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ASYMPTOTIC PROPERTIES OF SOLUTIONS OF
NONAUTONOMOUS DIFFERENCE EQUATIONS

JANUSZ MIGDA

ABSTRACT. Asymptotic properties of solutions of difference equation of the
form
A"z = anpn (za(n)) +bn

are studied. Conditions under which every (every bounded) solution of the
equation A™y, = b, is asymptotically equivalent to some solution of the
above equation are obtained. Moreover, the conditions under which every
polynomial sequence of degree less than m is asymptotically equivalent to
some solution of the equation and every solution is asymptotically polynomial
are obtained. The consequences of the existence of asymptotically polynomial
solution are also studied.

1. INTRODUCTION

Let N, N(0), Z, R denote the set of positive integers, the set of nonnegative

integers, the set of all integers and the set of real numbers, respectively.
Let m € N. In this paper we consider the difference equation of the form
(E) A"z, = an@n(xa(n)) + by

neN, apnb,€R, o, R—>R, o:N—Z, limo(n)=o0.
By a solution of we mean a sequence x: N — R satisfying for all large n.
Let ng =min{n € N : o(k) > 1 for all k > n}. If is satisfied for all n > ny we
say that z is a full solution of .

Let (X,d), (Y, p) be metric spaces, and let ® be a family of maps ¢: X — Y.
® is said to be equicontinuous at a point p € X if for every € > 0 there exists
§ > 0 such that if d(z,p) < d then p(p(z),¢(p)) < € for all ¢ € ®. We say that
® is equicontinuous if it is equicontinuous at every point p € X. If for any € > 0
there exists § > 0 such that p(¢(z1),¢(z2)) < € for any pair 1,22 € X such that
d(z1,22) < d and all ¢ € @, then P is said to be uniformly equicontinuous. P is
said to be locally bounded if for any point p € X there exist a neighborhood U
of pin X and a constant M > 0 such that |p(t)| < M for allt € U, p € ®. If
lo(t)] < M for all t € X, ¢ € ® then we say that ® is bounded. If ¢¥: X — R,
U C X then ¢ | U denotes the restriction of ¢. We say that sequences z, y are
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asymptotically equivalent if ,, — y,, = o(1). For a given sequence x of real numbers,
by Yz, we denote the series whose partial sums are: 1, 1 + 2, T1 + T2 + 3
and so on. We often use the algebraic notation Az to denote A(z) if A is a linear
operator.

Recently, there has been a great interest in the study of asymptotic and oscillatory
behavior of solutions of higher order difference equations, see for example [2] [3],
[(1-[12]and the references cited therein. The purpose of this paper is to study
the asymptotic behavior of solutions of equation . Using the Schauder’s fixed
point theorem and some technical results based on the properties of iterated rest
operator we show that if the series Y n™ 1a, is absolutely convergent and the
family {®,} is equicontinuous and locally bounded (uniformly equicontinuous and
bounded) then every bounded solution (every solution) of the equation A™y,, = b,, is
asymptotically equivalent to some solution of . Moreover, if the series > n™~1b,
is also absolutely convergent then every polynomial sequence of degree less than m is
asymptotically equivalent to some solution of . Similar problem for autonomous
difference equation was considered in [4]. We also show that if the series > n™ 'a,
and Y. n™~1b, are absolutely convergent and the family {y,} is bounded then
every solution of is asymptotically polynomial. On the other hand, under some
additional assumptions, we show that if there exists asymptotically polynomial
solution of then the series Y. n™ a, and > n™~1b, are absolutely convergent.

The results obtained here generalize the results of [T, 6 [7] and some of those
contained in [5]. The results obtained here in Theorems are analogous to those
obtained in [4] for autonomous equations.

2. PRELIMINARY LEMMAS

In this section we introduce a rest operator and establish some useful properties
of their iterations. These results will be used in the proofs of the main theorems in
Section [Bl

By SQ we denote the space of all sequences z: N — R. If x € SQ then |z|
denote the sequence defined by |x|(n) = |z, | for every n € N. The Banach space of
all bounded sequences x € SQ with the norm ||z|| = sup{|z,| : n € N} we denote
by BS. For k € N, Pol(k) denotes the space of all polynomial sequences (with
real coefficients) of degree < k. We identify every sequence 3 € Pol(k) with the
corresponding polynomial.

Let S(0) = {z € SQ : lim=z,, = 0},

S(1) = {z € SQ : the series an is convergent} .
If x € S(1), we may define the sequence r(z) by the formula
r(@)(n) =) ;.
Jj=n
Obviously r(z) € S(0) and the mapping r: S(1) — S(0), which we call the

rest operator, is linear. Let S(2) = {z € S(1) : r(z) € S(1)}. Then S(2) is
a linear subspace of S(1) and we may define the operator r2: S(2) — S(0) by
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r2(xz) = r(r(x)). If k € N then, by induction, we define the space S(k + 1) and the
operator r**1: S(k+ 1) — S(0) b

S(k+1)={xecSk): r*(x) e S1)}, r* () = r(rF(2)) .

If # € S(k), n € N then the value r*(z)(n) we denote also by r¥(x) or simply r¥x.
Moreover, if z € SQ, n € N then we define 0z = z,,. Note that

S(k) € S(k—1) C --- C S(1) C S(0)

are linear subspaces of S(0) and 7*: S(k) — S(0) is a linear operator.

For n € N we define the numbers s = 1, s} = s + s + - + s = n. If k,
n € N then, by induction on k, we define numbers

sfﬁ'l :s’f—&—sg—k...—i—sﬁ

Lemma 1. Ifk € N, |z| € S(k) then x € S(k) and |r*z| < r¥|z|.
Proof. Induction on k. The case k = 1 is obvious. Assume the assertion is true
for some k > 1 and |z| € S(k + 1). Then r*|z| € S(1). Moreover by inductive
assumption, x € S(k) and |r¥z| < r¥|z|. Hence, by comparison test of convergence
of the series, 7%z € S(1). Therefore, z € S(k + 1). Moreover |rkTlz| = |r(rkz)| <
r([rFz|) < r(rk|z]) = rFHa|. O

Lemma 2. Assume x € SQ, k € N. Then |z| € S(k) if and only if the series
S s8 7 e, is absolutely convergent. If |x| € S(k), n € N then
T§|x| = 31 “Haa| + 32 1|xn+1| + 3§_1|$n+2| te

Proof. We prove this by induction on k. The case k = 1 is obvious. Assume the
assertion is true for some k > 1. If |x| € S(k+ 1), n € N then

el = ralel 4 g o]+ e palel + o yglel +
=7 Haul + 85 onra| + 85 ool + 84 sl +
+ 50 ona| + 55 ngal + 55 ongs| 4+
+ 81 anga] + 55 |Tatal 4
+s’f‘1lwn+sl +o.
= sy Haal + (577 55 Dlena ]+ (577 + 557+ 55 )|zl + -
= st|zn| + 85|2n41] + s5|Tnta| + sflntal + ...
Hence
(1) rplelrylel ool + o= stlan] + s5zng| + shlenge] +

For n =1 we obtaln the convergence of the series Y - | s¥x;. Conversely, assume

i=1 S
the series Zz 1 s x; is absolutely convergent. Since 0 < sf < sk for alli € N,
the series Y .-, s; k=ly.is absolutely convergent. Hence, by inductive assumption,
|z| € S(k). Let n = 1. By (1)), the series Y ;=, r¥|z| is convergent. Therefore

r*|z| € S(1). Hence |z| € S(k + 1). The proof is complete. O
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Lemma 3. Assume z € SQ, k € N(0). Then |x| € S(k+ 1) if and only if the
series Y nFx, is absolutely convergent.

Proof. First we show that sﬁ <nkforallme N. It is obvious if k=0 or k = 1.
Assume s¥ < nF for some k > 1 and any n € N. Then skt = sk + 55+ .. 4+ sk <
nF +nkF 4+ ..+ nkF =nnkF =kt

Using the known equality Y 7, (*F;7") = (}27) it is easy to show that
b kE+n—1 :n(n—i—l)...(n—l—k—l).
" k k!

Hence, n®* < n(n +1)...(n + k — 1) = klsk. Since sk < n* < klsk  absolute
convergence of the series Y nFx, is equivalent to the absolute convergence of the
series Y s¥x,,. The assertion follows now from Lemma (]

Lemma 4. Assume M >0,k € N, a,b € SQ, |b| < M, and the series > n*~1|a,|
is convergent. Then ba,|a| € S(k) and |r*(ba)| < Mr*|al.

Proof. By Lemmal3| |a|, |ba| € S(k). Hence, by Lemma ba € S(k) and |r¥(ba)| <
7*|ba|. By Lemma 2 *|ba| < r*(M|a|) = Mr*|a|. Hence |r¥(ba)| < Mr*la|. O

Lemma 5. Ifk € N and x € S(k), then AFrkz = (—1)Fz.
Proof. We prove this by induction on k. If £k = 1, then

Arz(n) =rz(n+1) —ra(n) = Z TE — Z Tp = —Tp .

k=n-+1 k=n
Hence Arz = —z. Assume the assertion is true for some k£ > 1 and let x € S(k+1).
Since 7*z € S(1), we have Ar(r*fz) = —rkz. Hence,

AR — AR AprF g = AF(—rk ) = (=) ARk z = (=1)" s

Lemma 6. Let x be a sequence convergent to ¢ € R and let k € N. Then

Afz e S(k), rFAR e = (=1)*(x —¢).
Proof. Let k = 1. Then Az +Axo+...+Az, = x,1—x1. Hence the series Y Az,
is convergent i.e., Ax € S(1). Moreover Az, + Axpy1 + ...+ Axp = Tpy1 — T

Hence r, Az = ¢ — x,,. Therefore the assertion is true for k = 1. Assume it is true
for some k > 1. Since the sequence Az is convergent to zero we have

Al = APAz e S(k),  rFAR 2 = rFARAZ = (—1)F Az

Since Az € S(1), it follows that (—1)*Az € S(1). Hence, r*A* 1z ¢ S(1).
Therefore A*12 € S(k + 1). Moreover

rFH ANy = prP ARAr = r((—1)FAZ) = (—1)FrAx
= (D Dz —o) = (1) (z —o).
The proof is complete. O
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Lemma 7. Let k € N and let W ={z € SQ : z, =0 for n > k}. Then
AM™M(W) =W.

Proof. It is easy to see that W is a finite dimensional linear subspace of SQ
and A™(W) C W. Since W NKer A™ = W N Pol(m — 1) = 0, the linear opera-
tor A™|W: W — W is monomorphic. Hence dim(A™(W)) = dim W. Therefore
A™(W) = W. =
Remark 1. It is easy to see that if x, 2 € SQ, p € N, and 2, =z, for alln > p
then A*z, = AFz,, for n > p. Analogously, by easy induction on k, one can show
that if z € S(k), z € SQ, and z,, = ,, for n > p then z € S(k) and r¥z = rkx for
n > p.

Lemma 8 ([6]). If X and Y are metric spaces, X is compact, and ® is equiconti-
nuous family of maps p: X — Y, then ® is uniformly equicontinuous.

Lemma 9 ([6]). If X, Y are metric spaces, X is compact, and ® is a locally
bounded family of maps ¢: X — Y, then ® is bounded.

3. MAIN RESULTS

Theorem 1. Assume the series Y, n™ ta, is absolutely convergent, y is a bounded
solution of the equation A™y, = b,, and Y is the set of values of the sequence y.
If there exists a neighbourhood U of the closure Y such that the family {¢, | U} is
locally bounded and equicontinuous, then there exists a solution x of such that
x=y+o(l).

Proof. Since the set Y is bounded, the closure Y is compact. Hence, there exists
an open set V such that V is compact and YCVCVCU. Using Lemma
and Lemma [J] one can show that the family {¢,, | V'} is bounded and uniformly
equicontinuous. Since Y is compact, so there exists a number ¢ > 0 such that if

seY, teR, |s—t<c
then t € V. There exists M > 0 such that |p,(t)| < M for allt € V and all n € N.
Let p = r™|a|. By definition of ™, p = o(1). Choose p € N such that Mp,, < ¢ for
any n > p. Let
T={xeBS:z,=0 for n<p and |z,| < Mp, for n>p}.

Obviously T is a convex and closed subset of BS. Choose an € > 0. Then there
exists m € N such that Mp, < e for any n > m. Forn=1,...,m let G,, denote a
finite e-net for the interval [—M p,, M p,] and let

G={2x€eT:z,€G, for n<m and z, =0 for n>m}.

Then G is a finite e-net for T'. Hence T is a complete and totally bounded metric
space and so, T' is compact. Hence T is a convex and compact subset of the Banach
space BS. Let

S={reSQ : z,=y, for n<p and |z, —yn| < Mp, for n > p}

and let F': T'— S be a map given by F(z)(n) = z,, + yn. The formula d(z, z) =
SUP,en |Tn — 2n| defines a metric on S such that F is an isometry of 7" onto S. By



6 J. MIGDA

Schauder’s fixed point theorem, every continuous map B: T"— T has a fixed point.
Since the space S is homeomorphic to T, every continuous map A: S — S has a
fixed point too.

Let € S. Then |z; — y;| < ¢ for any ¢ € N. Hence x; € V for all i € N. Therefore
lon(2i)| < M for all n € N and all i € N. Hence, if z € S then |0, (z5m))] < M
for all n > ng. For x € SQ let = be defined by

Ty =

_ 0 for n<ng
UnPn(To(n)) for n>mng.

If z € S then |Z| < M|a|. Hence, by Lemma[3] |z| € S(m) for all # € S. By Lemma
z € S(m) for all x € S. Since limo(n) = oo, there exists p; > p such that
o(n) > p for all n > py. For x € S we define the sequence A(z) by

A(z)(n) = Yn for n<p;
Yn + (=1)mrz for n>pp.

Then |A(z) — y| < [r™z| < r™|z|. Hence, by Lemma [2]
|A(z) =yl < r™(Mla]) = Mp.

Therefore A(z) € S for all x € S.

Let € > 0. Since the family {¢,,|V} is uniformly continuous, there exists ¢ > 0
such that if t, s € V and |t — s| < § then |@,(t) — pn(s)] < € for any n € N. Let
z,z €8, ||lx—z|| <d. Then x;,2; € V and |z; — z;| < 0 for all i € N. Hence
lon(zi) — on(zi)] < e foralln € N and all i € N. Hence |z — z| < €|a|. Therefore

[A(z) = A(2)[| = sup |ry'T — 72|
n=py
= sup [r; (T — 2)| < rpy|x — 2| <erpilal = epy, -
n>pi
Hence, the mapping A: S — S is continuous. Therefore there exists z € S such
that A(z) = z. Then z,, = y, + (—1)™r7'z for any n > p;. Hence, using Lemma [f]
we obtain

A"y = A"y + A" ((=1)"17'T) = bp + Tn = an@n(Tom)) + bn

for n > p;. Moreover, since r™z = o(1), we have x = y + o(1). The proof is
complete. 0O

Corollary 1. If the series Y., n™ La, is absolutely convergent, and the family
{¢n} is equicontinuous and locally bounded, then for any bounded solution y of the
equation A™y, = b, there exists a solution T of such that x =y + o(1).

Proof. Take U = R in Theorem [II O

Corollary 2. If the series Y., n™ La, is absolutely convergent, and the family
{¢n} is equicontinuous and bounded, then for any bounded full solution y of the
equation A™y = b there exists a full solution x of such that x =y + o(1).
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Proof. Choose M > 0 such that |p, ()] < M for all n € N, t € R. In the proof of

Theorem |1} we can choose V' and c such that ¢ > Mp;. Then we can take p =1,

b1 = no. 0
The next Corollary generalizes Theorem 1 of [7].

Corollary 3. If the series Y. n™ ta,, Y. n™ b, are absolutely convergent, and
the family {p,} is equicontinuous and locally bounded, then for any ¢ € R there
exists a solution x of such that limx, = c. If moreover, the family {on,}
is bounded, then for every ¢ € R there exists a full solution x of such that
limz, =c.

Proof. Let ¢ € R, u = (—1)™r™b, y = ¢+ u. Then u = o(1) and A™y =
A™c+ A™u = A™u = b. Hence y is a bounded solution of the equation A™y = b.
By Corollary [1| there exists a solution = of such that © = y + o(1). Hence
x =c+u+o(l) = c+ o(l). This means that limx, = c¢. The second assertion
follows from Corollary [2] O

Remark 2. Assume f,g: R — R are continuous functions and (ay,), (8,) are
bounded sequences of real numbers. Then the family {¢,} defined by ¢, =
ap f+ Bng is equicontinuous and locally bounded. Moreover if f ang g are uniformly
continuous then the family {y,} is uniformly equicontinuous.

Remark 3. Assume fo, f1,..., fp—1: R — R are continuous functions. Then
the family {¢,} defined by ¢jp+r = fx for k =0,1,...,p—1, 7 =0,1,... is
equicontinuous and locally bounded.

Example 1. Assume cg, ¢1, ca € R. Let by = 9(co — ¢2), b1 = 9(c1 — ¢p), ba =
9(co — c2) and let (¢,), (by) be defined by

Co,C1,C2,Cp,C1,C2, . .. b03b13b27b07b17b2a"'

respectively. It is easy to see that for every @ € R the sequence (a+¢;,) is a bounded
solution of the equation A%y, = b,. Hence, by Remark [2| and by Corrollary [1} for
every o € R there exists a solution x of the equation
1 1 nm
5 n : 2
such that lim zs, = a + ¢, limxs,+1 = a+c1, limxs, 12 = a + co.

Theorem 2. If the series Y. n™ ta, is absolutely convergent, and the family {¢,}
is bounded and uniformly equicontinuous, then for every full solution y of the
equation A"y, = b, there exists a full solution x of such that x =y + o(1).

Proof. Let y be a full solution of the equation A™y,, = b,. Choose M > 0 such
that |@,(t)] < M for every n € N and every ¢t € R. Let p = r™|al,

T={xe€BS: |z| < Mp}, S={zeSQ :|r—y|l < Mp}.

Let z € S, u € SQ, up = anPn(Ts(n)) for n > ng, A(x) =y + (=1)"r™u. As in
the proof of Theorem [1| one can show that there exists € S such that A(z) = x.
Then © = y + (=1)™"u = = + o(1) and A™z = A™y +u = b+ u. Hence
A2y, = by + 0 0n(Tn)) for n > ng. Therefore x is a full solution of . O
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The next Corollary generalizes Theorem 2 of [7].

Corollary 4. If the family {¢,} is bounded and uniformly equicontinuous, and the
series S n™ ta,, ST n™7tb, are absolutely convergent, then for every polynomial
B € Pol(m — 1) there exists a full solution = of such that x = 8+ o(1).

Proof. Let 8 € Pol(m — 1), u = (=1)™r™b, y = 8+ u. Then u = o(1) and
A™y = A™B + A™y = A™u = b. Hence y is a full solution of the equation
A™y = b. By Theorem [2] there exists a full solution x of (E]) such that z = y + o(1).
Hence z = 4+ u+o0(1) = 5+ o(1). O
Theorem 3. Assume A € R, and the family {p,|[A, 00)} is bounded and uniformly
equicontinuous. If the series Y n™ la,, S n™ b, are absolutely convergent, then
for every polynomial 5 € Pol(m — 1) such that lim 3(n) = co there exists a solution

x of such that © = 3+ o(1).

Proof. Assume 3 € Pol(m —1), lim 5(n) = co. Choose M > 1 such that |p, (t)| <
M for all t € [A\,00) and all n € N. Let p = r™(|a|] + |b]). Then p = o(1). Choose
p € N such that 8(n) > A+ Mp, for n > p. Let

T={xeBS:2,=0 for n<p and |z,| < Mp, for n>p}.

S={z€SQ :z,=p(n) for n<p and |z,—B(n)<Mp, for n>p}.
Ifz €S, n>pthenx, > B(n)—Mp, > A+ Mpy — Mp, > X. Choose p; > p such
that o(n) > p for any n > p;. Then 2,(,,) > A for alln > py. Hence |@y, (25 (n))| < M
for n > py. For z € SQ we define x by
_ 0 for n <mng
€T =
P (To(n)) + b, for n>ng.
If z € S then |z| < Mla| + [b] < M(|a| + [b]). Hence, by Lemma [3] |z| € S(m) for
all z € S. By Lemmal[l} z € S(m) for all z € S. For z € S let
B(n) for n<p
A(z)(n) = N
B(n)+ (=1)™rz for n>p;.
Then |A(z) — | < |[r™z| < r™|z|. Hence, by Lemma 2]
|A(z) = B| < r™(M(|a| + |b])) = Mp.
As in the proof of Theorem [I] one can show that there exists x € S such that
A(z) = z. Then x, = B(n) + (=1)™rz for n > p;. Hence z =  + o(1) and
A"z, = A"B(n) + AT ((=1)"r'2) = 0+ Tp = an@n(To(n)) + bn
for n > py. The proof is complete. O

The proof of the following theorem is analogous to that of Theorem [3| and hence
it is omitted.

Theorem 4. Assume there exists A € R such that the family {¢n|(—o0, \]} is
bounded and uniformly equicontinuous. If the series Y. n™ la,, S.n™ b, are
absolutely convergent, then for every polynomial 8 € Pol(m—1) such that lim G(n) =
—oo there exists a solution x of such that x = 8+ o(1).
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The following corollary is an immediate consequence of Theorems [3] and [

Corollary 5. Assume the series Y. n™ ta,, . n™ b, are absolutely convergent,
and there exists A € R such that the family {¢n|(—00, —A]U[A, 00)} is bounded and
uniformly equicontinuous. Then for every nonconstant polynomial B € Pol(m — 1)
there exists a solution x of such that x = 5+ o(1).

Theorem 5. Assume the series Y n™ ta,, S n™7 b, are absolutely convergent
and the family {¢n} is bounded. Then for every solution x of there exist a
polynomial B € Pol(m — 1) such that x = 3+ o(1). If, moreover, {¢,} is uniformly
equicontinuous, then for every polynomial 8 € Pol(m —1) there exists a full solution

x of such that © = 3+ o(1).

Proof. Let x be a solution of . For n > ng let u,, = angpn(xg(n)). The series
S-n™1a, is absolutely convergent and there exists a constant M such that
|0 (Zo(n))| < M for n > ng. Hence the series Y n™ 'u, is absolutely convergent.
Therefore the series Y. n™ 1(u, + b,) is also absolutely convergent. Let z =
(=1)™r™(u + b). Then, by definition of 7™, z = o(1) and, by Lemmal[5] A™z =
u + b. Hence there exists k € N such that A™z, = A™xz,, for all n > k. Let
v =A"x — A™z. Then v, = 0 for n > k. By Lemma [7] there exists a sequence
w € SQ such that A™w = v and w, =0 for n > k. Then 0 = A"z — A"z —v =
A" — A"z —A"w = A" (x —z—w). Hence z —z—w = [ for some 5 € Pol(m —1).
Then = 8+ z+w = [+ o(1). The second assertion follows from Corollary O

The next theorem generalizes Theorem 1 of [IJ.

Theorem 6. Assume U is a neighborhood of some ¢ € R, € > 0, the sequences
(an), (by) are nonoscillatory and one of the following conditions holds

(a) anby, >0, for large n, @, (t) > € for largem and t € U,

(b) anb, <0, for large n, ©n(t) < —e for largen and t € U.
If there exists a solution x of such that lim z,, = c, then the series . n™ 1b,

is absolutely convergent. If moreover € > 0, then the series Y. n™ ‘a, is absolutely
convergent.

Proof. Assume the condition (a) is satisfied and a,, > 0 for all large n. The proof
in other cases is similar and will be omitted. Let = be a solution of such that
limz,, = c. Then = ¢ + z for some z = o(1). Let u = A™x. Then, by Lemma 6]
u=A"(c+ z) = A"z € S(m). There exists p € N such that

Up = an@n(mo(n)) + b, @n(zo(n” 2 €, an 20, bn, >0
for n > p. Let h = |u| — u. Then h,, = 0 for n > p. Hence, by Lemma [3| h € S(m).
Therefore |u| = u + h € S(m). Hence by Lemma [3| the series > n™ ! u,| is
convergent. Since |b,| < |u,| for large n, the series Y n™~1|b,,| is convergent too.
Now assume & > 0. Then a,0n(75(n)) < uy, for n > p. Hence 0 < a,, < e tu, for
n > p. Therefore the series Y n™ !]a,| is convergent. O

Theorem 7. Assume A € R, € > 0, U = (A, 00), (U = (—\, —00)) the sequences
(an), (bn) are nonoscillatory and one of the following conditions holds
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(a)  apb, >0 forlargen, ¢,(t)>¢e forlargen andt e U,
(b)  apb, <0 forlargen, @,(t) < —e forlargen andteU.
If there exists a solution x of and B € Pol(m — 1) such that

x=0+0(1), limz,, = oo (limz,, = —00),

then the series Y. n™ 1b, is absolutely convergent. If moreover ¢ > 0 then the
series Y. n™ ta, is absolutely convergent.

Proof. Assume the condition (a) is satisfied, a,, > 0 for all large n and U = (A, 00).
The proof in other cases is similar. Let x be a solution of such that z =+ 2
for some 3 € Pol(m — 1) and z = o(1). Let u = A™z. Then u = A™(f + 2) =
A™B+ A™z = A™z € S(m). The rest of the proof is the same as the second part

of the proof of Theorem [ O

Remark 4. It is easy to see that if x is a convergent sequence such that A™z,, >0
for n > p then (—1)™**Akz, >0 for k € {1,2,...,m} and n > p.

Example 2. Assume k € N, m = 2k, a,, > 0 for n € N, the series > n" la, is
convergent, ¢y € R,

1 for t<c¢
so(t)={ 0

0 for t>cg.

By Corollary |5| for every nonconstant polynomial 3 € Pol(m — 1) there exists a
solution x of the equation

(E1) A"z, = app(an)

such that £ = 8+ o(1). By Theorem |[1] for every constant ¢ # ¢p there exists
a solution z of such that limz,, = ¢. We will show the equation has
no solutions convergent to c¢g. Assume z is a solution of , limz,, = ¢g. Then
A™z, = app(x,) > 0 for large n. Hence, by Remark [4] there exists p € N such
that Az, <0 for all n > p. Then z,, > ¢¢ for n > p. If z;, = ¢ for some g > p
then z,, = ¢g for all n > ¢. Hence A™z, = 0 for n > ¢. On the other hand
A"z, = app(x,) = a, > 0 for n > ¢. This is impossible. Hence x,, > ¢ for
all n > p. Therefore A™z,, = a,p(x,) = 0 for n > p. Hence x is for large n a
polynomial sequence convergent to cq. It follows, x,, = ¢g for large n. As above it
is impossible.

Example 3. Assume a,, > 0 for n € N, and the series > n3a, is convergent. By
Corollary [1} for every ¢ € R there exists a solution x of the equation

(E2) Az, = anz?

n

such that limz,, = c. Let A = 8inf{a;! : n € N}. We will show that if c > A
then has no full solutions convergent to c¢. Assume x is a full solution of
such that limx, = ¢ > A. Then A%z, = a,2? for all n € N. Hence Az > 0. By
Remark [4) Az < 0. Therefore x > ¢ > 0. There exists p € N such that A = 8a;1.
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Then ca, > 8 and

4 2
Tpta — 4Tpy3 + 62p40 —4Tp11 + 1) = Ay = ap7;,,

2 2
Tpya = 4Tpt3 — 6Tpio +4Tpr1 — Tp + apx;, > apT;, — 6Tpro — Tp .

Since Az <0, we have zp42 < . Hence —6xp42 > —6x,. Therefore

2 — 2 — —
Tpya > apTy, — 62 — 1) = apx, — T2y = (Ap7)p — T)T)

Since apx, > a,c > 8, we obtain apx, — 7 > 1. Hence x,14 > x,. This contradicts
the fact that x is nonincreasing.

[8]

[9

(10]
(11]

(12]
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