
Acta Mathematica Universitatis Ostraviensis

Vladimír Baláž; Oto Strauch; Tibor Šalát
Remarks on several types of convergence of bounded sequences

Acta Mathematica Universitatis Ostraviensis, Vol. 14 (2006), No. 1, 3--12

Persistent URL: http://dml.cz/dmlcz/137474

Terms of use:
© University of Ostrava, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/137474
http://project.dml.cz


Acta Mathematica Universitatis Ostraviensis 14 (2006) 3–12 3

Remarks on several types of convergence of bounded
sequences

V. Baláž, O. Strauch, and T. Šalát

Abstract. In this paper we analyze relations among several types of conver-
gences of bounded sequences, in particulars among statistical convergence, Iu-
convergence, ϕ-convergence, almost convergence, strong p-Cesàro convergence
and uniformly strong p-Cesàro convergence.

1. Introduction
Generalized approach to convergence was presented in [B, p.99] by means of the
notion of a filter F of subsets of positive integer numbers N. The same approach
we can obtain by means of a dual notion of filter, what is an ideal I (i.e. ideal is
an additive and hereditary class of sets). A sequence of real numbers x = (xn)∞n=1

is said to be I-convergent to L provided that for every ε > 0 the set Aε belongs to
I, where Aε = {n ∈ N; |xn − L| ≥ ε} . We write I − limxn = L (see [KŠW]). The
notion of I-convergence is in certain sense equivalent to the notion of µ-statistical
convergence (see [C1]).

The aim of this paper is investigate relations among different types of con-
vergences of real sequences. There are convergences defined by means of densities
on the set N (i.e. density is a finitely additive measure) on one side. Let ν be a
density then Iν = {A ⊂ N; ν(A) = 0} is an associated ideal to the density ν which
generates the Iν -convergence. In this paper we will use the asymptotic density
and the uniform density, sometime called Banach density. On the other side, there
are convergences that cannot be defined by means of any ideal I. We take into
consideration almost convergence, strong p-Cesàro convergence, uniformly strong
p-Cesàro convergence and ϕ-convergence (for all definitions see Section 2).

The paper consists of four sections with the new results in Sections 3, where
for each studied type of convergence we assign a set of all in this way convergent
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sequences, these sets create linear subspaces of the linear space of all bounded
sequences. We will study their mutual position and describe their structure from
the point of view of topological properties, for instance separability and porosity.
In the Section 4 we give an additional information for uniform density and for not
so much known ϕ-convergence.

2. Definitions and basic properties

We recall some known notions. Denote by m the linear normed space of all
bounded sequences x = (xn)∞n=1 of real numbers with the supremum norm ||x|| =
supn∈N |xn|. Let A ⊂ N. If m,n ∈ N by A(m,n) we denote the cardinality of the
set A ∩ [m,n].

(i) If there exists the limit limn→∞
A(1,n)

n = d(A), then d(A) is said to be the
asymptotic density of A.
(ii) The following limits exist

limn→∞
minm=0,1,... A(m+1,m+n)

n = u(A),

limn→∞
maxm=0,1,... A(m+1,m+n)

n = u(A),
and they are called the lower and upper uniform density of the set A, respectively. If
u(A) = u(A) = u(A) then u(A) is called the uniform density of A, (see [BF, BF1]).
It is clear that if there exists u(A), then also there exists d(A) and u(A) = d(A).
The converse is not true (forinstance Example 2 in the Section 3).
(iii) Put I = Id = {A ⊂ N; d(A) = 0}, then Id-convergence coincides with the
statistical convergence, which was introduced by H. Fast (1951)[F] (see also [C, Fr,
P, S, Š]). If x = (xn)∞n=1 converges statistically to L then we write lim−stat xn = L
and lim−stat xn = Id − limxn. By m0 we denote the set of all bounded statistical
convergent sequences (see [Š]).
(iv) In the case if I = Iu = {A ⊂ N;u(A) = 0} we obtain Iu-convergence. If
x = (xn)∞n=1 is Iu-convergent to L we write Iu − limxn = L. By m1 we denote the
set of all bounded Iu-convergent sequences.

Further we recall the notions of strong p-Cesàro convergence, uniformly strong
p-Cesàro convergence that is generalization of notion of strong almost convergence
(see [M]) and almost convergence.
(v) We say that a bounded sequence x = (xn)∞n=1 is almost convergent or fast
convergent to a number L if limm→∞

1
m

∑m
i=1 xn+i = L, uniformly in n what is

equivalent to condition that every Banach limit 1 of x is equal to L (see [MO], [KN
p.216], [P, p. 59-62]). By F we denote the set of all almost convergent sequences.
(vi) A sequence x = (xn)∞n=1 is said to be strong p-Cesàro convergent (0 < p <∞)
to a number L if limm→∞

1
m

∑m
i=1 |xi −L|p = 0 (see [C]). A sequence x = (xn)∞n=1

is said to be uniformly strong p-Cesàro convergent (0 < p < ∞) to a number L if
limm→∞

1
m

∑m
i=1 |xn+i−L|p = 0 uniformly in n. This notion was introduced in [BŠ]

and it is a generalization of a notion of strong almost convergence in [M]. As usual
x = (xn)∞n=1 is Cesáro sumable if there exists (C, 1)−limxn = limn→∞

1
n

∑n
i=1 xi =

L. By wp resp. uwp denote the set of all strong p-Cesàro convergent sequences,

1A Banach limit is a bounded linear functional on the space m of all bounded sequences x =
(xn)∞n=1 such that the sequence xn = 1 has the Banach limit 1, and x and shifted x′ = (xn+1)∞n=1

have the same Banach limit (if exists).
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uniformly strong p-Cesàro convergent sequences, respectively. It is immediate that
uwp ⊂ wp (0 < p < ∞) and Example 2 shows that the inclusion is strict. As
usual by c resp. c1 denote the set of all convergent sequences, Cesàro sumable,
respectively.

Notion ϕ-convergence had been introduced by I.J. Schoenberg (1959)[S].
(vii) A sequence x = (xn)∞n=1 is said to be ϕ-convergent to a number L if
limn→∞

1
n

∑

d|n ϕ(d)xd = L, where ϕ(n) is Euler function i.e. ϕ(n) is the num-

ber of elements from {1, 2, . . . , n} coprime to n and
∑

d|n is sum over the positive

divisors d of n. By cϕ we denote the set of all ϕ-convergent sequences.
The notion of porosity in a metric space is introduced in conformity with the

definition of porosity in line (see [T, p. 183-190] and [Z]) as follows.
(viii) Let (X, d) be a metric space and Y ⊂ X , x ∈ X , δ > 0, then symbol
γ(x, δ, Y ) denotes the supremum of all t > 0 for which there exists y ∈ X such
that B(y, t) ⊂ B(x, δ) \ Y . Here B(x, δ) denotes a ball centered at x ∈ X with the
radius δ > 0. If there exist no such t > 0, then γ(x, δ, Y ) = 0. The numbers

p(x, Y ) = lim inf
δ→0+

γ(x, δ, Y )

δ
, p(x, Y ) = lim sup

δ→0+

γ(x, δ, Y )

δ
,

are called the lower and upper porosity of the set Y at x. We say that Y is porous
or very porous at x if p(x, Y ) > 0 or p(x, Y ) > 0, respectively. If for each x ∈ X

we have p(x, Y ) > 0 or p(x, Y ) > 0, then Y is said to be porous or very porous
in X , respectively. Obviously every porous set in X is nowhere dense in X . If
p(x, Y ) ≥ c > 0 or p(x, Y ) ≥ c > 0 then Y is called c-porous or very c-porous at
x, respectively. If Y is c-porous or very c-porous at x for each x ∈ X , then Y is
called c-porous or very c- porous in X , respectively. In the case, that the number

p(x, Y ) = limδ→0+
γ(x,δ,Y )

δ exists, it is called the porosity of Y at x.

3. Results

In this section we analyse relations among types of convergence of bounded se-
quences defined above and describe the structure of the following spaces

c - the set of all convergent sequences,
cϕ - the set of all ϕ-convergent sequences,
m1 - the set of all Iu-convergent sequences,
uwp - the set of all uniformly strong p-Cesàro convergent sequences (0 < p <

∞),
wp - the set of all strong p-Cesàro convergent sequences (0 < p <∞),
m0 - the set of all statistical convergent sequences,
F - the set of all almost convergent sequences,
c1 - the set of all Cesàro sumable sequences,
m - the set of all bounded sequences,

equipped by the sup-norm from point of view of topological properties as subspaces
of all bounded sequences x = (xn)∞n=1 of real numbers with the same norm.

I.J. Maddox (1974)[M1] has been shown that m0 = wp, 0 < p < ∞ and

m0 ⊂ c1 (see also [C, S]). In [BŠ] can be found that m1 ⊂ F and m1 = uwp ⊂ m0

(0 < p <∞). The inclusion cϕ ⊂ m0 was proved in [S].
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In this paper we obtain the following relations:

c ⊂ m1 = uwp ⊂ m0 = wp ⊂ c1 ⊂ m, (0 < p <∞),

c ⊂ m1 ⊂ F ⊂ c1 ⊂ m,

c ⊂ cϕ ⊂ m0 ⊂ m1 ⊂ m. (1)

Following examples show, that all inclusions in (1) are strict.

Example 1 Let P be the set of all primes. Define xn = 1 for n ∈ P and xn = 0
otherwise. For the reason that u(P ) = 0 (see [BF1]), we have that x = (xn)∞n=1 is
Iu-convergent to 0 but as we can see it is not convergent. Therefore c 6= m1.

Example 2 It is easy to see that for the set A = ∪∞
k=1([10k + 1, 10k + k] ∩ N) we

have d(A) = 0, u(A) = 0, u(A) = 1. Put xn = 1 for n ∈ A and xn = 0 for n /∈ A.
Then Id − lim xn = 0 but x = (xn)∞n=1 is not Iu-convergent. Therefore m1 6= m0.

Example 3 Let x = (xn)∞n=1 be the sequence defined by xn = 1 if n is even and
xn = 0 if n is odd. The sequence x is Cesàro sumable to 1/2 but it is not statistically
convergent. Therefore m0 6= c1.

Example 3 simultaneously shows that m1 6= F and also Example 2 shows that
F 6= c1. To show that c 6= cϕ we use the following P. Erdös’ solution (see [E]) of

the problem 6090, AMM 1976, p. 385 proposed by T. Šalát and O. Strauch.

Example 4 Let P = {p1 < p2 < · · · < pk < . . . } be the set of all primes.
Put A = {p1, p1p2, . . . , p1p2 · · · pk, . . . } and define xn = 1 for n ∈ A and xn = 0
otherwise. Then the sequence x = (xn)∞n=1 is ϕ-convergent to zero but it is not
convergent.

Example 1 simultaneously shows that cϕ 6= m0. To show that x = (xn)∞n=1 is
not ϕ-convergent we use [S, p.366, Th.2].

In [MO] is shown that almost convergence and statistical convergence are not
compatible neither in the case of bounded sequences. Moreover Example 2 shows
that m0\F 6= ∅ and Example 3 simultaneously shows that F \m0 6= ∅ . On the basis
of (1) the following question arise, what is mutual position between m1 and cϕ or
cϕ and F , respectively. First of all we show that Iu-convergence and ϕ-convergence
are not compatible. Example 1 shows that m1 \ cϕ 6= ∅ and the following Example
5 shows that cϕ \m1 6= ∅.

Example 5 Directly by E. Kováč [Ko, Th.6.5]: Clearly, there exists an increas-
ing sequence a = (ak)∞k=1 of positive integers such that greatest common divisor
(ai, aj) = 1 for every i 6= j and ϕ(ak)/ak → 0, such a sequence (ak)∞k=1 can be
construct by multiplication of sufficiently long interval of consecutive primes. To
this sequence (ak)∞k=1 it can be construct an increasing sequence (bk)∞k=1 of positive
integers such that bk+1 > b2k and ak+1|bk + 1, ak+2|bk + 2, . . . , ak+k|bk + k. This
follows from Chinese remainder theorem. Put A = ∪∞

k=1([bk + 1, bk + k]∩N and let
x = (xn)∞n=1 be the characteristic function of A thus xn = 1 for n ∈ A and xn = 0
otherwise. Then x = (xn)∞n=1 is ϕ-convergent to 0 but it is not Iu-convergent since
u(A) = 0, u(A) = 1.
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Both ϕ-convergence and almost convergence are not compatible, as we can see
Example 5 and Example 3 simultaneously show that cϕ \ F 6= ∅ and F \ cϕ 6= ∅,
respectively.

It is well known that if E0 is a closed linear subspace of a linear normed space
E and E0 6= E, then E0 is a nowhere dense set in E (see [G], [K, p.37, Ex.4]). This
fact evokes the question about the porosity of E0. The solution is given by the
following theorem (see [KMŠS, Th.2.5]):

Theorem 1 Suppose that E is a linear normed space and E0 is its closed linear
subspace, E0 6= E. Then E0 is a very porous set in E, in more detail

a) If x ∈ E \ E0, then p(x,E0) = 1,
b) If x ∈ E0, then p(x,E0) = 1/2 .

In [Š] is proved that m0 is a closed linear subspace of the space m, m0 6= m.
That is why m0 is a very porous set in the space m. According to (1) we have the
following Lemma.

Lemma 1 Each of sets m1, uwp and wp (0 < p <∞) is a very porous set in m.

In [L] is proved that F is a closed linear subspace of the space m, F 6= m. On
that account F is a very porous set in the space m. Also from this fact we get that
each of sets m1 and uwp (0 < p <∞) is a very porous set in m.

For the proof of the next Theorem 2 we first prove the following lemma.

Lemma 2 The set m1 is closed in m.

Proof Let x(k) = (x
(k)
j )∞j=1 (k = 1, 2, . . . ) belong to m1, x(k) → x, x = (xj)∞j=1

in m i.e. ||x(k) − x|| → 0 by k → ∞. Since m1 ⊂ F and F is a closed set in m
we get that x ∈ F . Hence x(k) ∈ m1 ⊂ F we have x(k) is almost convergent to
some number Lk for all k = 1, 2, . . . . We shall prove that the sequence (Lk)∞k=1 is
convergent to some number L and the sequence x = (xj)∞j=1 is Iu-convergent to L.
A simple estimation gives

|Lk − Lr| ≤
∣

∣

∣

∣

∣

x
(k)
n+1 + x

(k)
n+2 + · · · + x

(k)
n+p

p
− Lk

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

x
(k)
n+1 + x

(k)
n+2 + · · · + x

(k)
n+p

p
− x

(r)
n+1 + x

(r)
n+2 + · · · + x

(r)
n+p

p

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

x
(r)
n+1 + x

(r)
n+2 + · · · + x

(r)
n+p

p
− Lr

∣

∣

∣

∣

∣

. (2)

Let ε > 0. Since x(k) → x in m, there exists an n0 such that for k, r > n0 we
have ||x(k) − x(r)|| ≤ ε

3 . Let us choose fixed k, r such that k, r > n0. Since x(k) =

(x
(k)
j )∞j=1 is almost convergent to Lk and x(r) = (x

(r)
j )∞j=1 is almost convergent to

Lr, there exists an p0 such that the first and third summand in (2) is less than ε
3
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for p > p0, n = 1, 2, . . . , respectively. The second summand is also less than ε
3 ,

what can be shown as follows:
∣

∣

∣

∣

∣

x
(k)
n+1 + x

(k)
n+2 + · · · + x

(k)
n+p

p
−
x

(r)
n+1 + x

(r)
n+2 + · · · + x

(r)
n+p

p

∣

∣

∣

∣

∣

≤

≤ 1

p

p
∑

j=1

|x(k)
n+j − x

(r)
n+j | ≤

1

p

p
∑

j=1

||x(k) − x(r)|| = ||x(k) − x(r)|| < ε

3
.

Consequently for k, r > n0 we obtain |Lk − Lr| < ε. Since (Lk)∞k=1 is a Cauchy
sequence, then there exists an L such that L = limk→∞ Lk. Further, let η >
0. Put Aη = {k ∈ N; |xk − L| ≥ η}. Since x(k) → x in m, there exists an

r ∈ N such that ||x(r) − x|| < η
3 and ||Lr − L|| < η

3 simultaneously. Put Bη =
{

k ∈ N; |x(r)
k − Lr| ≥ η

3

}

. For an arbitrary k ∈ N we have

|xk − L| ≤ |xk − x
(r)
k | + |x(r)

k − Lr| + |Lr − L| < 2η

3
+ |x(r)

k − Lr|. (3)

Hence if k ∈ Aη, according to (3) we have k ∈ Bη, thus Aη ⊂ Bη. Using the fact
that u(Bη) = 0 we get u(Aη) = 0 and therefore Iu− limxk = L thus x = (xk)∞k=1 ∈
m1. �

Theorem 2 The set m1 is a perfect, very porous and not separable set in m0.

Proof The facts that m0 is a closed set in m and Lemma 2 imply, that m1 is a closed
set in m0. Since m1 is a linear space and m1 6= m0 (see Example 2) by Theorem 1
we obtain that m1 is a very porous set in m0. Further, if x = (xj)∞j=1 ∈ m1 then for
every η > 0 a sequence x1 + η, x2, x3, . . . , xj , . . . also belongs to m1. So we get that
m1 is dense in itself. To prove that m1 is not separable it is sufficient to construct
uncountable many sequences belong to m1 having the distance 1 from each other.
Let B ⊂ N be an infinite set such that u(B) = 0 (see Example 1). Put M the set
of those sequences x = (xj)∞j=1, x ∈ m1 for which xj is equal 0 or 1 if j ∈ B and
xj = 0 otherwise. Evidently card M = c - power of continuum and for all x,y ∈M
such that x 6= y we have ||x − y|| = 1. �

Remark Since m1 = uwp, (0 < p <∞) we have that uwp is a perfect, very porous
and not separable set in m0.

It is easily to verify that c1 is a closed linear subspace of the space m and
m0 6= c1 (see Example 3). So we get the following proposition.

Theorem 3 The set m0 is a perfect, very porous and not separable set in c1.

Proof The proof is analogous as the proof of the previous theorem. Non separability
of m0 immediately is implied by the non separability of m1 . �

Remark Again since m0 = wp, (0 < p < ∞) we have that wp is a perfect, very
porous and not separable set in c1.

As we mentioned (see [L]), F is a closed and non separable set in m, moreover
F ⊂ c1, F 6= c1. So we have a similar proposition as Theorem 3.

Theorem 4 The set F is a perfect, very porous and not separable set in c1.
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The following theorem investigates topological properties of subspace cϕ in m0.

Theorem 5 The set cϕ is a perfect, very porous and not separable set in m0.

Proof First of all we shall prove that the set cϕ is a closed set in m. Let x(k) =

(x
(k)
j )∞j=1 (k = 1, 2, . . . ) belong to cϕ, x(k) → x, x = (xj)∞j=1 in m. Since x(k) ∈ cϕ,

we have x(k) is ϕ-convergent to some number Lk , for all k = 1, 2, . . . . To prove
that x ∈ cϕ it is sufficient to show that the sequence (Lk)∞k=1 is convergent to some
number L and the sequence x = (xj)∞j=1 is ϕ-convergent to L. For n, k, j ∈ N we
put

Sn(x(k), Lk) =

∣

∣

∣

∣

P

d|n ϕ(d)x
(k)
d

n − Lk

∣

∣

∣

∣

,

Sn(x(k),x(j)) =

∣

∣

∣

∣

P

d|n ϕ(d)x
(k)
d

n −
P

d|n ϕ(d)x
(j)
d

n

∣

∣

∣

∣

.

For n = 1, 2, . . . a simple estimation gives

Sn(x(k),x(j)) ≤
∑

d|n ϕ(d)|x(k)
d − x

(j)
d |

n
≤ ||x(k) − x(j)||

∑

d|n ϕ(d)

n
= ||x(k) − x(j)||

(4)

Since x(k) = (x
(k)
j )∞j=1 is Cauchy sequence then for ε > 0 there exists a k0 such that

for arbitrary k, j > k0 we have Sn(x(k),x(j)) ≤ ε
3 for n = 1, 2, . . . . Let us choose

fixed k, j such that k, j > k0. Since x(k) = (x
(k)
j )∞j=1 is ϕ-convergent to Lk and

x(j) = (x
(j)
i )∞i=1 is ϕ-convergent to Lj, there exists an n0 such that for each n > n0

we have Sn(x(k), Lk) < ε
3 , Sn(x(j), Lj) < ε

3 and the simple estimation yields

|Lk − Lj | ≤ Sn(x(k), Lk) + Sn(x(k),x(j)) + Sn(x(j), Lj) <
ε

3
+
ε

3
+
ε

3
= ε.

The fact that (Lk)∞k=1 is a Cauchy sequence implies the existence of a number L

such that L = limk→∞ Lk. Further, let η > 0. Since x(k) → x in m, there exists an
r ∈ N such that ||x(r) − x|| ≤ η

3 and |Lr − L| < η
3 simultaneously. Let r be a fixed

natural number. Because x(r) = (x
(r)
j )∞j=1 is ϕ-convergent to Lr, so there exists an

n0 such that for each n > n0 we have Sn(x(r), Lr) < η
3 . From this and applying (4)

we have

Sn(x, L) ≤ Sn(x,x(r)) + Sn(x(r), Lr) + |Lr − L| < η

for n > n0 and thus the sequence x = (xj)∞j=1 is ϕ-convergent to L. The fact that
cϕ and m0 are closed sets in m implies that cϕ is a closed set in m0. Since cϕ is
a linear space and cϕ 6= m0 (see Example 1) by Theorem 1 we obtain that cϕ is a
very porous set in m0.

Further, if x = (xj)∞j=1 ∈ cϕ then for every t > 0 a sequence x1 + t, x2, x3,. . .
. . . ,xj , . . . also belongs to cϕ. So we get that cϕ is dense in itself.

Again to prove that cϕ is not separable it is sufficient to construct uncountable
many sequences belong to cϕ having the distance 1 from each other. Let A =
{p1, p1p2, . . . , p1p2 . . . pk, . . . } be a set defined in Example 4. Then the sequence
x = (xn)∞j=n defined as xn = 1 for n ∈ A and xn = 0 otherwise is ϕ-convergent

to 0. Consider K the set of those sequences y = (yk)∞k=1, for which yk = 0 or 1
if k ∈ A and yk = 0 otherwise. Evidently card K = c. For each y ∈ K we have
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∑

d|n ϕ(d)yd ≤∑d|n ϕ(d)xd for n = 1, 2, . . . . Thus y = (yk)∞k=1 is ϕ-convergent to

0 and so y ∈ cϕ. Moreover if z,y ∈ K such that x 6= y we have ||z − y|| = 1. �

4. Concluding remarks
This section contains a brief addition of results and problems concerning the uniform
density and ϕ-convergence.
• The notion of uniform density u(A) defined in Section 2(ii), can be found in
different pats of number theory. It is also known as Banach density, since u(A) =
limm→∞

1
m

∑m
i=1 cA(n + i), uniformly in n, see Section 2(v). Here cA(x) is the

characteristic function of A.
In [KN, p.40, Def. 5.1] was studied the concept of well-distributed sequence as

follows: A sequence x = (xn)∞n=1 in [0, 1), is said to be well-distributed sequence if

for every interval I ⊂ [0, 1) we have limN→∞
1
N

∑N
i=1 cI(xn+i) = |I| uniformly in

n. Here |I| is the length of I. In [KN, p. 42, Ex. 5.2] is shown that the sequence
x = ({nθ})∞n=1 with θ irrational is well distributed. Here {y} is fractional part of y.
Thus for every interval I ⊂ [0, 1), |I| > 0, the set A = {n ∈ N;xn ∈ I} has uniform
density u(A) = |I|.

Another examples of sets of positive integers having uniform density are Hart-
man sequences. For general definition see [KN, p. 295, Def. 5.6] and [W], but
we give here only the following equivalent property (see [KN, p.296; Ex. 5.11]):
An increasing integer sequence x = (xn)∞n=1 is Hartman sequence if and only if

limN→∞
1
N

∑N
n=1 e

2πitxn = 0 holds for all t ∈ [0, 1]. For instance (see [Wie])

x = ([n logn])∞n=1, x = ([n3/2])∞n=1, x = ([n2/ logn])∞n=2, and lacunary sequence
x = (xn)∞n=1 (i.e. xn+1/xn ≥ c > 1) are Hartman sequences, where [y] means the
integer part of y. Of course the uniform density of such sequences is 0. Beatty
sequence x = ([nβ + γ])∞n=1, where β > 1 is irrational and γ is appropriate is also
Hartman.
• As we mentioned in Section 2(vii) ϕ-convergence was introduced by I.J. Schoen-
berg (1959)[S]. Denote the ϕ-transformation of x = (xn)∞n=1 as y = (yn)∞n=1 where
yn = 1

n

∑

d|n ϕ(d)xd and xn → L denotes the classical limit. Schoenberg’s main

results are:
(i) If yn → L then xnk

→ L for every subsequence (xnk
)∞k=1, for which

ϕ(nk)/nk ≥ δ > 0.
(ii) If yn → L then xn is statistical convergent to L.
(iii) xn = 1

ϕ(n)

∑

d|n µ(n
d )dyd, that is a result of Möbius’ inversion formula. 2

These results lead to the following open problems:
- Test some number-theoretic statistical convergent sequences whether they are also

ϕ-convergent, e.g. the sequence ω(n)
log log n which is statistical convergent to 1, see also

[SP, p. 2–35, 2.3.23].
- Input any convergent sequence yn → L into the inversion formula (iii), then
the result is a sequence xn which is statistical convergent and ϕ-convergent to L,
simultaneously. Find yn → L such that xn is no Iu-converges to L (different from
Example 5).

2The Möbius function is defined by µ(n) = (−1)ω(n) for square-free n and µ(n) = 0 others.
Here ω(n) is the number of different primes dividing n.
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5. Obituary notice

Professor Tibor Šalát died on 2005 May 14th.
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nikova 49, SK-814 73 Bratislava, Slovak republic

E-mail address: strauchmat.savba.sk


		webmaster@dml.cz
	2013-10-22T11:36:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




