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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 46 (2010), 13–23

A NEW CHARACTERIZATION OF MATHIEU GROUPS

Changguo Shao and Qinhui Jiang

Abstract. Let G be a finite group and nse(G) the set of numbers of elements
with the same order in G. In this paper, we prove that a finite group G is
isomorphic to M , where M is one of the Mathieu groups, if and only if the
following hold:

(1) |G| = |M |,
(2) nse(G) = nse(M).

1. Introduction

It is well known that the conjugacy class sizes play an important role in deter-
mining the structure of a finite group. The connection between the conjugacy class
sizes and the structures of finite groups has been studied extensively (see [3], [5],
[8], for example).

Analogically, let mi(G) := |{g ∈ G | the order of g is i}| (mi for short), be the
number of elements of order i, and nse(G) := {mi(G) | i ∈ πe(G)}, the set of sizes
of elements with the same order. We now consider the influence of the set nse(G)
and |G| on G.

For the set nse(G), the most important problem is related to the Thompson’s
problem.

Let G be a finite group and Mt(G) = {g ∈ G | gt = 1}. Two finite groups
G1 and G2 are of the same order type if and only if |Mt(G1)| = |Mt(G2)|, where
t = 1, 2, . . . . In 1987, J. G. Thompson put forward the following problem:

Thompson’s problem. Suppose G1 and G2 are of the same order type. If G1 is
solvable, is G2 necessarily solvable?

Professor W. J. Shi made the above problem public in 1989 (see [10]). Unfortu-
nately, no one can solve it or even give a counterexample till now.

We found that the set nse(G) plays an important role in determining structure
of a finite group, too. Surely, the set {|Mt(G)| | t = 1, 2, . . .} can determine the set
nse(G). However, if the set nse(G) is known, what can we say about |Mt(G)|?
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Main theorem. A group G is isomorphic to M , where M is a Mathieu group, if
and only if the following hold:

(1) |G| = |M |,
(2) nse(G) = nse(M).
In this paper, np(G) always denotes the number of Sylow p-subgroups of G,

that is, np(G) = |Sylp(G)|, π(G) the set of all prime divisors of |G|. And ϕ(x)
denotes the Euler function of x. We always use |G| for order of finite group G,

∣∣
to denote division relationship and

∣∣∣∣ denote that the prime upon the left is in its
highest possible power divides the argument upon the right. All further unexplained
notation is standard (see [10]).

2. Lemmas

Lemma 2.1 ([6]). Suppose G is a finite solvable group with |G| = mn, where
m = pα1

1 . . . pαrr , (m,n) = 1, p1, . . . , pr are distinct primes. Let π = {p1, . . . , pr}
and let hm be the number of π-Hall subgroups of G. Suppose that hm = qβ1

1 . . . qβss ,
where q1, . . . , qs are distinct primes. Then following conditions are true for all i:

(1) qβii ≡ 1 (mod pj) for some pj.
(2) The order of some chief factor of G is divided by qβii .

A finite group G is called a Kn-group, if |π(G)| = n.

Lemma 2.2 ([12]). Let G be a simple K4-group, then G is isomorphic to one of
the following groups:

1) A7, A8, A9, A10;
2) M11,M12, J2;
3) (a) L2(r), where r is a prime and satisfies

r2 − 1 = 2a · 3b · uc

with a ≥ 1, b ≥ 1, c ≥ 1, u > 3, u is prime;

(b) L2(2m), where m satisfies:{
2m − 1 = u ;
2m + 1 = 3tb .

with m ≥ 1, u, t primes, t > 3, b ≥ 1.
(c) L2(3m), where m satisfies:{

3m + 1 = 4t ;
3m − 1 = 2uc .

or {
3m + 1 = 4tb ;
3m − 1 = 2u .

with m ≥ 1, u, t odd primes, b ≥ 1, c ≥ 1.
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(d) L2(16), L2(25), L2(49), L2(81), L3(4), L3(5), L3(7), L3(8), L3(17),
L4(3), S4(4), S4(5), S4(7), S4(9), S6(2), O8

+(2), G2(3), U3(4), U3(5),
U3(7), U3(8), U3(9), U4(3), U5(2), Sz(8), Sz(32), 3D4(2), 2F4(2)′.

Corollary 2.3 ([12]). Let G be a simple group of order 2a · 3b · 5 · pc, where p is
a prime, p 6= 2, 3, 5 and abc 6= 0. Then G is isomorphic to one of the following
groups: A7, A8, A9; M11, M12; L2(q), q = 11, 16, 19, 31, 81; L3(4), L4(3), S6(2),
U4(3) or U5(2). In particular, if p = 11, then G ∼= M11, M12 or L2(11). If p = 7,
then G ∼= A7, A8, A9, L3(4), S6(2) or U4(3).

Lemma 2.4. Let G be a simple K4-group and π(G) ⊆ {2, 3, 5, 7, 11, 23}. Then G
is isomorphic to one of the following simple groups:

(1) A7, A8, A9, A10;
(2) M11, M12, J2;
(3) L2(11), L2(23);
(4) L2(49), L3(4), S4(7), S6(2), O+

8 (2), U3(5), U4(3), U5(2).

Proof. If G is isomorphic to one of the groups of 1), 2), or 3)(d) in Lemma 2.2,
we can easily get (1), (2) and (4) by [4].

Suppose now that G is isomorphic to one of the groups of (a), (b) or (c) in 3) of
Lemma 2.2.

(I) If G is isomorphic to L2(r) in Lemma 2.2, then r ∈ {5, 7, 11, 23}.
If r = 5 or 7, then |π(r2 − 1)| = 2, a contradiction.
If r = 11, then r2 − 1 = 23 · 3 · 5. Thus G ∼= L2(11).
If r = 23, then r2 − 1 = 24 · 3 · 11. Thus G ∼= L2(23).

(II) If G is isomorphic to L2(2m) in Lemma 2.2, then u ∈ {3, 5, 7, 11, 23}.
If u = 3, then m = 2 and 3tb = 5, a contradiction.
If u = 5, then 2m − 1 = 5, a contradiction.
If u = 7, then m = 3 and 3tb = 9, thus t = 3, b = 1, this contradicts t > 3.
If u = 11, then 2m − 1 = 11, a contradiction.
If u = 23, then 2m − 1 = 23, a contradiction.

Similarly, we can prove that G is not isomorphic to L2(3m) in Lemma 2.2. �

Lemma 2.5 ([2]). Let αi be a positive integer (i = 1, . . . , 5), p a prime and
p 6∈ {2, 3, 5, 7}. If G is a simple group and |G| = 2α1 · 3α2 · 5α3 · 7α4 · pα5 , then G
is isomorphic to one of the following simple groups: A11, A12, M22, HS, McL,
He, L2(q) (q = 26, 53, 74, 29, 41, 71, 251, 449, 4801), L3(32), L4(22), L4(7), L5(2),
L6(2), O5(72), O7(3), O9(2), S6(3), O+

8 (3), G2(22), G2(5), U3(19), U4(5), U4(7),
U5(3), U6(2), 2D4(2). In particular, if p = 11, then G is isomorphic to one of the
following simple groups: A11, A12, M22, HS, McL, U6(2).

Lemma 2.6 ([1]). Let αi be a positive integer (i = 1, . . . , 6), p > 11 a prime. If G
is a simple group and |G| = 2α1 ·3α2 ·5α3 ·7α4 ·11α5 ·pα6 , then G is isomorphic to one
of the following simple groups: A13, A14, A15, A16, M23, M24, J1, Suz, Co2,Co3,
M(22), F3, L2(769), L2(881), L3(11), L6(3), U7(2), 2D5(2). In particular, if p = 23,
then G is isomorphic to one of the following simple groups: M23, M24, Co2, Co3.
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Lemma 2.7 ([7]). If G is a simple K3-group, then G is isomorphic to one of the
following groups: A5, A6, L2(7), L2(8), L2(17), U3(3), L3(3), U4(2).
Lemma 2.8. Let G be a finite group, P ∈ Sylp(G), where p ∈ π(G). Suppose that
G has a normal series K E LEG. If P ≤ L and p - |K|, then the following hold:

(1) NG/K(PK/K) = NG(P )K/K;
(2) |G : NG(P )| = |L : NL(P )|, that is, np(G) = np(L);
(3) |L/K : NL/K(PK/K)|t = |G : NG(P )| = |L : NL(P )|, that is, np(L/K)

t = np(G) = np(L), for some positive integer t. And |NK(P )|t = |K|.
Proof. (1) follows from [7].

(2) By Frattini argument,G = NG(P )L. Hence |G : NG(P )| = |NG(P )L : NG(P )|
= |L : NL(P )|.

(3) By (1), we have |L/K : NL/K(PK/K)| = |L/K : NL(P )K/K| = |L :
NL(P )K|

∣∣|L : NL(P )|, then |L/K : NL/K(PK/K)|t = |G : NG(P )| = |L : NL(P )|
for some positive integer t.

As |L/K : NL/K(PK/K)|t = |L : NL(P )|, then |NL(P )|t = |NL(P )K|. Hence
|NK(P )|t = |K|. �

Lemma 2.9 ([9]). Each simple K5-group is isomorphic to one of the following
simple groups:

(a) L2(q) where q satisfies |π(q2 − 1)| = 4;
(b) L3(q) where q satisfies |π(q2 − 1)(q3 − 1)| = 4;
(c) U3(q) where |π(q2 − 1)(q3 + 1)| = 4;
(d) O5(q) where |π(q4 − 1)| = 4;
(e) Sz(22m+1) where |π((22m+1 − 1)(224m+2 + 1))| = 4;
(f) R(q) where q is an odd power of 3 and |π(q2 − 1)| = 3;
(h) one of the 30 other simple groups: A11, A12, M22, J3, HS, He, McL, L4(4),

L4(5), L4(7), L5(2), L5(3), L6(2), O7(3), O9(2), PSp6(3), PSp8(2), U4(4),
U4(5), U4(7), U4(9), U5(3), U6(2), O8

+(3), O8
−(2), 3D4(3), G2(4), G2(5),

G2(7), G2(9).
Lemma 2.10. Let G be a simple K5-group and |G|

∣∣210 · 33 · 5 · 7 · 11 · 23. Then
G ∼= M22.
Proof. Assume G is isomorphic to L2(q) in Lemma 2.9. Then 11 or 23

∣∣ |L2(q)|.
(1) If 11

∣∣|L2(q)|, we claim q 6= 11, otherwise if q = 11, then |π(q2 − 1)| = 3,
which contradicts |π(q2 − 1)| = 4.

If q = 2m, then 11
∣∣22m − 1. So we have 5

∣∣m and 31
∣∣|L2(q)|, a contradiction.

If q = 3, 32, 5, 7 or 23, then |π(q2 − 1)| < 4, a contradiction.
If q = 33, then 13

∣∣q2 − 1
∣∣|G|, a contradiction.

(2) If 23
∣∣|L2(q)|, we also get a contradiction similar to (1).

Hence G is not isomorphic to L2(q).
Similarly, G is not isomorphic to L3(q), U3(q), O5(q), Sz(22m+1) and R(q).
In (h) of Lemma 2.9, we see that M22 ∼= G. �
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3. Proof of the main theorem

We shall present a separate proof for each of the Mathieu groups.

Theorem 3.1. Let G be a group. Then G ∼= M11 if and only if the following hold:
(1) |G| = |M |,
(2) nse(G) = nse(M11) = {1, 165, 440, 990, 1584, 1320, 1980, 1440}.

Proof. The necessity is obvious. We only need to prove the sufficiency.
First, we prove that G is unsolvable.
If G is solvable, let H be a {2, 5, 11}-Hall subgroup of G. All {2, 5, 11}-Hall

subgroups in G are conjugate, so the number of {2, 5, 11}-Hall subgroups of G is:
|G : NG(H)|

∣∣32.
Now we calculate the number of elements of order 11 in G. By Sylow theorem

we have that n11(H) = 1 in H. So the number m of elements with order 11 in G is:
10 ≤ m ≤ 90 and 10

∣∣m, but m 6∈ nse(G).
Thus G is unsolvable. Since p

∣∣∣∣|G|, where p ∈ {5, 11}, G has a normal series:
1EK E LEG ,

such that L/K is a simple K3-group or a simple K4-group.
If L/K is a simple K3-group. Since 5 or 11

∣∣|L/K|∣∣24 · 32 · 5 · 11, then L/K ∼= A5
or A6.

(1) Assume L/K ∼= A5. If P5 ∈ Syl5(G), then P5K/K ∈ Syl5(L/K). Also
n5(L/K)t = n5(G) for some positive integer t by Lemma 2.8.

By [4], n5(L/K) = n5(A5) = 6. Hence n5(G) = 6t and 5 - t.
So the number m of elements of order 5 in G is: m = n5(G) · 4 = 24t. Since

m ∈ nse(G), m = 1584 and t = 66. By Lemma 2.8, 66|NK(P5)| = |K|. As
|K|
∣∣22 · 3 · 11, thus n11(K) = 1 or 12. So we get that the number of elements of

order 11 in G is 10 or 120. But 10, 120 6∈ nse(G), a contradiction.
(2) Assume L/K ∼= A6. If P5 ∈ Syl5(G), then P5K/K ∈ Syl5(L/K). Also

n5(L/K)t = n5(G) for some positive integer t by Lemma 2.8.
By [4], n5(L/K) = n5(A6) = 36. Hence n5(G) = 36t and 5 - t.
So the number m of elements of order 5 in G is: m = n5(G) · 4 = 36t. Since m ∈

nse(G), m = 1584 and t = 44. As |G| = |G : L| |L : K| |K| and 44|NK(P5)| = |K|
by Lemma 2.8. Thus 44

∣∣|K|, then 44 · |A6|
∣∣G|, that is, 25 · 32 · 5 · 11

∣∣|G|, which is a
contradiction.

So L/K is a simple K4-group and π(L/K) = π(G) = {2, 3, 5, 11}. By Corollary
2.3 L/K ∼= M11,M12 or L2(11). But |L/K|

∣∣24 · 32 · 5 · 11, thus L/K ∼= M11 or
L2(11).

Assume L/K ∼= L2(11). Let P11 ∈ Syl11(G), then P11K/K ∈ Syl11(L/K). By
Lemma 2.8, n11(L/K)t = n11(G) for some positive integer t and 11 - t.

By [4], n11(L/K) = n11(L2(11)) = 12. Hence n11(G) = 12t.
Thus the number m of elements of order 11 in G is: m = n11(G) · 10 = 120t.

Since m ∈ {1, 165, 440, 990, 1584, 1320, 1980, 1440}, m = 1440 and t = 12. Therefor
12|NK(P11)| = |K| by Lemma 2.8. As |K|

∣∣12, so NK(P11) = 1 and |K| = 12. And
then K ∩NG(P11) = K ∩ CG(P11) = 1. So K o P11 is a Frobenius group, which
means that |P11|

∣∣ |Aut(K)|, a contradiction.
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So L/K ∼= M11, and hence |L/K| = |M11|. Thus K = 1 and G = L ∼= M11. �

Theorem 3.2. Let G be a group. Then G ∼= M12 if and only if the following hold:
(1) |G| = |M |,
(2) nse(G) = nse(M12) = {1, 891, 4400, 5940, 9504, 23760, 9504, 17280}.

Proof. The necessity is obvious. We only need to prove the sufficiency.
First, we prove that G is unsolvable.
If G is solvable, let H be a {2, 5, 11}-Hall subgroup of G. G is solvable, and

therefore all the {2, 5, 11}-Hall subgroups of G are conjugate. Hence the number of
{2, 5, 11}-Hall subgroups of G is:

|G : NG(H)|
∣∣33 .

We have n11(H) = 1 or 320 by Sylow theorem. Let m be the number of
elements of order 11 in G. If n11(H) = 1, then 10 ≤ m ≤ 270. But m 6∈ nse(G), a
contradiction.

If n11(H) = 320, then 3200 ≤ m ≤ 86400 and 10
∣∣m. Sincem ∈ {1, 891, 4400, 5940,

9504, 23760, 9504, 17280}, m = 4400, 5940, 23760 or 17280. And we have n11(G) ·
10 = m in G, that is, n11(G) = 11k + 1 = 440, 594, 2376 or 1728 for some positive
integer k. If n11(G) = 11k+1 = 440, 594 or 2376, then this equation has no solution
in N . If n11(G) = 11k + 1 = 1728 = 26 · 33, then we have 26 ≡ 1 (mod 11) and
33 ≡ 1 (mod 11) by Lemma 2.1, a contradiction.

Hence G is unsolvable. Since p
∣∣ ∣∣ |G|, where p ∈ {5, 11}, G has a normal series

as follows:
1EK E LEG ,

such that L/K is a non-Abelian simple group. Since |π(G)| = 4, then |π(L/K)| = 3
or 4.

If |π(L/K)| = 3, then L/K is a simple K3-group and π(L/K) ⊂ π(G) =
{2, 3, 5, 11}. Hence G is isomorphic to one of the group: A5, A6 or U4(2) by Lemma
2.7.

(1) Assume L/K ∼= A5. If P5 ∈ Syl5(G), then P5K/K ∈ Syl5(L/K). By Lemma
2.8, n5(L/K)t = n5(G) for some positive integer t and 5 - t.

By [4], n5(L/K) = n5(A5) = 6. Hence n5(G) = 6t.
So the number m of elements of order 5 in G is: m = n5(G) · 4 = 24t. Since

m ∈ nse(G), then m = 9504 and t = 396. Therefore 396|NK(P5)| = |K| by Lemma
2.8. As |K|

∣∣24 · 3 · 11, and hence n11(K) = 1, 12 or 144. So the number of elements
of order 11 in G is: 10 or 120. But 10, 120, 1440 6∈ nse(G), a contradiction.

(2) Assume L/K ∼= A6. If P5 ∈ Syl5(G), then P5K/K ∈ Syl5(L/K). By Lemma
2.8, n5(L/K)t = n5(G) for some positive integer t and 5 - t.

By [4], n5(L/K) = n5(A6) = 36. Hence n5(G) = 36t.
So the number m of elements of order 5 in G is: m = n5(G) · 4 = 144t. Since

m ∈ nse(G), and hence m = 9504 and t = 66. By Lemma 2.8, 66|NK(P5)| = |K|.
As |G| = |G : L| |L : K| |K|, then |K|

∣∣23 · 3 · 11. So we have n11(K) = 1 or 12.
And then the number m of elements of order 11 in G is: m = 10 or 120. But 10,
120 6∈ nse(G), a contradiction.
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(3) Assume L/K ∼= U4(2), then |U4(2)|
∣∣ |G|, that is, 26 ·34 ·5

∣∣ |G| = 26 ·33 ·5 ·11,
a contradiction.

Hence L/K is a simple K4- group and π(L/K) = {2, 3, 5, 11}, therefore L/K ∼=
M11,M12 or L2(11) by Corollary 2.3.

(1) Assume L/K ∼= M11, Let P11 ∈ Syl11(G), then P11K/K ∈ Syl11(L/K). Also
n11(L/K)t = n11(G) for some positive integer t and 11 - t.

By [4], n11(L/K) = n11(M11) = 144. Hence n11(G) = 144t.
So the number m of elements of order 5 in G is: m = n11(G) · 10 = 1440t.

Since m ∈ nse(G), m = 17280 and t = 12. By Lemma 2.8, 12|NK(P5)| = |K|. As
|K|
∣∣22 · 3, then |K| = 22 · 3 and NK(P11) = 1. And 1 = NK(P11) ≥ CK(P11). So

K o P11 is a Frobenius group, and hence |P11|
∣∣ |Aut(K)|, a contradiction.

(2) Assume L/K ∼= L2(11). If P11 ∈ Syl11(G), then P11K/K ∈ Syl11(L/K).
Also n11(L/K)t = n11(G) for some positive integer t and 5 - t by Lemma 2.8.

By [4], n11(L/K) = n11(L2(11)) = 12. Hence n11(G) = 12t and 11 - t.
So the number m of elements of order 11 in G is: m = n11(G) · 10 = 120t. Since

m ∈ nse(G), m = 17280 and t = 144. By Lemma 2.8, 144|NK(P11)| = |K|. As
|K|

∣∣24 · 32, then |K| = 24 · 32 and NK(P11) = 1. And 1 = NK(P11) ≥ CK(P11). So
K o P11 is a Frobenius group, and hence |P11|

∣∣ |Aut(K)|, a contradiction.
So we get L/K ∼= M12, and hence |L/K| = |M12| = |G|. Thus K = 1 and

G = L ∼= M12. �

Theorem 3.3. Let G be a group. Then G ∼= M22 if and only if the following hold:
(1) |G| = |M |,
(2) nse(G) = nse(M22) = {1, 1155, 12320, 41580, 88704, 36960, 126720, 55440,

80640}.

Proof. The necessity is obvious. We only need to prove the sufficiency.
First, we prove that G is unsolvable.
If G is solvable, let H be a {3, 5, 7, 11}-Hall subgroup of G. G is solvable, and

therefore all the {3, 5, 7, 11}-Hall subgroups of G are conjugate. Hence the number
of {3, 5, 7, 11}-Hall subgroup of G is:

|G : NG(H)|
∣∣27 .

We have n11(H) = 1 or 45 by Sylow theorem. Let m be the number of elements of
order 11 in G.

If n11(H) = 1, then 10 ≤ m ≤ 1280 and 10
∣∣m. But m 6∈ nse(G), a contradiction.

If n11(H) = 45, then 450 ≤ m ≤ 57600 and 10
∣∣m. Since m ∈ nse(G), m =

12320, 41580, 36960 or 55440. And we have n11(G) · 10 = m, that is, 11k + 1 =
1232, 4158, 3696 or 5544 in G for some positive integer k. But this equation has no
solution in N .

Hence, G is unsolvable. Since p
∣∣ ∣∣ |G|, where p ∈ {5, 7, 11}, G has a normal series:
1EK E LEG ,

such that L/K is a non-Abelian simple group.
(1) L/K is not a simple K3-group. Otherwise, L/K ∼= A5, A6, L2(7) or L2(8) by

Lemma 2.7 and [4].
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Assume L/K ∼= A5. If P5 ∈ Syl5(G), then P5K/K ∈ Syl5(L/K). Also by Lemma
2.8, n5(L/K)t = n5(G) for some positive integer t and 5 | t.

By [4], n5(L/K) = n5(A5) = 6. Hence n5(G) = 6t.
So the number m of elements of order 5 in G is: m = n5(G) · 4 = 24t. Since

m ∈ nse(G), then m = 88704 and t = 3696. By Lemma 2.8, 3696|NK(P5)| = |K|.
As |K|

∣∣ 25 · 3 · 7 · 11, there must be n11(K) = 1, 56 or 672. So the number m of
elements of order 11 in G is: 10, 560 or 6720. But m 6∈ nse(G), a contradiction.

Similarly, L/K is not isomorphic to A6, L2(7) or L2(8).
(2) L/K is not a simple K4-group. Otherwise, by Corollary 2.3, we have L/K ∼=

A7, A8, M11, L2(11) or L3(4).
Assume L/K ∼= A7. If P5 ∈ Syl5(G), then P5K/K ∈ Syl5(L/K). Also n5(L/K)

t = n5(G) for some positive integer t and 5 - t.
By [4], n5(L/K) = n5(A7) = 126. Hence n5(G) = 126t.
So the number m of elements of order 5 in G is: m = n5(G) · 4 = 504t. Since

m ∈ nse(G), then m = 88704 and t = 176. By Lemma 2.8, 176|NK(P5)| = |K|.
As |G| = |G : L| |L : K| |K|, then |K|

∣∣ 24 · 11, that is, |K| = 24 · 11. And then
n11(K) = 1. So the number m of elements of order 11 in G is: m = 10. But
10 6∈ nse(G), a contradiction.

Similarly, we can get that L/K is not isomorphic to A8, M11, L2(11) and L3(4).
Hence L/K is a simple K5-group. By Lemma 2.10, L/K ∼= M22. So we have

|L/K| = |M22| = |G|. Thus K = 1 and G = L ∼= M22. �

Theorem 3.4. Let G be a group. Then G ∼= M23 if and only if the following hold:
(1) |G| = |M |,
(2) nse(G) = nse(M23) = {1, 3795, 56672, 318780, 680064, 850080, 1457280,

1275120, 1854720, 1360128, 887040}.

Proof. The necessity is obvious. We only need to prove the sufficiency.
First, we prove that G is unsolvable.
If G is solvable, then G contains a {3, 5, 7, 11, 23}-Hall subgroup. By Sylow

theorem, n23(H) = 1 or 231.
Moreover,

|G : NG(H)|
∣∣ 27 .

If n23(H) = 1, then 22 ≤ m ≤ 2816 and 22 | m, but m 6∈ nse(G).
If n23(H) = 231, then 5082 ≤ m ≤ 650496 and 22 | m, but m ∈ nse(G).
Hence m = 56672 or 318780. And we have n23(G) · 22 = m in G, that is,

23k+1 = 2576 or 1440 for some positive integer k, but the equation has no solution
in N .

Thus, G is unsolvable. Since p
∣∣ ∣∣ |G|, where p ∈ {5, 7, 11, 23}, G has a normal

series:
1EK E LEG ,

such that L/K is a non-Abelian simple group.
(1) L/K is not a simple K3-group. Otherwise, L/K is isomorphic to A5, A6,

L2(7), L2(8) or U3(3) by Lemma 2.7 and [4].
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Assume L/K ∼= A5. If P5 ∈ Syl5(G), then P5K/K ∈ Syl5(L/K). Also by Lemma
2.8, n5(L/K)t = n5(G) for some positive integer t and 5 - t.

By [4], n5(L/K) = n5(A5) = 6. Hence n5(G) = 6t.
So the number m of elements of order 5 in G is: m = n5(G) · 4 = 24t. Since

m ∈ nse(G), there must be m = 680064 or 1360128 and t = 28336 or 56672,
respectively.

If m = 680064 and t = 28336, then 28336|NK(P5)| = |K| by Lemma 2.8. As
|K|

∣∣ 25 · 3 · 7 · 11 · 23, we obtain n23(K) = 1. So the number m of elements of order
23 in G is: m = 22. But 22 ∈ nse(G), a contradiction.

If m = 1360128 and t = 56672. Similarly as above, we also get a contradiction.
Similarly, L/K 6∼= A6, L2(7), L2(8) or U3(3).
(2) L/K is not a simple K4-group. Otherwise, by Lemma 2.4 and [4], L/K ∼= A7,

A8, M11, L3(4), L2(11) or L2(23).
If L/K ∼= A7, then n7(L/K) = 120, n7(G) = 120t and 7 - t for some positive

integer t and 7 - t by Lemma 2.8.
So the number m of elements of order 7 in G is: m = n7(G) · 6 = 720t. Since

m ∈ nse(G), then m = 1457280 and t = 2024. So we have 2024|NK(P7)| = |K| by
Lemma 2.8. As |K| | 24 · 11 · 23, there must be n23(K) = 1. And then the number
m of elements of order 23 in G is: m = 22. but 22 6∈ nse(G), a contradiction.

Similar to the case in (1), we can get that L/K 6∼= A7, A8 or L3(4).
(3) L/K is not a simple K5-group. Otherwise, L/K ∼= M22 by Lemma 2.10. So

we have n11(G) = n11(L/K)t = 8064t, where 11 - t, and the number m of elements
of order 11 in G is: m = n11(G)10 = 80640t. Since m ∈ nse(G), there must be
m = 1854720 or 887040 and t = 23 or 11, respectively.

Assume m = 1854720 and t = 23. If P11 ∈ Syl11(G), there is 23|NK(P11)| = |K|.
As |K| | 23, then |K| = 23. So we have that the number of elements of order 23 in
G is 22, but 22 6∈ nse(G), a contradiction.

Assume m = 887040 and t = 11. If P11 ∈ Syl11(G), then 11|NK(P11)| = |K|.
We have |K| | 23, which is a contradiction.

So π(L/K) = {2, 3, 5, 7, 11, 23} and |L/K| | 27 · 32 · 5 · 7 · 11 · 23. By Lemma
2.6 and [4], L/K ∼= M23. Thus |L/K| = |M23| = |G|. This implies K = 1 and
G = L ∼= M23. �

Theorem 3.5. Let G be a group. Then G ∼= M24 if and only if the following hold:
(1) |G| = |M |,
(2) nse(G) = nse(M24) = {1, 43263, 712448, 5100480, 4080384, 20401920,

11658240, 15301440, 12241152, 22256640, 40803840, 34974720, 32643072,
23316480, 21288960}.

Proof. The necessity is obvious. We only need to prove the sufficiency.
First, we will prove that G is unsolvable.
If G is solvable, then G contains a {3, 5, 7, 11, 23}-Hall subgroup. Moreover, the

number of {3, 5, 7, 11}-Hall subgroups in G is |G : NG(H)| | 210. By Sylow theorem,
n23(H) = 1 or 231.

If n23(H)=1, then 10 ≤ m ≤ 40960 and 22 | m, but m 6∈ nse(G).
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If n23(H)=231, then 5082 ≤ m ≤ 5203968 and 22 | m. Since m ∈ nse(G), there
must be m = 712448, 5100480 or 4080384.

So we have n23(G) · 22 = m, that is, 23k+ 1 = 32384, 231840 or 185472, but the
equation has no solution in N .

Hence, G is unsolvable. Since p
∣∣ ∣∣|G|, where p ∈ {5, 7, 11}, G has a normal series:

1EK E LEG ,

such that L/K is a non-Abelian simple group.
(1) L/K is not a simple K3-group. Otherwise, L/K is isomorphic to: A5, A6,

L2(7), L2(8) or U4(2) by Lemma 2.7 and [4].
Assume L/K ∼= A5. If P5 ∈ Syl5(G), then P5K/K ∈ Syl5(L/K). Also n5(L/K)t =

n5(G) for some positive integer t and 5 - t by Lemma 2.8.
By [4], n5(L/K) = n5(A5) = 6. Hence n5(G) = 6t.
So the number m of elements of order 5 in G is: m = n5(G) · 4 = 24t. Since

m ∈ nse(G), there must be m = 4080384, 12241152 or 32643072 and t = 170016,
510048 or 1360128, respectively.

Whenever t = 170016, 510048 or 1360128, we can get that p
∣∣ ∣∣ |K|, where

p ∈ {7, 11, 23}.
If K is solvable, we can get that the number m of elements of order 23 in G is:

m 6∈ nse(G).
If K is unsolvable, similar to theorem 3.1, we also can get a contradiction.
Similarly, L/K 6∼= A6, L2(7), L2(8) or U3(3).
(2) L/K is not a simple K4-group. Otherwise, by Lemma 2.4 and [4], L/K ∼=

A7, A8,M11,M12, L2(11), L2(23), or L3(4) .
If L/K ∼= A7, then n7(L/K) = 120, n7(G) = 120t and 7 6

∣∣ t by Lemma 2.8.
So the number m of elements of order 7 in G is: m = n7(G) · 6 = 720t. Since

m ∈ nse(G), there must be m = 11658240, 34974720 or 23316480 and t = 16192,
48676 or 32384, respectively.

If m = 11658240 and t = 16192, then 16192|NK(P7)| = |K|. As |K| | 26 ·3 ·11 ·23,
we obtain n23(K) = 1 or 24. And then the number m of elements of order 23 in G
is: m = 22 or 528. But 22, 528 6∈ nse(G), a contradiction.

Ifm = 34974720 and t = 48676, then 48676|NK(P7)| = |K|. Now |K| | 26·3·11·23,
a contradiction.

Ifm = 23316480 and t = 32384, then 32384|NK(P7)| = |K|. Now |K| | 26·3·11·23,
a contradiction.

Similarly as above, we also get that L/K 6∼= A8, A9, M11, M12, L2(11), L2(23),
or L3(4).

(3) L/K is not a simple K5-group. Otherwise, L/K ∼= M22 by Lemma 2.10. So
we have n11(G) = n11(L/K)t = 8064t, where 11 - t, and the number m of elements
of order 11 in G is: m = n11(G)10 = 80640t. Since m ∈ nse(G), there must be
m = 22256640 and t = 276. If P11 ∈ Syl11(G), then 276|NK(P11)| = |K|. Now
|K| | 23 ·3 ·23. Therefore n23(K) = 1 or 24. So we have that the number of elements
of order 23 in G is 22 or 528. But 22, 528 6∈ nse(G), a contradiction.

So π(L/K) = {2, 3, 5, 7, 11, 23} and |L/K| | 210 · 33 · 5 · 7 · 11 · 23. By Lemma 2.6
and [4], L/K ∼= M23 or M24.
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If L/K ∼= M23, we have n23(L/K)t = n23(G) and 23 - t by Lemma 2.8. Now,
n23(L/K) = 40320. Choose P23 ∈ Syl23(G). Then n23(G) = 40320t, where 23 - t.
Hence the number m of elements of order 23 in G is: m = n23(G)22 = 887040t.
Since m ∈ nse(G), there must be m = 21288960 and t = 24. As 24|NK(P23)| = |K|
and |K| | 23 · 3, we obtain NK(P23) = 1 and |K| = 24. And 1 = K ∩NG(P23) ≥
K ∩ CG(P23). So K o P23 is a Frobenius group, therefore |P23| | |Aut(K)|, a
contradiction.

Hence |L/K| = |M24| = |G|. We get K = 1, G = L ∼= M24.
�
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