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The tame degree and related invariants of non-unique

factorizations

Franz Halter-Koch

Abstract. Local tameness and the finiteness of the catenary degree are two
crucial finiteness conditions in the theory of non-unique factorizations in
monoids and integral domains. In this note, we refine the notion of local
tameness and relate the resulting invariants with the usual tame degree
and the ω-invariant. Finally we present a simple monoid which fails to be
locally tame and yet has nice factorization properties.

1 Introduction and Notations

Our notation and terminology will be consistent with [3]. We briefly recall the key
notions and fix the terminology. We denote by N the set of positive integers, and
we set N0 = N ∪ {0}. For m, n ∈ Z, we set [m,n] = {x ∈ Z | m ≤ x ≤ n}, and we
define sup ∅ = 0.

By a monoid we always mean a commutative cancellative semigroup possessing
a neutral element. Apart from Section 5 we use multiplicative notation and denote
the unit element by 1 ∈ H. A monoid F is called free with basis P if every a ∈ F
has a unique representation

a =
∏

p∈P

pnp with np ∈ N0 and np = 0 for almost all p ∈ P .

Let F be a free monoid with basis P .
If z = u1 · . . . · un ∈ F , where n ∈ N0 and u1, . . . , un ∈ P , then we call |z| = n

the length of z. For any z, z′ ∈ F , let z0 = gcd(z, z′) be its greatest common
divisor, and call d(z, z′) = max

{
|z−1

0 z|, |z−1
0 z′|

}
the distance between z and z′.

Let H be a monoid.
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We denote by H× the group of invertible elements, by Hred = H/H× the
associated reduced monoid, and we call H reduced if H× = {1} (in this case we
have H = Hred). We denote by A(H) the set of atoms (or irreducible elements)
of H, and we call H atomic if H is generated (as a monoid) by H× ∪ A(H). We
denote by Z(H) the free monoid with basis A(Hred) and by πH : Z(H) → Hred the
unique homomorphism satisfying πH |A(Hred) = id. We call Z(H) the factorization
monoid and πH the factorization homomorphism of H. For a ∈ H, we denote by
Z(a) = π−1

H (aH×) the set of factorizations of a and by L(a) =
{
|z|
∣∣ z ∈ Z(a)

}
the

set of lengths of a. If z, z′ ∈ Z(a) and z 6= z′, then d(z, z′) ≥ 2. By definition, we
have L(a) = {0} if and only if a ∈ H× and L(a) = {1} if and only if a ∈ A(H). If
H is atomic, then πH is surjective, Z(a) 6= ∅ for all a ∈ H, and min L(a) ≥ 2 for all
a ∈ H \ (A(H) ∪H×). We call H a BF-monoid if H is atomic and L(a) is finite
for all a ∈ H.

H is called factorial if |Z(a)| = 1 for all a ∈ H. If H is not factorial, then there
exist elements a ∈ H for which Z(a) becomes arbitrarily large, and it is the goal of
the theory of non-unique factorizations to describe and classify the phenomena of
non-unique factorizations. This is usually done for atomic monoids, the interesting
structures for which the results apply are however integral domains and submonoids
of arithmetical interest. The interesting reader should consult the survey articles
[4] and [7] for these applications.

Unless otherwise specified, let in the sequel H be an atomic monoid.

All factorization properties P studied in this note have the following property:

If P holds for elements a1, . . . , an ∈ H, then P also holds for the elements
a1H

×, . . . , anH× ∈ Hred.

Hence whenever it will be convenient, we shall assume that H is reduced.

2 Invariants of non-unique factorizations

In this section we briefly recall the definition of the invariants to be considered in
this paper.

Definition 1. For b ∈ H×, we set ρ(b) = 1, for b /∈ H× we set

ρ(b) =
sup L(b)

min L(b)
, and we call ρ(H) = sup{ρ(b) | b ∈ H} the elasticity of H .

For k ∈ N we define ρk(H) = sup{sup L(b) | min L(b) ≤ k}.

The elasticity is among the best investigated arithmetical invariants of non-
unique factorizations, see [1], [3, Ch. 1.4 and Ch. 6.3], and [2] for some recent
results. In particular, if H 6= H×, then

ρ(H) = sup
{ρk(H)

k

∣∣∣ k ∈ N
}
= lim

k→∞
ρk(H)

k
,
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and if H is finitely generated, then there is some a ∈ H such that ρ(H) = ρ(a) ∈ Q
(see [3, Proposition 1.4.2 and Theorem 3.1.4]).

Definition 2. For b ∈ H, we denote by ω(b) the smallest N ∈ N0 ∪ {∞} with the
following property :

For all n ∈ N and a1, . . . , an ∈ H such that b |a1 · . . . · an, there exists some
subset Ω ⊂ [1, n] such that |Ω| ≤ N and

b
∣∣∣
∏

i∈Ω

ai .

We set ω(H) = sup{ω(u) | u ∈ A(H)} ∈ N0 ∪ {∞}.

For properties of the ω-invariant and its relevance in factorization theory we
refer to [3, Ch. 2.8 and Ch. 7.1] and to [5]. The following Proposition 1 gathers
the results which will become relevant in the sequel.

Proposition 1. Let b, c ∈ H.

1. ω(b) is the the smallest N ∈ N0 ∪ {∞} with the following property : For all
n ∈ N and u1, . . . , un ∈ A(H) such that b | u1 · . . . · un, there exists some
subset Ω ⊂ [1, n] such that |Ω| ≤ N and

b
∣∣∣
∏

i∈Ω

ui .

2. ω(b) ≤ ω(bc) ≤ ω(b) + ω(c).

3. sup L(b) ≤ ω(b), and equality holds if every atom dividing b is a prime. In
particular, ω(b) = 0 if and only if b ∈ H×, ω(b) = 1 if and only if b is a prime,
and ω(H) = 0 if and only if H = H×.

4. If ω(u) < ∞ for all u ∈ A(H), then ω(a) < ∞ for all a ∈ H, and H is a
BF-monoid.

5. If H is v-noetherian, then ω(a) < ∞ for all a ∈ H.

Proof. 1. Let ω0(b) be the smallest N ∈ N0 ∪ {∞} satisfying the given condition.
Then clearly ω0(b) ≤ ω(b). Let n ∈ N and a1, . . . , an ∈ H be such that b |a1 · . . . ·an.
For i ∈ [1, n], let ai = εiui,1 · . . . · ui,li with εi ∈ H×, li ∈ N0 and ui,j ∈ A(H).
Then

b
∣∣∣

n∏

i=1

li∏

j=1

ui,j ,
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and therefore

b
∣∣∣
∏

(i,j)∈Ω

ui,j for some Ω ⊂
n∏

i=1

[1, li] with |Ω| ≤ ω0(b) .

If Ω′ = {i ∈ [1, n] | (i, j) ∈ Ωfor somej ∈ [1, li]}, then |Ω′| ≤ |Ω| ≤ ω0(b) and

b
∣∣∣
∏

(i,j)∈Ω

ui,j

∣∣∣
∏

i∈Ω′

ai , whence ω(b) ≤ ω0(b) . �

2. [5, Lemma 3.3.1].

3. Let n ∈ L(b) and b = u1 · . . . un, where u1, . . . , un ∈ A(H). Then b divides
no proper subproduct of u1 · . . . · un and thus ω(b) ≥ n. Hence ω(b) ≥ sup L(b).

If u1, . . . , un are primes, then ω(ui) = 1 for all i ∈ [1, n] by definition, hence
ω(b) ≤ n by 2., and therefore ω(b) = n.

If b is not a prime, then there exist u, v ∈ H such that b | uv, b - u and b - v.
Hence ω(b) ≥ 2.

4. holds by 2. and 3., and 5. is proved in [5, Theorem 4.2].

Definition 3. For a ∈ H, the catenary degree c(a) denotes the smallest N ∈ N0 ∪
{∞} with the following property :

For any two factorizations z, z′ ∈ Z(a) there exists a finite sequence of factor-
izations (z0, z1, . . . , zk) in Z(a) such that z0 = z, zk = z′ and d(zi−1, zi) ≤ N
for all i ∈ [1, k] (we say that z and z′ can be concatenated by an N -chain).

c(H) = sup{c(a) | a ∈ H} is called the catenary degree of H.

By the very definition we have c(a) = 0 if and only if a has unique factoriza-
tion. If c(a) > 0, then c(a) ≥ 2. If c(a) = 2, then |L(a)| = 1, and if c(a) = 3,
then L(a) = [min L(a),max L(a)] is an interval. The invariant c(a) measures the
disconnectedness of the set of factorizations of a (see [3, Ch. 1.6 and Ch. 6.4]).

Definition 4. For a ∈ H and x ∈ Z(H), let t(a, x) denote the smallest N ∈ N0 ∪
{∞} with the following property :

If Z(a) ∩ xZ(H) 6= ∅ and z ∈ Z(a), then there exists some z′ ∈ Z(a) ∩ xZ(H)
such that d(z, z′) ≤ N .

For subsets H ′ ⊂ H and X ⊂ Z(H), we define

t(H ′, X) = sup{t(a, x) | a ∈ H ′ , x ∈ X} ,

and for a ∈ H and x ∈ Z(H), we set t(H ′, x) = t(H ′, {x}) and t(a,X) = t({a}, X).

We define t(H) = t(H,A(Hred)). The monoid H is called tame if t(H) < ∞,
and it is called locally tame if t(H,u) < ∞ for all u ∈ A(Hred).



The tame degree and related invariants of non-unique factorizations 61

Tameness is a very strong condition. Local tameness turned out to be crucial for
the proof of all finiteness results in the theory of non-unique factorization hitherto.
For details we refer to [3, Ch. 1.6, Ch. 4 and Ch. 6.5].

In [5], the authors introduced the following invariants and used them for a
detailed study of the behavior of the tame degree.

For k ∈ N and b ∈ H, define

τk(H, b) = sup{min L(b−1a) | a = u1 · . . . · uj ∈ bH , where j ∈ [0, k] ,

u1, . . . , uj ∈ A(H) and b - u−1
i a for all i ∈ [1, j] } ∈ N0 ∪ {∞} .

τ∗k (H, b) = sup{τk(H, b) | k ∈ N} ∈ N0 ∪ {∞} ,
τ(H, b) = sup{min L(b−1a) | a ∈ bH \H×} ∈ N0 ∪ {∞}

and

τ∗(H, b) = sup
{min L(b−1a)

min L(a)

∣∣∣ a ∈ bH ,min L(a) ≤ k
}
∈ R≥0 ∪ {∞} .

In this paper we continue these studies. We proceed with a detailed investi-
gation of the τ∗-invariants [ which we now denote by τ∗(k)(b) instead of τ∗(k)(H, b) ]
in Section 3 und use it to describe the behavior of a refined variant of the tame
degree in Section 4. Finally, in Section 5 we present a simple monoid H which
fails to be locally tame and yet has catenary degree c(H) = 3.

3 The τ ∗-invariant

Definition 5. For b ∈ H and k ∈ N0, we define

τ∗k (b) = sup{min L(b−1a) | a ∈ bH ,min L(a) ≤ k} ∈ N0 ∪ {∞} ,

and we set

τ∗∞(b) =

{
τ∗ω(b)(b) , if ω(b) < ∞ ,

∞ , if ω(b) = ∞ ,
τ∗(b) = sup

{min L(b−1a)

min L(a)

∣∣∣ a ∈ bH \H×
}
.

By definition, τ∗(b) ∈ R≥0∪{∞}, τ∗0 (b) = 0 and τ∗1 (b) ≤ τ∗2 (b) ≤ . . .. If b ∈ H×,
then τ∗(b) = 1, τ∗∞(b) = 0, and if H contains a prime, then τ∗k (b) = k for all k ∈ N.
If m ∈ N and b is a product of m primes, then τ∗k (b) = max{0, k −m}.

Lemma 1. If b ∈ H, k ∈ N and k ≥ ω(b), then

τ∗k (b) ≤ τ∗∞(b) + k − ω(b) .

In particular, if ω(b) < ∞ and τ∗k (b) = ∞ for some k ∈ N, then τ∗∞(b) = ∞.
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Proof. Let b ∈ H, k ≥ ω(b) and a ∈ bH such that min L(a) = l ≤ k. If l ≤ ω(b),
then min L(b−1a) ≤ τ∗ω(b)(b) ≤ τ∗∞(b) + k − ω(b). Thus suppose that l > ω(b),

and let a = u1 · . . . · ul, where u1, . . . , ul ∈ A(H). Then (after renumbering if
necessary) we have b |c = u1 · . . . · uω(b), and min L(b−1c) ≤ τ∗ω(b)(b) = τ∗∞(b). Since

b−1a = uω(b)+1 · . . . · ulb
−1c, it follows that

τ∗k (b) ≤ min L(b−1a) ≤ min L(b−1c) + l − ω(b) ≤ τ∗∞(b) + k − ω(b) . �

Theorem 1. Let b ∈ H. Then we have

τ∗(b) = sup
{τ∗k (b)

k

∣∣∣ k ∈ N
}
, τ∗(b)− 1 ≤ τ∗∞(b) ≤ ω(b)τ∗(b) ,

and if τ∗∞(b) < ∞, then

lim sup
k→∞

τ∗k (b)
k

≤ 1 .

In particular, τ∗∞(b) < ∞ if and only if τ∗(b) < ∞ and ω(b) < ∞.

Proof. If a ∈ bH \H× and min L(a) = l, then

min L(b−1a)

min L(a)
≤ τ∗l (b)

l
≤ sup

{τ∗k (b)
k

∣∣∣ k ∈ N
}
,

and therefore

τ∗(b) = sup
{min L(b−1a)

min L(a)

∣∣∣ a ∈ bH \H×
}
≤ sup

{τ∗k (b)
k

∣∣∣ k ∈ N
}
.

To prove the reverse inequality, let µ ∈ R be such that

µ < sup
{τ∗k (b)

k

∣∣∣ k ∈ N
}
, and then we show that τ∗(b) > µ .

Indeed, there is some k ∈ N satisfying τ∗k (b) > µk, and thus there is some a ∈ bH
such that min L(a) ≤ k and min L(b−1a) > µk, which implies that

τ∗(b) ≥ min L(b−1a)

min L(a)
>

µk

k
= µ .

If b ∈ H× or ω(b) = ∞, then obviously τ∗(b) − 1 ≤ τ∗∞(b) ≤ τ∗(b)ω(b). Thus
suppose that b ∈ H \H× and ω(b) < ∞. Then ω(b) > 0 and

τ∗∞(b) = ω(b)
τ∗ω(b)(b)

ω(b)
≤ ω(b)τ∗(b) .

If τ∗∞(b) < ∞, then ω(b) < ∞, and for k ≥ ω(b) Lemma 1 implies

τ∗k (b)
k

≤ τ∗∞(b)

k
+ 1 ≤ τ∗∞(b) + 1 .

Thus we obtain

τ∗(b) = sup
{τ∗k (b)

k

∣∣∣ k ∈ N
}
≤ τ∗∞(b) + 1 and lim sup

k→∞

τ∗k (b)
k

≤ 1 . �
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Proposition 2. If b, c ∈ H and k ∈ N, then

τ∗k (bc) ≤ τ∗(b)τ∗k (c) and τ∗(bc) ≤ τ∗(b)τ∗(c) .

In particular, if τ∗(u) < ∞ for all u ∈ A(H), then τ∗(b) < ∞ for all b ∈ H.

Proof. If τ∗k (c) = ∞, there is nothing to do. Thus assume that τ∗k (c) = t ∈ N. If
a ∈ bcH and min L(a) ≤ k, then a ∈ cH, hence min L(c−1a) ≤ t, and

min L
(
(bc)−1a

)
≤ sup{min L(b−1a′) | a′ ∈ bH ,min L(a′) ≤ t} ≤ τ∗t (b) .

Therefore we obtain

τ∗k (bc) ≤ τ∗t (b) =
τ∗t (b)
t

t ≤ τ∗(b)τ∗k (c)

and

τ∗(bc) = sup
{τ∗k (bc)

k

∣∣∣ k ∈ N
}
≤ τ∗(b) sup

{τ∗k (c)
k

∣∣∣ k ∈ N
}
= τ∗(b)τ∗(c) . �

Proposition 3. If k ∈ N, b ∈ H and m ∈ L(b), then

τ∗k (b) ≤ ρk(H)−m and τ∗(b) ≤ ρ(H) .

Proof. Let k ∈ N, b ∈ H, m ∈ L(b) and a ∈ bH be such that min L(a) ≤ k.
Then min L(b−1a) +m ≤ max L(a) ≤ ρk(H) and therefore τ∗k (b) ≤ ρk(H)−m. By
Theorem 1, it follows that

τ∗(b) = sup
{τ∗k (b)

k

∣∣∣ k ∈ N
}
≤ sup

{ρk(H)

k

∣∣∣ k ∈ N
}
= ρ(H) . �

4 The tame degrees

Definition 6. For b ∈ H and k ∈ N, we denote by tk(b) the smallest N ∈ N0∪{∞}
with the following property:

For every a ∈ bH, z ∈ Z(a) with |z| ≤ k and y ∈ Z(b), there exists some
z′ ∈ Z(a) ∩ yZ(H) such that d(z, z′) ≤ N .

We call t(b) = sup{tk(b) | k ∈ N} the tame degree of b.

According to Definition 4 we have

t(b) = t(H,Z(b)) , t(H) = sup{t(u) | u ∈ A(H)} ,

and H is locally tame if and only if t(u) < ∞ for all u ∈ A(H).
By the very definition, it follows that 0 = t1(b) ≤ t2(b) ≤ . . . ≤ tk(b) for all

k ∈ N, and if tk(b) > 0 for some k ∈ N, then tk(b) ≥ 2.
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Lemma 2. Let b ∈ H.

1. t(b) = 0 if and only if every atom dividing b is a prime.

2. If ω(b) < ∞, then t(b) = tω(b)(b).

Proof. 1. See [3, Lemma 1.6.5.2].

2. We may assume that H is reduced. By definition, we have t(b) ≥ tω(b)(b).
To prove the reverse inequality, let a ∈ bH, y ∈ Z(b) and z = u1 · . . . · un ∈
Z(a), where n ∈ N0 and u1, . . . , un ∈ A(H). Since a = u1 · . . . · un ∈ bH, there
exists (after renumbering if necessary) some m ∈ N0 such that m ≤ min{n, ω(b)},
c = u1 · . . . · um ∈ bH and z0 = u1 · . . . · um ∈ Z(c). Therefore there exists
some z′0 ∈ Z(c) ∩ yZ(H) such that d(z0, z

′
0) ≤ tm(b) ≤ tω(b)(b). Now we obtain

z′ = z′0um+1 · . . . · un ∈ Z(a) ∩ yZ(H) and d(z, z′) = d(z0, z
′
0) ≤ tω(b)(b). �

Proposition 4. If b, c ∈ H and k ∈ N, then

tk(bc) ≤ 2t(b) + tk(c) ,

In particular, it follows that t(bc) ≤ 2t(b) + t(c) for all b, c ∈ H, and if H is locally
tame, then t(a) < ∞ for all a ∈ H.

Proof. Let a ∈ bcH, y ∈ Z(bc) and z ∈ Z(a) with |z| ≤ k. We must prove that
there exists some z′ ∈ Z(a) ∩ yZ(H) such that d(z, z′) ≤ 2t(b) + tk(c).

Let x ∈ Z(b) be arbitrary. Since b | bc, there exists some y1 ∈ Z(bc) ∩ xZ(H)
such that d(y, y1) ≤ t(b). Then x−1y1 ∈ Z(c), and since c | a, there exists some
z1 ∈ Z(a) ∩ x−1y1Z(H) such that d(z, z1) ≤ tk(c). Now we have b | c−1a and
xy−1

1 z1 ∈ Z(c−1a), and therefore there exists some w ∈ Z(c−1a)∩ xZ(H) such that
d(w, xy−1

1 z1) ≤ t(b). With z′ = yx−1w ∈ Z(a) we obtain

d(z, z′) ≤ d(z, z1) + d
(
x−1y1(xy

−1
1 z1), x

−1y1w
)
+ d(x−1y1w, x

−1yw)

= d(z, z1) + d(xy−1
1 z1, w) + d(y, y1) ≤ tk(c) + 2t(b) . �

Theorem 2. If b ∈ H and there is some atom dividing b which is not a prime, then

2 ≤ ω(b) ≤ t(b) + min L(b)− 1 .

In particular, if H is locally tame, then H is a BF-monoid.

Proof. We may assume that H is reduced.

By Proposition 1 we have ω(b) ≥ 2, and it suffices to prove that, for all n ∈ N
and u1, . . . , un ∈ A(H) with b |u1 · . . . · un, there exists some Ω ⊂ [1, n] such that
|Ω| ≤ t(b) + min L(b)− 1 and

b
∣∣∣
∏

i∈Ω

ui .
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Let n ∈ N and u1, . . . , un ∈ A(H) such that b | a = u1 · . . . · un. Consider the
factorization z = u1 · . . . · un ∈ Z(a), and let y ∈ Z(b) be such that |y| = min L(b).
Then there exists some z′ ∈ Z(a) ∩ yZ(H) such that d(z, z′) ≤ t(b).

If z ∈ yZ(H), then (after renumbering if necessary) we obtain y = u1 · . . . ·ud, hence
b |u1 · . . . · ud and d = min L(b) ≤ t(b) + min L(b)− 1, since t(b) ≥ 1 by Lemma 2.

If z /∈ yZ(H), then (after renumbering if necessary) we may assume that

z′ = yu1 · . . . · udv1 · . . . · vs ,

where d ∈ [0, n], s ∈ N0, v1, . . . , vs ∈ A(H) and {ud+1, . . . , un} ∩ {v1, . . . , vs} = ∅.
It follows that

t(b) ≥ d(z, z′) ≥ n− d− | gcd Z(H){y, ud+1 · . . . · un}| ≥ n− d− (|y| − 1) .

Since a = bu1 · . . . · udv1 · . . . · vs = u1 · . . . · un, it follows that b |ud+1 · . . . · un, and
n− d ≤ t(b) + |y| − 1 = t(b) + min L(b)− 1. �

Theorem 3. For all b ∈ H and k ∈ N we have

τ∗k (b)− k +min L(b) ≤ tk(b) ≤ t(b) ≤ max{ω(b), τ∗∞(b) + sup L(b)}
≤ ω(b)[ τ∗(b) + 1 ] , and t(b) < ∞ if and only if τ∗∞(b) < ∞.

Proof. We may assume that H is reduced.

Let b ∈ H, k ∈ N, a ∈ bH, y ∈ Z(b) and z ∈ Z(a) such that |z| ≤ k. Then there
exists some z′ ∈ Z(a) ∩ yZ(H) such that d(z, z′) ≤ tk(b), and we obtain

min L(b−1a) ≤ |y−1z′| ≤ |z′| −min L(b) ≤ |z|+ d(z, z′)−min L(b)

≤ k + tk(b)−min L(b) .

Therefore it follows that

τ∗k (b) = sup{min L(b−1a) | a ∈ bH ,min L(a) ≤ k} ≤ k + tk(b)−min L(b) .

This proves the first inequality, and tk(b) ≤ t(b) holds by definition.
To prove the third inequality, we asume that a ∈ bH, z = u1 · . . . · un ∈ Z(a)

and y = q1 · . . . · qr ∈ Z(b) with n, r ∈ N0 and u1, . . . , un, q1, . . . , qr ∈ A(H).
Let m ∈ N0 be such that m ≤ min{n, ω(b)} and (after renumbering if necessary)
c = u1 · . . . · um ∈ bH. If l = min L(b−1c), then there exist v1, . . . , vl ∈ A(H) such
that c = q1 · . . . · qrv1 · . . . · vl, and we consider the factorization

z′ = yv1 · . . . · vlum+1 · . . . · un ∈ Z(a) ∩ yZ(H) .

Since
d(z, z′) ≤ max{m, l + r} ≤ max{ω(b),min L(b−1c) + sup L(b)}

≤ max{ω(b), τ∗∞(b) + sup L(b)} ,
it follows that

t(b) ≤ max{ω(b), τ∗∞(b) + sup L(b)} .
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It remains to prove the last inequality. By Theorem 1 and Proposition 1 it
follows that τ∗∞(b) + sup L(b) ≤ ω(b)τ∗(b) + ω(b) = ω(b) [ τ∗(b) + 1 ], and therefore

max{ω(b), τ∗∞(b) + sup L(b)} ≤ ω(b)[ τ∗(b) + 1 ] .

If t(b) < ∞, then Theorem 2 implies ω(b) < ∞, and we obtain

τ∗∞(b) = τ∗ω(b)(b) ≤ t(b) + ω(b)−min L(b) < ∞ .

Conversely, if τ∗∞(b) < ∞, then sup L(b) ≤ ω(b) < ∞ and thus also t(b) < ∞. �

5 An example

Usually, finiteness results in factorization theory are proved by showing local tame-
ness first. The following example however, already considered in [6, Example 6.11],
indicates that even a monoid with catenary degree 3 may fail to be locally tame.

Example 1. The additive monoid

H = {(a, b, c) ∈ N3
0 | a > 0 or b = c} ⊂ N3

0

is v-noetherian and not locally tame, but yet it satisfies c(H) = 3.

Proof. We show first that H is v-noetherian. For this we consider the noetherian
domain R = Z[X2, X3], its multiplicative monoid R• = R \ {0} and the monoid

H̃ = {X2a(1 +X)b(1−X)c | a, b, c ∈ N0 , a > 0 or b = c} ⊂ R• .

H̃ ×{±1} is a divisor-closed (hence saturated) submonoid of R•. Since R is

noetherian, the monoid R• is v-noetherian. Hence the monoids H̃×{±1} and

H̃ = (H̃×{±1})red are also v-noetherian, and the map

Φ: H → H̃ , defined by Φ(a, b, c) = X2a(1 +X)b(1−X)c ,

is an isomorphism. Hence H is v-noetherian, too, and Proposition 1.5 implies that
ω(x) < ∞ for all x ∈ H.

For x, y ∈ N0, we set ux = (1, x, 0), vy = (1, 0, y) and w = (0, 1, 1) (observe that
u0 = v0). Then A(H) = {ux, vy, w | x, y ∈ N0}.
The factorizations of an element x = (a, b, c) ∈ H with b ≤ c are as follows (we
write the factorization monoid Z(H) multiplicatively).

If b = c = 0, then Z(x) = {ua
0}.

If a = 0 (and consequently b = c ), then Z(x) = {wb}.
If a = 1, then Z(x) = {vc−bw

b}.
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If a ≥ 2, then Z(x) consists of all products

r∏

i=1

uxi

s∏

j=1

vyj
wt ,

where r, s, t, x1, . . . , xr, y1, . . . , ys ∈ N0, a = r + s, b = x1 + . . . + xr + t, c =
y1 + . . .+ ys + t and

∣∣∣
r∏

i=1

uxi

s∏

j=1

vyj
wt
∣∣∣ = r + s+ t = a+ t .

Hence it follows that L(x) ⊂ [a, a + b], and for every j ∈ [0, b], there is the fac-
torization zj = ua−2

0 ub−jvc−jw
j ∈ Z(x) satisfying |zj | = a + j, showing that

L(x) = [a, a+ b].

For x, x′, y, y′ ∈ N the relations

ux+ux′ = v0+ux+x′ , vy+vy′ = v0+vy+y′ and ux+vy = ux−1+vy−1+w

show that any two factorizations of an element x ∈ H can be concatenated by a
3-chain. Hence c(H) = 3.

For x ∈ N, we consider the elements ax = (2, x, x) and b = (1, 0, 0). Then
ax ∈ b+H,

Z(−b+ ax) = {u0w
x} and uxvx ∈ Z(ax) , whence τ∗2 (b) = ∞ .

Hence it follows τ∗(b) = ∞ by Theorem 1, and τ∗∞(b) = ∞ by Lemma 1. In
particular, H is not locally tame by Proposition 4 and Theorem 3.
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