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Strict topologies and Banach-Steinhaus type theorems

Marian Nowak

Abstract. Let X be a completely regular Hausdorff space, E a real Banach space,
and let Cb(X, E) be the space of all E-valued bounded continuous functions on X.
We study linear operators from Cb(X, E) endowed with the strict topologies βz

(z = σ, τ,∞, g) to a real Banach space (Y, ‖ · ‖Y ). In particular, we derive
Banach-Steinhaus type theorems for (βz , ‖·‖Y ) continuous linear operators from
Cb(X, E) to Y . Moreover, we study σ-additive and τ -additive operators from
Cb(X, E) to Y .

Keywords: vector-valued continuous functions, strict topologies, locally solid to-
pologies, Dini-topologies, strong Mackey space, σ-additive operators, τ -additive
operators

Classification: 47A70, 47B38, 46E10

1. Introduction

We denote by σ(L, K) and τ(L, K) the weak topology and the Mackey topology
on L with respect to a dual pair 〈L, K〉. Given a Hausdorff locally convex space
(L, ξ) by L′

ξ we will denote its topological dual. Recall that (L, ξ) is said to be a

strong Mackey space if every relatively countably σ(L′
ξ, L)-compact subset of L′

ξ

is ξ-equicontinuous (see [K, p. 196], [KO2, p. 482]). Clearly, if (L, ξ) is a strong
Mackey space, then ξ = τ(L, L′

ξ).

Let X be a completely regular Hausdorff space and (E, ‖ · ‖E) a real Banach
space. Let Cb(X, E) be the Banach space of all E-valued bounded continuous
functions on X provided with supremum norm ‖·‖∞. We will write Cb(X) instead
of Cb(X, R), where R is the field of real numbers. For a function f ∈ Cb(X, E)
we will write ‖f‖(x) = ‖f(x)‖E for all x ∈ X . Then ‖f‖ ∈ Cb(X).

A subset H of Cb(X, E) is said to be solid whenever ‖f1‖ ≤ ‖f2‖ (i.e.,
‖f1(x)‖E ≤ ‖f2(x)‖E for all x ∈ X) and f1 ∈ Cb(X, E), f2 ∈ H implies f1 ∈ H .
A linear topology ξ on Cb(X, E) is said to be locally solid if it has a local base at
0 consisting of solid sets (see [K], [KO2], [NR]).

In the topological measure theory a number of locally convex topologies βz on
Cb(X, E), called strict topologies have been studied. Definitions of strict topolo-
gies βz base in some natural way on the topology of X , or perhaps its Stone-Čech
compactification βX . Then (Cb(X, E), βz)

′ can be identified with some natu-
ral spaces Mz(X, E′) of E′-valued measures (see [F], [K], [KO1], [KO2], [KO3],
[KV], [NR]). In this paper we consider the strict topologies βσ, βτ , βg and β∞ on



564 M.Nowak

Cb(X, E). Note that in [F] and [K] the topologies βσ and βτ are denoted by β1

and β respectively. It is well known that the strict topologies βz (z = σ, τ, g and
∞) are locally solid (see [K, Theorem 8.1] for z = σ, τ,∞ and [KO2, Theorem 6]
for z = g). Moreover, (Cb(X, E), βz) is a strong Mackey space for z = σ (see
[KO1, Corollary 6]); z = τ and X paracompact (see [K, Theorem 6.1]); z = ∞
(see [K, Theorem 3.7]) and z = g (see [KO2, Theorem 7]).

From now on (Y, ‖ · ‖Y ) is a real Banach space, and let Y ′ stand for its Banach
dual. Let L(Cb(X, E), Y ) stand for the space of all bounded (= (‖ · ‖∞, ‖ · ‖Y )-
continuous) linear operators from Cb(X, E) to Y . The strong operator topology

(briefly SOT) is the locally convex topology on L(Cb(X, E), Y ) defined by the
family of seminorms {pf : f ∈ Cb(X, E)}, where pf (T ) = ‖T (f)‖Y for all T ∈
L(Cb(X, E), Y ). The weak operator topology (briefly WOT) is the locally convex
topology on L(Cb(X, E), Y ) defined by the family of seminorms {pf,y′ : f ∈
Cb(X, E), y′ ∈ Y ′}, where pf,y′(T ) = |〈T (f), y′〉| for all T ∈ L(Cb(X, E), Y ). In
view of the Banach-Steinhaus theorem the space L(Cb(X, E), Y ) provided with
SOT is sequentially complete. By Lβz

(Cb(X, E), Y ) (for z = σ, τ, g and ∞) we will
denote the subspace of L(Cb(X, E), Y ) consisting of all those T ∈ L(Cb(X, E), Y )
which are (βz , ‖ · ‖Y )-continuous.

In Section 2 we study topological properties of the spaces Lβz
(Cb(X, E), Y ),

where z = σ, τ, g and ∞. In particular, we derive Banach-Steinhaus type theorems
for (βz , ‖ · ‖Y )-continuous linear operators from Cb(X, E) to Y (see Theorem 2.5
and Corollary 2.6 below). In Section 3 we consider σ-additive and τ -additive
operators from Cb(X, E) to Y .

2. Linear operators on Cb(X, E) with strict topologies

For a bounded linear operator T : Cb(X, E) −→ Y let T ′ : Y ′ −→ Cb(X, E)′

denote its conjugate, i.e., 〈f, T ′(y′)〉 = 〈T (f), y′〉 for f ∈ Cb(X, E) and y′ ∈ Y ′.

Proposition 2.1. Let T : Cb(X, E) −→ Y be a bounded linear operator and let

z = σ, g,∞ (z = τ and X is paracompact). Then the following statements are

equivalent:

(i) T ′(Y ′) ⊂ Cb(X, E)′βz

, i.e., y′ ◦ T ∈ Cb(X, E)′βz

for each y′ ∈ Y ′;

(ii) T is (σ(Cb(X, E), Cb(X, E)′βz

), σ(Y, Y ′))-continuous;

(iii) T is (βz , ‖ · ‖Y )-continuous.

Proof: (i)⇐⇒(ii) General fact; see [AB, Proposition 9.26].

(ii)⇐⇒(iii) It is known that T is (σ(Cb(X, E), Cb(X, E)′βz

), σ(Y, Y ′))-conti-

nuous if and only if T is (τ(Cb(X, E), Cb(X, E)′βz

), τ(Y, Y ′))-continuous (see [AB;

Ex. 11, p. 149]). Since βz = τ(Cb(X, E), Cb(X, E)′βz

) and τ(Y, Y ′) coincides with

the ‖ · ‖Y -topology, the proof is complete.

(iii)=⇒(i) It is obvious. �
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Proposition 2.2. Lβz
(Cb(X, E), Y ) is a sequentially closed subspace of

L(Cb(X, E), Y ) for WOT, where z = σ, g,∞ (resp. z = τ and X is paracom-

pact).

Proof: Let (Tn) be a sequence in Lβz
(Cb(X, E), Y ) such that Tn −→ T for

WOT, where T ∈ L(Cb(X, E), Y ). Given y′
o ∈ Y ′, for each f ∈ Cb(X, E) we

get (y′
o ◦ T )(f) = lim (y′

o ◦ Tn)(f), where y′
o ◦ Tn ∈ Cb(X, E)′βz

for n ∈ N, and

y′
o ◦T ∈ Cb(X, E)′. It follows that (y′

o ◦Tn) is a σ(Cb(X, E)′βz

, Cb(X, E))-Cauchy

sequence in Cb(X, E)′βz

. Since the space (Cb(X, E)′βz

, σ(Cb(X, E)′βz

, Cb(X, E)))

is sequentially complete (see [KO3, Theorem 3]), there exists Φo ∈ Cb(X, Y )′βz

such that Φo(f) = lim (y′
o ◦ Tn)(f) for each f ∈ Cb(X, E). Hence y′

o ◦ T = Φo ∈
Cb(X, E)′βz

, and by Proposition 2.1 we get T ∈ Lβz
(Cb(X, E), Y ). �

Corollary 2.3. Let z = σ, g,∞ (z = τ and X is paracompact). Then

(i) Lβz
(Cb(X, E), Y ) is a sequentially closed subspace of L(Cb(X, E), Y ) for

SOT;

(ii) the space (Lβz
(Cb(X, E), Y ), SOT) is sequentially complete.

Proof: (i) It follows from Proposition 2.2 because WOT ⊂ SOT.

(ii) It follows from (i) because the space (L(Cb(X, E), Y ), SOT ) is sequentially
complete. �

The following general result will be of importance (see [SZ, Theorem 2]).

Proposition 2.4. Let K be a SOT-compact subset of Lβz
(Cb(X, E), Y ), where

z = σ, g,∞ (resp. z = τ and X is paracompact). If H is a σ(Y ′, Y )-closed

and ‖ · ‖Y -equicontinuous subset of Y ′, then the set
⋃
{T ′(H) : T ∈ K} is a

σ(Cb(X, E)′βz

, Cb(X, E))-compact subset of Cb(X, E)′βz

.

Now we are ready to prove Banach-Steinhaus type theorems for (βz, ‖ · ‖Y )-
continuous linear operators from Cb(X, E) to Y .

Theorem 2.5. Let K be a SOT-compact subset of Lβz
(Cb(X, E), Y ), where

z = σ, g,∞ (resp. z = τ and X is paracompact). Then K is a (βz, ‖ · ‖Y )-
equicontinuous.

Proof: Since the closed unit ball BY ′ in Y ′ is σ(Y ′, Y )-closed and (‖ · ‖Y )-equi-
continuous (see [AB, Theorem 9.21]), by Proposition 2.4 the set Z =

⋃
{T ′(BY ′) :

T ∈ K} is σ(Cb(X, E)′βz

, Cb(X, E))-compact subset of Cb(X, E)′βz

. Since

(Cb(X, E), βz) is a strong Mackey space, the set Z = {y′ ◦ T : T ∈ K, y′ ∈ BY ′}
is (βz, ‖ · ‖Y )-equicontinuous. Then for given ε > 0 there exists a neighbourhood
Vε of 0 for βz such that for all f ∈ Vε,

sup
T∈K

‖T (f) ‖Y = sup {|(y′ ◦ T )(f)| : T ∈ K, y′ ∈ Y ′} ≤ ε.

This means that K is (βz , ‖ · ‖)-equicontinuous, as desired. �
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Corollary 2.6. Let Tk : Cb(X, E) −→ Y be (βz , ‖ · ‖Y )-continuous linear ope-

rators for z = σ, g,∞ (resp. z = τ and X is paracompact) and k ∈ N. Assume

that T (f) := limTk(f) exists in (Y, ‖ · ‖Y ) for each f ∈ Cb(X, E). Then T is

(βz , ‖ · ‖Y )-continuous and the set {Tk : k ∈ N} is (βz, ‖ · ‖Y )-equicontinuous.

Proof: In view of the Banach-Steinhaus theorem T is bounded. Hence by Corol-
lary 2.3 T is (βz , ‖ ·‖Y )-continuous. Then Tk −→ T in Lβz

(Cb(X, E), Y ) for SOT,
so {Tk : k ∈ N} ∪ {T } is a SOT-compact subset of Lβz

(Cb(X, E), Y ). Hence by
Theorem 2.5 the set {Tk : k ∈ N} is (βz , ‖ · ‖Y )-equicontinuous. �

3. σ-additive and τ-additive operators on Cb(X, E)

We start by recalling definitions of σ-Dini and Dini topologies on Cb(X, E)
(see [NR, Definition 5.1]). For a net (uα) in Cb(X) we will write uα ↓ 0 whenever
uα(x) ↓ 0 for all x ∈ X .

Definition 3.1. Let ξ be a locally solid topology on Cb(X, E).

(i) ξ is said to be a σ-Dini topology if, whenever (fn) is a sequence in Cb(X, E)
such that ‖fn‖ ↓ 0, then fn −→ 0 for ξ.

(ii) ξ is said to be a Dini topology if, whenever (fα) is a net in Cb(X, E) such
that ‖fα‖ ↓ 0, then fα −→ 0 for ξ.

We have (see [NR, Theorem 5.2]):

Proposition 3.1. βσ (resp. βτ ) is the finest locally convex σ-Dini (resp. Dini)
topology on Cb(X, E).

Following [F, Definition 2.1] we can extend the definition of σ-additive and
τ -additive linear functionals on Cb(X, E) to linear operators from Cb(X, E) to Y .

Definition 3.2. Let T : Cb(X, E) −→ Y be a bounded linear operator, and let
B∞ = {g ∈ Cb(X, E) : ‖g‖∞ ≤ 1}.

(i) T is said to be σ-additive if supg∈B∞
‖T (un g)‖Y −→

n
0 for each sequence

(un) in Cb(X) such that un ↓ 0.

(ii) T is said to be τ -additive if supg∈B∞
‖T (uα g)‖Y −→

α
0 for each net (uα)

in Cb(X) such that uα ↓ 0.

By Lσ(Cb(X, E), Y ) (resp. Lτ (Cb(X, E), Y )) we will denote the set of all σ-
additive (resp. τ -additive) operators from Cb(X, E) to Y .

Proposition 3.2. For a bounded linear operator T : Cb(X, E) −→ Y the follow-

ing statements are equivalent:

(i) y′ ◦ T ∈ Cb(X, E)′βσ

for each y′ ∈ Y ′;

(ii) T is (βσ, ‖ · ‖Y )-continuous;

(iii) T is (βσ, ‖ · ‖Y )-sequentially continuous;

(iv) T is σ-additive.
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Proof: (i)⇐⇒(ii) It follows from Proposition 2.1.
(ii)=⇒(iii) It is obvious.
(iii)=⇒(iv) Assume that T is (βz, ‖ · ‖Y )-sequentially continuous, and let

un ↓ 0 in Cb(X). Note that supg∈B∞
‖T (un g)‖Y ≤ ‖T ‖ · ‖u1‖∞ < ∞. Let ε > 0

be given. Then for each n ∈ N there exists gn ∈ B∞ such that

sup
g∈B∞

‖T (un g)‖Y ≤ ‖T (un gn)‖Y +
ε

2
.

For a fixed eo ∈ SE (= the closed unit sphere in E), we have ‖(ung)(x)‖E ≤
‖(un ⊗ eo)(x)‖E = ‖un(x)eo‖E = un(x) ↓ 0 for all x ∈ X . Since βσ is a σ-Dini
topology, we obtain that un ⊗ eo −→ 0 for βσ. Hence un g −→ 0 for βσ because
βσ is locally solid. It follows that ‖T (ungn)‖Y −→ 0. Choose nε ∈ N such that
‖T (ungn)‖Y ≤ ε

2
for n ≥ nε. It follows that supg∈B∞

‖T (ung)‖Y ≤ ε for n ≥ nε,
i.e., T is σ-additive.

(iv)=⇒(i) It follows from [F, Theorem 2.3]. �

Hence we have

Lβσ
(Cb(X, E), Y ) = Lσ(Cb(X, E), Y ).

Now we are in position to state a Banach-Steinhaus type theorem for σ-additive
operators from Cb(X, E) to Y .

Theorem 3.3. Let K be a SOT-compact subset of Lσ(Cb(X, E), Y ). Then K is

uniformly σ-additive, i.e.,

sup
T∈K

( sup
g∈B∞

‖T (un g)‖Y ) −→
n

0 whenever un ↓ 0 in Cb(X).

Proof: By Theorem 2.5 the set K is (βσ, ‖ · ‖Y )-equicontinuous. Let ε > 0
be given. Then there exists a solid neighbourhood Vε of 0 for βσ such that
‖T (f)‖Y ≤ ε for all f ∈ Vε and each T ∈ K. Now let un ↓ 0 in Cb(X), and
let eo ∈ SE be fixed. Then for each g ∈ B∞ we have ‖(un g)(x)‖E ≤ ‖(un ⊗
eo)(x)‖E = un(x) ↓ 0 for all x ∈ X . Since βσ is a σ-Dini topology, there exists
nε ∈ N such that un ⊗ eo ∈ Vε for n ≥ nε. Hence for each g ∈ B∞, we get
un g ∈ Vε for n ≥ nε, because Vε is a solid subset of Cb(X, E). It follows that for
n ≥ nε, supT∈K(supg∈B∞

‖T (un g)‖Y ) ≤ ε. �

As an application of Corollary 2.6 and Theorem 3.3 we have

Corollary 3.4. Let Tk : Cb(X, E) −→ Y be σ-additive operators for k ∈ N, and

assume that T (f) := limk Tk(f) exists in (Y, ‖ · ‖Y ) for each f ∈ Cb(X, E). Then

T is a σ-additive operator and the set {Tk : k ∈ N} is uniformly σ-additive, i.e.,

supk(supg∈B∞
‖Tk(un g)‖Y ) −→

n
0 whenever un ↓ 0 in Cb(X).

Following the proofs of Proposition 3.2, Theorem 3.3 and Corollary 3.4 we can
derive analogous results for τ -additive operators from Cb(X, E) to Y .
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Proposition 3.5. Assume that X is paracompact. Then for a bounded linear

operator T : Cb(X, E) −→ Y the following statements are equivalent:

(i) y′ ◦ T ∈ Cb(X, E)′βτ

for each y′ ∈ Y ′;

(ii) T is (βτ , ‖ · ‖Y )-continuous;

(iii) T is τ -additive.

Hence, if X is paracompact, then

Lβτ
(Cb(X, E), Y ) = Lτ (Cb(X, E), Y ).

Theorem 3.6. Assume that X is paracompact. Let K be a SOT-compact subset

of Lτ (Cb(X, E), Y ). Then K is uniformly τ -additive, i.e.,

sup
T∈K

( sup
g∈B∞

‖T (uαg)‖Y ) −→
α

0 whenever uα ↓ 0 in Cb(X).

Corollary 3.7. Assume that X is paracompact. Let Tk : Cb(X, E) −→ Y

be τ -additive operators for k ∈ N, and assume that T (f) := limTk(f) exists

in (Y, ‖ · ‖Y ) for each f ∈ Cb(X, E). Then T : Cb(X, E) −→ Y is a τ -additive

operator and the set {Tk : k ∈ N} is uniformly τ -additive, i.e.,

supk (supg∈B∞
‖Tk(uαg)‖Y ) −→

α
0 whenever uα ↓ 0 in Cb(X).
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