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On relations between f—density and (R)—density
Viclav Kijonka

ABSTRACT. In this paper it is discus a relation between f—density and (R)—
density. A generalization of Salt’s result concerning this relation in the case
of asymptotic density is proved.

1. Introduction

Asymptotic density is a well known means used for measuring of size of sets of
positive integers. We remind that the lower and the upper asymptotic densities are
special cases of a more general concept of weighted density or (f)—density which
is defined as follows.

Denote R{, N the set of all nonnegative real numbers and positive integers,
respectively and let f : N — R{ be a (weight) function with f(1) > 0 which satisfies

(D) > fn) =00
n=1

and

(L) lim Tf(_n)_ =0

TN £6)
i=1

For A C N we define the lower and upper f—densities of A (these densities are
also known as densities with respect to the weight function f or simply as weighted
densities):
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mGAz;n<n f(m) - mEAz;n<n f(m)
RARE = VI D M = A SR (D)
meN,m<n meN,m<n

If d;(A) = ds(A), then we say that the set A has (f)—density and we denote this
common value as df(A). There are two well known special f-densities. The first,
when f(n) = 1 for each n € N, is called asymptotic density and their values are
denoted as d,d and d for the lower asymptotic density, upper asymptotic density
and asymptotic density , respectively. The second one, when f(n) = % for each
n € N, is called logarithmic density and their values are denoted as 8,8 and § for
the lower logarithmic density, upper logarithmic density and logarithmic density ,
respectively.

Now let us remind the notion of (R)—density. For A C N we put R(A) =
= {§; a,b € A}. We say that the set A is (R)—dense, if the set R(A) is dense in
R{. This concept was introduced in papers [5] and [6] where there were also proved
the following relations between (R)—density and values of asymptotic density:

(a) d(A) >0 = A is (R) — dense,
(b) d(A) =1 = A is (R) — dense.

These results were later completed in [3] proving
©) d(4) > % =  Ais (R)— dense.

Notice also that no constant on the left sides of the above three implications can
be decreased. A natural question arises whether similar implications hold, perhaps
with different constants on the left sides of implications, also for other kinds of
f-densities. This question was completely solved for logarithmic densities in [2].
Perhaps a bit surprising result says that all three implications for logarithmic den-
sities hold with constants equal to %— each, and no one of them can be decreased. As
a simple corollary one can see that there is a small chance that the implication (a)
holds for some large general class of f-densities. On the other hand, we will see
that this is not true in the case of implication (b). Relations between (R)-density
and asymptotic densities were also studied, among others, in papers [1] and [4].
Finally, let us notice that the result (b) was in fact proved in a stronger form

(b*) d(A) =1 = A is a strong quotient base.
Recall that a set A C N is called a strong quotient base if for every rational % eRY

there are infinitely many pairs (a,b) € A x A such that § = g.

The aim of this article is to prove a generalization of (b*) for a large class of
f-densities and to give some comments to this case.

2. Results

Theorem 2.1. Let A C N and ds(A) = 1 with f non-increasing (and satisfying
conditions (D) and (L)). Then the set A is a strong quotient base.

Proof: Suppose the contrary, i.e. there exists a rational number z = § € (0,1)
with only finitely many possibilities of expressions of z as a fraction with both

denominator and numerator belonging to the set A. Denote 5 =z = % = fl’—: =
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cee = ;L: all these possibilities having p < p; < p2 < ... < p,. Then there exists a

number 49 € N such that for all 2 > iy holds p, < gn < ip < iq. Obviously for all
1 > 19 we have

(1) ipg Aoriqgé¢ A
Using conditions (D) and (L) one can easily see that

_ medmcia’
® 4s(4) = B sup === F )
m<kq _
Now we will estimate the upper bound of ds(A). For this purpose there is
enough to have some convenient estimation of )  f(m). We will start this
mEA,m<kq
estimation from ”the opposite side”, i.e. by estimating the sum of values of f of the
numbers which are not in the set A. Taking into account that f is non-increasing
and (1), we obtain the following inequalities in which we assume that iqg ¢ A holds
for all i € N, not only for ¢ > ¢ (remember that changing the set A in finitely many
elements does not affect the value of ds(A)).

k

k
®3) >, fm)=) flg) =) flig+1)
i=1

mgA,m<kq =1
Using again the inequalities f(ig + 1) > f(ig +2) > ... > f(ig + ¢ — 1), we obtain
that the estimation

ig+q—1

) flig+1)2 —5 > fm)

m=iq+1

g-—1
holds for every i =0,1,.... Denote S = Y f(j) and realize that (1) yields
j=1

k ig+g—1 k ig+g-1
G DY fm=) > fm-S= Y  f(m)-S5.
i=1 m=iq+1 1=0 m=iq+1 meEA,m<kq+q—1

All the estimations (3), (4) and (5) together give

Y ofmx—| X fm-s

mgAm<kq meEA,m<kg+q—1
This inequality together with (2) yields
AZ - f(m)
ds(A) = limsup meAm=r

P TS fm Y fm)

mgA,m<kq meEAm<kqg
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> f(m)
< lim sup meA,m<kq _
T koo (X fm)=-8)+ ¥ f(m)
meEA,m<kq meAm<kq
=u<1’
q

a contradiction to the assumption ds(A) = 1.
O

Remark 2.1. The theorem would not hold if we assumed non-decreasing f instead
of non-increasing f. In this remark we will give an example of A C N which is
not a strong quotient base with dg(A) = 1 for a non-decreasing f satisfying (D)
and (L).

Let the greatest common divisor of p,q € N be 1 and g > 2p. We will construct
a set A C N such that g ¢ R(A) simply by assuring that (1) holds for all i € N.

When constructing this set, we will need a sequence (kn)nenu{o} of integers with
the following properties. Let kg = 1 and

(6) (ka)p > (kn-1)g 7n=1,2,....
Notice that this condition assures that k, > k,_1 holds in general, which implies

lim k, = oo.
n—o0

We will determine the set A by giving the list of all numbers which are in its
complement:

PEA,
(k2n + 1)17 ¢ Av (k2n + 2)17 ¢ A: see (k2n+1)p ¢ Aa
(kont1+1)g € A, (k2n+2)q € A,...(k2n+2)a € A

forn=0, 1, 2,...., ie.

) kan+1 kant2
A=N-{p}- L;JO [(;kUH{ip}) u (_‘kU +1{iq})] :

Properties of the function f are following: firstly, f is constant on
[1, (k1)p) NN and on P, for each | € N, where P, is defined as follows:

Py = [(k2i-1)p+ 1, (k2i+1)p] NN.
This gives us a possibility to compute easily the value of

f(m)

meAM<(k2n+1)P

f(m)

meEN,m<(k2n+1)p

for n € N arbitrary. Take into account that in [1, (k1)p] N N there is exactly k;
numbers which does not belong to the set A. Similarly we obtain that in the set
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P, there are no more than ko541 — k2n—1 positive integers missing in A. Together
with the fact that f is constant on P, for each n € N, we conclude

f(m)

) meA,m< (k2n+1)p - %)S"
fm) =  Su

mEN,m< (k2n+1)p

where

Sy = > f(m)

meN,m<(k2141)p
for | e NU {0}. Further we set for each n € N for each m € P,

® (m) = Gy St

These selection of values f(m) ensures the requirement of ds(A) = 1 and that
both (L) and (D) holds. Indeed, concerning the value of ds(A) notice that the in-
terval [(k2n—1)p+1, (k2n—1)g] includes at least k2,1 integers which are all elements
of A. This means that the value of

>, f(m)

meEA,m<n

>, f(m)

meN,m<n

as a function of variable n increases on the interval [(kan—1)p + 1, (k2n—1)g]- The
value of f on this interval defined in (8) together with the estimation (7) allow us
to prove that ds(A) = 1:

f(m) > f(m) + > f(m)
meA,m<L (k2n-1)q _ m€Am<(kan-1)p (k2n—1)p+1<m<(k2n—1)q >

f(m) > f(m) + > f(m) ~
meN,m< (kan—1)q meN,m< (kan—1)p (k2n—1)p+1<m<(k2n—1)g

1 kon —
> (1 — E)S -1+ lHU:Zn:l;Sn—l
- Sn—l + ﬁcﬁjsn—l
which implies

> f(m)
lim meA,m< (k2n-1)g -1
n—00 > f(m) 7
meEN,m< (kan—1)q

thus d;(A) = 1.
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As the next step, we will verify that (L) holds. Due to the fact that f is
constant on P, for each [ € N there is enough to prove that

F((kant)p +1) _

n—oo (kan_1)p+1 0.
f(@)
i=1
This follows from (8):

f((k2n—1)p +1) < f((k2n-1)p+1) 1
(k2zn_1)p+1 = Sn—1 - In(kan-1)"

_El f(@)

=

Now we shall check whether the function f is non-decreasing. We will compare
values f(m) and f(m + 1) for m = (k2n+1)p, where n € N using (6), (8) and the
assumption that ¢ > 2p:

Sn - S -1 Sn Sn
m) = <
fim) P(ken+1 — kan—1) = kang1 — jkants ~ In(k2n41)
Notice finally that (D) holds simply because f(1) > 0 and f is non-decreasing.

= f(m+1).
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