U is expressed as linear combination of the

orthonormal basis {T(s),N(s),B1(s),B2(s)}. Consider the differentiable functions
ai, 1 ≤ i ≤ 4,

(3) U = a1(s) T(s) + a2(s)N(s) + a3(s) B1(s) + a4(s) B2(s) , s ∈ I ,

that is,

a1 = −〈T, U〉 , a2 = 〈N, U〉 , a3 = 〈B1, U〉 , a4 = 〈B2, U〉 .

Because the vector field U is constant, a differentiation in (3) together (2) gives
the following ordinary differential equation system

(4)


a′1 + κ1a2 = 0
a′2 + κ1a1 − κ2a3 = 0
a′3 + κ2a2 − κ3a4 = 0
a′4 + κ3a3 = 0

In the case that U is spacelike (resp. timelike), we will assume that 〈U,U〉 = 1
(resp. −1). This means that the constant M defined by

(5) M := 〈U,U〉 = −a2
1 + a2

2 + a2
3 + a2

4

is 1, −1 or 0 depending if U is spacelike, timelike or lightlike, respectively.
We now suppose that α is a generalized helix. This means that there exists i,

1 ≤ i ≤ 4, such that the function ai = ai(s) is constant. Thus in the system (4) we
have four differential equations and three derivatives of functions.

The first case that appears is that the function a1 is constant, that is, the
function 〈T(s), U〉 is constant. If U is timelike, that is, the tangent lines of α make
a constant (hyperbolic) angle with a fixed timelike direction, the curve α is called
a timelike cylindrical helix [6]. Then it is known that α is timelike cylindrical helix
if and only if the function

1
κ2

3

(κ1

κ2

)′ 2
+
(κ1

κ2

)2

is constant [6].
However the hypothesis that U is timelike can be dropped and we can assume

that U has any causal character, as for example, spacelike or lightlike. We explain
this situation. In Euclidean space one speaks on the angle that makes a fixed
direction with the tangent lines (cylindrical helices) or the normal lines (slant
helices). In Minkowski space, one can only speak about the angle between two
vectors {u, v} if both are timelike and the belong to the same timecone (hyperbolic
angle). See [10, page 144]. This is the reason to avoid any reference about ‘angles’
in Definition 1.1.

Suppose now that the function 〈T(s), U〉 is constant, independent on the causal
character of U . From the expression of U in (3), we know that a′1 = 0 and by
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using (4), we obtain a2 = 0 and

a3 = κ1

κ2
a1 , a′3 = κ3a4 , a′4 + κ3a3 = 0 .

Consider the change of variable t(s) =
∫ s

0 κ3(x) dx. Then dt
ds (s) = κ3(s) and the

last two above equations write as a′′3(t) + a3(t) = a′′4(t) + a4(t) = 0. Then one
obtains that there exist constants A and B such that

a3(s) = A cos
∫ s

0
κ3(s)ds+B sin

∫ s

0
κ3(s) ds

a4(s) = −A sin
∫ s

0
κ3(s)ds+B cos

∫ s

0
κ3(s)ds .

Since a2
3 + a2

4 = 〈U,U〉+ a2
1 is constant, and

a4 = 1
κ3
a′3 = 1

κ3

(κ1

κ2

)′
a1 ,

it follows that
1
κ2

3

(κ1

κ2

)′2
+
(κ1

κ2

)2
= constant.

Thus we have proved the following theorem.

Theorem 2.1. Let α be a unit speed timelike curve in E4
1. Then the function

〈T(s), U〉 is constant for a fixed constant vector field U if and only if the the
function

1
κ2

3

(κ1

κ2

)′ 2
+
(κ1

κ2

)2

is constant.

When U is a timelike constant vector field, we re-discover the result given in [6].

3. Timelike B2-slant helices

Let α be a B2-slant helix, that is, a unit speed timelike curve in E4
1 such that

the function 〈B2(s), U〉, s ∈ I, is constant for a fixed constant vector field U . We
point out that U can be of any causal character. In the particular case that U
is spacelike, and since B2 is too, we can say that a B2-slant helix is a timelike
curve whose second binormal lines make a constant angle with a fixed (spacelike)
direction.

Using the system (3), the fact that α is a B2-slant helix means that the function
a4 is constant. Then (4) gives a3 = 0 and (3) writes as
(6) U = a1(s) T(s) + a2(s)N(s) + a4 B2(s) , a4 ∈ R

where

(7) a2 = κ3

κ2
a4 = − 1

κ1
a′1 , a′2 + κ1a1 = 0 .

We remark that a4 6= 0: on the contrary, and from (4), we conclude ai = 0,
1 ≤ i ≤ 4, that is, U = 0: contradiction.
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It follows from (7) that the function a1 satisfies the following second order
differential equation:

1
κ1

d

ds

( 1
κ1
a′1

)
− a1 = 0 .

If we change variables in the above equation as 1
κ1

d

ds
= d

dt
, that is, t =

∫ s
0 κ1(s) ds,

then we get
d2a1

dt2
− a1 = 0 .

The general solution of this equation is

(8) a1(s) = A cosh
∫ s

0
κ1(s) ds+B sinh

∫ s

0
κ1(s) ds ,

where A and B are arbitrary constants. From (7) and (8) we have

(9) a2(s) = −A sinh
∫ s

0
κ1(s) ds−B cosh

∫ s

0
κ1(s) ds .

The above expressions of a1 and a2 give

(10)
A = −

[κ3

κ2
sinh

∫ s

0
κ1(s) ds+ 1

κ1

(κ3

κ2

)′
cosh

∫ s

0
κ1(s) ds

]
a4 ,

B = −
[ 1
κ1

(κ3

κ2

)′
sinh

∫ s

0
κ1(s) ds+ κ3

κ2
cosh

∫ s

0
κ1(s) ds

]
a4 .

From (10),

A2 −B2 =
[ 1
κ2

1

(κ3

κ2

)′ 2
− κ2

3
κ2

2

]
a2

4 .

Therefore

(11) 1
κ2

1

(κ3

κ2

)′ 2
− κ2

3
κ2

2
= constant := m.

Conversely, if the condition (11) is satisfied for a timelike curve, then we can
always find a constant vector field U such that the function 〈B2(s), U〉 is constant:
it suffices if we define

U =
[
− 1
κ1

(κ3

κ2

)′
T +κ3

κ2
N + B2

]
.

By taking account of the differentiation of (11) and the Frenet equations (2), we
have that dU

ds = 0 and this means that U is a constant vector. On the other hand,
〈B2(s), U〉 = 1. The above computations can be summarized as follows:

Theorem 3.1. Let α be a unit speed timelike curve in E4
1. Then α is a B2-slant

helix if and only if the function
1
κ2

1

(κ3

κ2

)′ 2
−
(κ3

κ2

)2

is constant.
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From (5), (8) and (9) we get
A2 −B2 = a2

4 −M = a2
4 m.

Thus, the sign of the constant m agrees with the one A2 −B2. So, if U is timelike
or lightlike, m is positive. If U is spacelike, then the sign of m depends on a2

4 − 1.
For example, m = 0 if and only if a2

4 = 1. With similar computations as above, we
have

Corollary 3.2. Let α be a unit speed timelike curve in E4
1 and let U be a unit

spacelike constant vector field. Then 〈B2(s), U〉2 = 1 for any s ∈ I if and only if
there exists a constant A such that

κ3

κ2
(s) = A exp

(∫ s

0
κ1(t) dt

)
.

As a consequence of Theorem 3.1, we obtain other characterization of B2-slant
helices. The first one is the following

Corollary 3.3. Let α be a unit speed timelike curve in E4
1. Then α is a B2-slant

helix if and only if there exists real numbers C and D such that

(12) κ3

κ2
(s) = C sinh

∫ s

0
κ1(s) ds+D cosh

∫ s

0
κ1(s) ds ,

Proof. Assume that α is a B2-slant helix. From (7) and (9), the choice C = −A/a4
and D = −B/a4 yields (12).

We now suppose that (12) is satisfied. A straightforward computation gives
1
κ2

1

(κ3

κ2

)′ 2
−
(κ3

κ2

)2
= C2 −D2 .

We now use Theorem 3.1. �

We end this section with a new characterization for B2-slant helices. Let now
assume that α is a B2-slant helix in E4

1. By differentiation (11) with respect to s
we get

(13) 1
κ1

(κ3

κ2

)′[ 1
κ1

(κ3

κ2

)′]′
−
(κ3

κ2

)(κ3

κ2

)′
= 0 ,

and hence

1
κ1

(κ3

κ2

)′
=

(
κ3
κ2

)(
κ3
κ2

)′
[

1
κ1

(
κ3
κ2

)′]′ ,
If we define a function f(s) as

f(s) =

(
κ3
κ2

)(
κ3
κ2

)′
[

1
κ1

(
κ3
κ2

)′]′ ,
then

(14) f(s)κ1(s) =
(κ3

κ2

)′
.
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By using (13) and (14), we have

f ′(s) = κ1κ3

κ2
.

Conversely, consider the function f(s) = 1
κ1

(
κ3
κ2

)′ and assume that f ′(s) = κ1κ3
κ2

.
We compute

(15) d

ds

[ 1
κ2

1

(κ3

κ2

)′ 2
− κ2

3
κ2

2

]
= d

ds

[
f(s)2 − f ′(s)2

κ2
1

]
:= ϕ(s) .

As f(s)f ′(s) =
(
κ3
κ2

)(
κ3
κ2

)′ and f ′′(s) = κ′1
(
κ3
κ2

)
+ κ1

(
κ3
κ2

)′ we obtain

f ′(s)f ′′(s) = κ1κ
′
1

(κ3

κ2

)2
+ κ2

1

(κ3

κ2

)(κ3

κ2

)′
.

As consequence of above computations

ϕ(s) = 2
(
f(s)f ′(s)− f ′(s)f ′′(s)

κ2
1

+ κ′1f
′(s)2

κ3
1

)
= 0 ,

that is, the function 1
κ2

1

(
κ3
κ2

)′ 2 − (κ3
κ2

)2 is constant. Therefore we have proved the
following

Theorem 3.4. Let α be a unit speed timelike curve in E4
1. Then α is a B2-slant

helix if and only if the function f(s) = 1
κ1

(
κ3
κ2

)′ satisfies f ′(s) = κ1κ3
κ2

.
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