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Discrete limit theorems for the Laplace transform
of the Riemann zeta-function

R. Kacinskaité and A. Laurincikas

AssTrACT. In the paper discrete limit theorems in the sense of weak conver-
gence of probability measures on the complex plane as well as in the space of
analytic functions for the Laplace transform of the Riemann zeta-function are
proved.

1. Introduction

Let s = o + it be a complex variable, ((s) denote the Riemann zeta-function, and
let

o1
L(s) = / C(5 + i) Peord
0
be the Laplace transform of (4 + iz)[%. In view of the estimate

1
O3 +it) < 305 TE £ >t > 0,

with every ¢ > 0, the integral defining L(s) converges absolutely and uniformly
on compact subsets of the half-plane D = {s € C : 0 > 0}, and defines there an
analytic function. Here, as usual, C denotes the complex plane.

The function L(s) is an useful tool to study the mean square of the Riemann

zeta-function
T

166 +infat
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see, for example, [6], where L(s) was applied in a new proof of the Atkinson formula
[1], [5]. Therefore, the value distribution of the function L(s) is an interesting and
important problem of analytic number theory.

In [7] limit theorem in the sense of weak convergence of probability measures
for L(s) were proved. Let meas{ A} denote the Lebesgue measure of a measurable
set A C R, and let, for T > 0,

vh(..) = %meas{t €10,7]:...},

where in place of dots a condition satisfied by t is to be written, and the sign ¢
in v} indicates only that the measure is taken over ¢ € [0,T]. Let B(S) stand for
the class of Borel sets of the space S. Denote by H (D) the space of analytic on D
functions equipped with the topology of uniform convergence on compacta. Then
in [7] two following statements were proved.

Theorem A. Let 0 > 0. Then on (C,B(C)) there exists a probability measure P,
such that the probability measure

vh(L(o +it) € A), A€ B(C),
converges weakly to P, as T — oo.

Theorem B. On (H(D),B(H(D))) there exists a probability measure P such that
the probability measure

vp(L(s+1i1) € A), A€ B(H(D)),
converges weakly to PasT — oco.

Theorems A and B in a certain sense show the regularity of the behaviour of the
function L(s). In these theorems, the probability measures defined by continuous
translations of L(s) in the interval [0, T] are considered. Therefore, Theorems A
and B can be named as continuous limit theorems. It turns out that also discrete
limit theorems for the function L(s) can be considered. In theorems of such a kind,
the weak convergence of probability measures defined by translations of L(s) in
some arithmetic progressions studied. Let, for non-negative integer N,

1
- N+1
where in place of dots a condition satisfied by m is to be written, and let A is a
fixed positive number. Define the probability measure

Prno(A) = un(L(o +imh) € A), A€ B(C).

Theorem 1. Let 0 > 0. Then on (C,B(C)) there exists a probability measure P,
such that the measure Py , converges weakly to P, as N — oo.

un(...) #O0<m<N:...}

Now let R
Pyn(A) = un(L(s+imh) € A), A€ B(H(D)).

Theorem 2. On (H(D),B(H(D))) there ezists a probability measure P such that
the measure Py converges weakly to P as N — oo.

We begin the proof of Theorems 1 and 2 with discrete limit theorems for
integrals over finite intervals.
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2. Discrete limit theorems for integrals over finite intervals
For a > 0, let

La(s) = / |¢(% +iz) e~ .
0

In this section we will prove limit theorems for the probability measures
Pn o.a(A) = pn(Lo(o +imh) € A), A e B(C),
and R
Prn o = pun(Lo(s +imh) € A), A e B(H(D)).
Theorem 3. On (C,B(C)) there exists a probability measure P,, such that the

measure Py , o converges weakly to P, , as N — oco.

Theorem 4. On (H(D),B(H(D))) there erists a probability measure P, such that
the measure Py, converges weakly to P, as N — ooc.

Let v = {s € C: |s| = 1} be the unit circle, and let
Qa = H Yu s
u€(0,a]
where v, = 7 for each v € [0,a]. By the Tikhonov theorem, the torus Q, is
a compact topological Abelian group. Note that 2, consists of all functions f :
[0,a] — ~. Define
Qna(A) = un({e™ : we[0,a]} € A), A€ B(Qa).
The proof of Theorems 3 and 4 is based on the following lemma.

Lemma 5. On (Q,,B(Q,)) there exists a probability measure (), such that the
probability measure Q) n . converges weakly to @, as N — oo.

Proof. Let, as usual, Z denote the set of all integers. The dual group of €, is
isomorphic to
®u€[0,a]Zuv
where Z, = 7Z for each u € [0,a]. An element k = {ky,,u € [0,a]} of ®yc(0,q1Zu,
where only a finite number of integers k, are non zero, acts on {2, by
k—at= ] =
u€(0,a]

where z = {z, : , € 7,u € [0,a]}. Hence the Fourier transform gy (k) of the
probability measure )y , is of the form

avall) = [ TI at) dQw.

Q. u€(0,a]

1 a imhuk
=D I |

m=0y¢e [07(1,]
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= N—|—1 Zexp{zmh Z wky }. (1)

u€(0,a]

Here, as it was noted above, only a finite number of integers k, are non zero.
It is easy to see that

exp{ih Z uky} =1

u€[0,a]

if and only if there exists r € Z such that
2
Z uky, = ﬂ.
h
u€[0,a]

Therefore, in view of (1)

9N>a(k)
1, if > uk,= %" for somer € Z,
_ u€(0,a]
1—exp{i(N+1)h K .
1 exp{i( + Vh 2 e(0,a) Whu} . otherwise.

N+1 1—exp{ih ZuE[O.a] ukey }
Consequently,

i 27r
Jim g a(k) = {1’ if 3, ci0.a Uku = - for some r € Z,

0, otherwise.

Hence, by the continuity theorem for probability measures on locally compact topo-
logical groups, see, for example, [4], it follows that the probability measure Qn 4
converges weakly to a probability measure ), defined by the Fourier transform

Loif 300 Whe = 2 for some r € Z,
g(k) = .
0, otherwise.

Proof of Theorem 3. Define, for y, € Q,,

Y if y, is integrable over [0,a],
arbitrary integrable function € §},,  otherwise,

and let the function f, : Q, — C be given by the formula

o (Yz) /|C +ix)|e 0"y 1da: Yz € Qqg-

Then by the definition of 7, and the Lebesgue theorem of bounded convergence the
function f, is continuous, moreover,

| ro 4
fo(e™h®) = / |C(§ +iz)2e (MM qy = L, (0 4 imh).

Therefore, Py oo = Qn.,of, ', and by Theorem 5.1 of [2] and Lemma 5 we obtain
that the probablllty measure Py, , converges weakly to Q,f; ! as N — oc.
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Proof of Theorem 4. We argue similarly to the proof of Theorem 3. Define
f Q4 — H(D) by the formula

N f 1 N —STr -~
Flum) = [ 10 +in)Perg, e, o € 0
0
Then fis a continuous function, and
~ . h 1 .
f(ezmhx) _ / |§(§ +ix)|2€—(s+lmh)mdx — La(S +th)
0

Hence we have again that ﬁN}a =Q N,affl, and the theorem follows in the same
way as Theorem 3.

3. Proof of Theorem 1

Denote by L, the convergence in distribution. Let (5, ¢) be a separable metric
space with a metric g, and let Y,,, X1,,, Xon, ... be the S-valued random elements
defined on a certain probability space (2, B(Q2),P). We will use the following state-
ment.

Lemma 6. Suppose that Xy, 2, Xy for each k, and that Xj v X. If, for

every € > 0,
lim limsupP(o(Xgp, Yn) > ¢) =0,

—00 n—oo

then Y, 2, x.

The lemma is Theorem 4.2 of [2] where its proof is given.

Proof of Theorem 1. By Theorem 3 the probability measure Py ., converges
weakly to some probability measure P, , on (C,B(C)) as N — oco. On a certain
probability space (2, B(Q2),P) define a random variable 05 by

P(0y = hm) = %H m=01,. . N,
and put
XNo=Xn,a(0) =La(o+i0n).

Then we have that

Xna N%o X,, (2)
where X, = X,(0) is a complex-valued random variable with the distribution Py 4.
By the Chebyshev inequality we find, for M > 0,

N

LS |Lu(o + imh).
m=0

Pl Xyo|>M) < ————
(1Xnal > M) < 7737

Since the integral for L(s) converges absolutely for o > 0, hence we have that

N

1
Lo(o +imh)| SR < oco.  (3)
m=0

N+1

1
limsup P(|Xn | > M) < — limsup
N—oo ' M N—o0
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Let € > 0 be arbitrary, and M = Re~'. Then (3) shows that

limsupP(|Xn o > M) <e. (4)
N—o00
The function v : C — R given by v(z) = |z|, z € C, is continuous, therefore

Theorem 5.1 of [2] and (2) yield
XNl = | Xal-

This and (4) show that
P(|Xa| > M) <e. (5)
Now we recall some notions and results of Prokhorov’s theory. A family of
probability measures {P} on (S,B(S)) is called tight if, for every £ > 0, there
exists a compact subset K of S such that

PK)>1-¢

for all P € {P}, and {P} is relatively compact if every sequence of {P} contains
a weakly convergent subsequence. By Prokhorov’s theory, see, for example, [2], if
the family {P} is tight, then it is also relatively compact.
The set K. = {s € C: |s| < M} is compact, and in view of (5)
P(X, € K.) >1—-¢,
or, by the definition of X,,
P,o(Ke)>1—¢

for all @ > 0. This shows that the family of probability measures {F, ,} is tight,
and therefore, it is relatively compact. Let {P,q,} C {P, o} be such that Py,

converges weakly to some probability measure P, on (C,B(C)) as a; — oco. Then
we have that

Xo 2 P, (6)
a1 —o0
Moreover, by the definition of L,(s), for o > 0,
lim L,(s) = L(s), (7)

uniformly in ¢. Therefore, for o > 0,

N
lim li L imh) — L, imh)| = 0.
Jim 1]{]njgop +1m2::0| (o 4 imh) (o +imh)| =0

Hence by Chebyshev’s inequality, for every € > 0 and o > 0,
lim limsup un(|L(o + imh) — Lo(o + tmh)| > €)

N—oo

N
1

Now define

Xy =Xn(0o)=L(o +i0y).
Relations (2), (6) and (8) show that all hypotheses of Lemma 6 are satisfied. There-
fore,

D
XN Po’v
N—o0
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and this is equivalent to the assertion of Theorem 1.

4. Proof of Theorem 2

For the proof of Theorem 2 we need a metric on H (D) which induces its topology.
It is known, see, for example, [3], that there exists a sequence {K,} of compact
subsets of D such that

D= G Ky,
n=1

K, C Kpy1,n=1,2,..., and if K is a compact of D, then K C K,, for some n.
For f,g € H(D), define

on(f,9)

o(f,9) :;2’ T+ onlfrg)

where

on(fr9) = sup |f(s) —g(s)|-

sEK,

Then it is not difficult to see that g is a metric on H(D) which induces its topology
of uniform convergence on compacta.

Proof of Theorem 2. We preserve the notation of the proof of Theorem 1.
Define
XN@ = XN’Q(S) = La(s + ZQN)
Then by Theorem 4 we have that

~ p =

XN,(L N—>_o>o X(l) (9)
where X, = X,(s) is an H(D)-valued random element with the distribution P,.
For M, >0,

N
. 1
P(sup |Xya(s)| > M,) < —— sup |La(s +imh)|.
(:EIEI N,a(s)] ) AR mizoselgLI ( )l

The integral for L(s) converges uniformly on compact subsets of D, therefore hence
we obtain that
lim sup P( sup |)?Na(s)| > M,)

N—oco seEK,
N

Z sup |Lq(s +imh)| < R, < oo.

m—0 seKn,

1
< —lims
=M, N N1

Let € > 0 be arbitrary and M,, = R,2"¢ . Then the last inequality yields

lim sup P( sup |)?N,a(s)| > M,) < iﬂ, n=12,.... (10)
N—o0o sEK, 2n

Consider a function v : H(D) — R defined by
o(f) = sup |f(s)], [feH(D).
seK,
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Clearly, the function v is continuous, therefore by (9) and Theorem 5.1 of [2]

~ D -
sup | Xn,a(s)] oo Sup | X o (s)].
seK, X seK,

This together with (10) gives

P(sup |Xa(s)| > M) < —, n=12,.... (11)
seK, 2n
Define

H.={feHD): sup [f(s)| < M,, n=1,2,..}
s€K

Then by the compactness principle the set H. is a compact subset of H(D), and
by (11)
P(Xa(s) € H) > 1—¢,
or, by the definition of )A(a,
P,(H.)>1-¢
for all @ > 0. This shows that the famlly of probablhty measures {P } is tight,
therefore it is relatively compact. Let {Pal} C {P,} be such that P,, converges

weakly to some probability measure P on (H(D),B(H(D))) as ay — oo. This
implies

X,, = P. (12)
a]— 00

By (7), for every € > 0,
lim limsup pn(o(L(s +imh), Lo(s +imh)) > ¢€)

a—30 N—oo

< alirgo lljgnjgop = N ) Z (s +imh), Ly(s +imh)) =0. (13)

Let

)?N = )?N(S) = L(S + ZHN)
The space H(D) is separable, therefore by (9), (12) and (13), and Lemma 6 we
obtain that

~

Xy 2 P

)

N—oo
and Theorem 2 is proved.
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