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FC-modules with an application to cotorsion pairs

Yonghua Guo

Abstract. Let R be a ring. A left R-module M is called an FC-module if
M+ = HomZ(M, Q/Z) is a flat right R-module. In this paper, some homo-
logical properties of FC-modules are given. Let n be a nonnegative integer and
FCn the class of all left R-modules M such that the flat dimension of M+ is
less than or equal to n. It is shown that (⊥(FC⊥n ),FC⊥n ) is a complete cotorsion
pair and if R is a ring such that fd((RR)+) ≤ n and FCn is closed under direct

sums, then (FCn,FC⊥n ) is a perfect cotorsion pair. In particular, some known
results are obtained as corollaries.
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1. Introduction

Throughout this note, R is an associative ring with identity and all modules are
unitary. For an R-module M , the character module HomZ(M, Q/Z) is denoted
by M+. The left R-module category is denoted by RM. The projective (resp.,
injective, flat) dimension of M is denoted by pd(M) (resp., id(M), fd(M)). The
symbol Pn (resp., In, Fn) stands for the class of all left R-modules with projective
(resp., injective, flat) dimension less than or equal to a fixed nonnegative integer n.

Let C be a class of R-modules and M an R-module. A homomorphism φ :
M → F with F ∈ C is called a C-preenvelope of M [9] if for any homomorphism

f : M → F
′

where F
′

∈ C, there is a homomorphism g : F → F
′

such that gφ = f .
A C-preenvelope φ : M → F is said to be a C-envelope if every endomorphism
g : F → F such that gφ = φ is an isomorphism. Following [9, Definition 7.1.6],
a monomorphism α : M → C with C ∈ C is said to be a special C-preenvelope

of M if coker(α) ∈ ⊥C. Dually we have the definitions of a (special) C-precover
and a C-cover . Special C-preenvelopes (resp. special C-precovers) are obviously C-
preenvelopes (resp., C-precovers). If every R-module has a C-(pre)envelope (resp.,
C-(pre)cover), we say that C is (pre)enveloping (resp., (pre)covering).

A pair (F , C) of classes of R-modules is called a cotorsion pair (or cotorsion the-

ory) [9, 12] if F⊥ = C and ⊥C = F , where F⊥ = {C : Ext1R(F, C) = 0 for all F ∈
F}, and ⊥C = {F : Ext1R(F, C) = 0 for all C ∈ C}. A cotorsion pair (F , C)
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is called complete (resp., perfect) provided that every R-module has a special
C-preenvelope and a special F -precover (resp., a C-envelope and an F -cover).

In what follows, we write wD(R) for the weak dimension of the ring R. Re-
call that a left R-module M is called FP-injective (or absolutely pure) [18] if
Ext1R(N, M) = 0 for all finitely presented left R-modules N . A ring R is called
right IF-ring [14] if every injective right R-module is flat.

For unexplained concepts and notations, we refer the reader to [1], [9].

2. Some results on FC-modules

Following Ramamurthi [16] we call an R-module M an FC-module if M+ is a
flat R-module on the opposite side.

Let FI = {M | M is an FP-injective left R-module} and FCn = {M | M is a
left R-modules with fd(M+) ≤ n}, thus FC0 = {M ∈ RM | M is an FC-module}.

We note that if M is an FC-module then M is FP-injective (Proposition 2.1).

Proposition 2.1. Let M be a left R-module. Consider the following statements:

(1) M is an FC-module;

(2) M+
։ S+ is a flat precover for every submodule S of M ;

(3) there exists a pure exact sequence 0 → M → N → L → 0 with N ∈ FC0;

(4) M is FP-injective.

Then (1) ⇔ (2) ⇔ (3) ⇒ (4). And (4) ⇒ (3) holds in case R is a left coherent

ring.

Proof: (1) ⇒ (3) and (2) ⇒ (1) are trivial.
(1) ⇒ (2) For a flat right R-module F , (F ⊗R M)+ → (F ⊗R S)+ → 0 is exact,

equivalently, HomR(F, M+) → HomR(F, S+) → 0 is exact. So M+
։ S+ is a

flat precover.
(3) ⇒ (1) Let 0 → M → N → L → 0 be a pure exact sequence with N ∈ FC0.

0 → L+ → N+ → M+ → 0 is split by [11, Theorem 3.1]. Thus M+ is flat since
N+ is flat.

(1) ⇒ (4) Since 0 → M → M++ is a pure embedding and M++ is injective,
M is FP-injective by [18, Proposition 2.6].

If R is left coherent, then (4) ⇒ (1) follows from [4, Theorem 1]. �

Remark 2.2. Given an exact sequence F
f

−→ N −→ 0 with F flat, in general,

f : F −→ N need not be a flat precover. For example, Z
π

−→ Z2 −→ 0 is exact,

and Z
π

−→ Z2 is not a flat precover.

It is not true in general that a submodule of an FCn-module is an FCn-module.
However, we have the following proposition.

Proposition 2.3. Let R be a ring. If S is a pure submodule of a right FCn-

module M , then S and M/S are FCn-modules.

Proof: Since S is a pure submodule of M , 0 → (M/S)+ → M+ → S+ → 0 is
a split exact sequence by [11, Theorem 3.1]. Hence fd(S+) ≤ n and fd((M/S)+)
≤ n. �
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Let C be a class of modules. C is called coresolving [12, Definition 2.2.8(ii)],
provided that C is closed under extensions, I0 ⊂ C and C ∈ C whenever 0 → A →
B → C → 0 is a short exact sequence such that A, B ∈ C.

Theorem 2.4. Let R be a ring. Then the following are equivalent:

(1) R is left coherent;

(2) FI is coresolving;

(3) FC0 is coresolving;

(4) I0 ⊆ FC0.

Proof: Since FI is closed under extensions and I0 ⊆ FI, (1) ⇔ (2) follows
from [6, Theorem 1.5].

(1) ⇒ (3) By [4, Theorem 1], FC0 = FI since R is left coherent. Therefore
FC0 is coresolving by (2).

(3) ⇒ (4) is clear.
(4) ⇒ (1) It is enough to prove FC0 = FI by [4, Theorem 1]. By Proposi-

tion 2.1, we have FC0 ⊆ FI. For any F ∈ FI, there is a pure short exact sequence
0 → F → E → C → 0 with E injective. Hence F ∈ FC0 by Proposition 2.1. It
follows that FC0 = FI, as desired. �

Remark 2.5. If R is not a left coherent ring, then there exists an injective right
R-module M such that M is not an FC-module by Theorem 2.4.

Corollary 2.6. R is left coherent if and only if every left R-module has a

monomorphic FC0-preenvelope.

Proof: If R is left coherent, then FI = FC0. By [10, Corollary 1.4], every
left R-module has a monomorphic FC0-preenvelope. On the other hand, if every
left R-module has a monomorphic FC0-preenvelope, then every injective left R-
module is an FC-module. Hence, R is left coherent by Theorem 2.4. �

Proposition 2.7. Let R be a ring. Then the following are equivalent:

(1) R is a right IF-ring;

(2) F0 ⊆ FC0;

(3) P0 ⊆ FC0.

Proof: (1) ⇒ (2) Let F be a flat left R-module. Since F+ is injective as a right
R-module, F+ is flat and hence F is an FC-module.

(2) ⇒ (3) is trivial.
(3) ⇒ (1) follows from [5, Theorem 1(4)]. �

Remark 2.8. The conditions in Proposition 2.7 are equivalent to Fn ⊆ FC0 by [7,
Theorem 3.5] for every positive integer n.
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Corollary 2.9. Let R be a ring. If R is a two-sided IF-ring, then R is two-sided

coherent. Moreover, commutative IF-rings are coherent.

A coherent ring need not be an IF-ring. Z is not an IF-ring since Q/Z is
injective (divisible) but not flat (Q⊗Z Q/Z = 0). It is an open question whether a
right IF-ring is left coherent [14, P442]. The next theorem gives a partial answer
to this question.

Theorem 2.10. Let R is a right IF-ring. If fd(E++) < ∞ for every injective left

R-module E, then R is left coherent.

Proof: Let E be an injective left R-module. Note that id(E+++) = fd(E++) <
∞ by hypothesis, and so E+++ is flat by [5, Proposition 4]. Since E+ is a pure
submodule of E+++, E+ is flat. Thus R is left coherent by Theorem 2.4. �

Proposition 2.11. The following are equivalent for a commutative ring R:

(1) R is an IF-ring;

(2) M is flat if and only if M is an FC-module;

(3) F0 = FCn for any integer n ≥ 0.

Proof: It follows from Proposition 2.7 and the proof of Theorem 2.10. �

Remark 2.12. If R is a coherent and self-injective commutative ring, then R is
an IF-ring by Proposition 2.7. According to above propositions, in this ring, an
R-module is flat if and only if it is FP-injective. Hence [3, Theorem 12] allows
us to get examples of rings over which every finitely presented module has an
FP-injective envelope but not every module has an FP-injective envelope.

Proposition 2.13. The following are equivalent for a ring R:

(1) R is von Neumann regular;

(2) every left R-module is an FC-module;

(3) M+ is an FC-module for every pure injective right R-module M .

Proof: (1) ⇒ (2) and (2) ⇒ (3) are trivial.
(3) ⇒ (2) For any left R-module N , N+ is pure injective right R-module.

Therefore N++ is an FC-module. Since N is a pure submodule of N++, N is an
FC-module by Proposition 2.1.

(2) ⇒ (1) For any left R-module M , let f : F → M be a flat cover of M .
Then F+ is injective and the exact sequence 0 → M+ → F+ → (Ker(f))+ → 0
is split since (Ker(f))+ is flat by assumption. Thus M+ is injective, and hence
M is flat. �

Proposition 2.14. Let R a commutative ring such that wD(Rp) < ∞ for each

prime ideal p of R. The following are equivalent:

(1) R is von Neumann regular;

(2) every R-module has a monomorphic flat envelope;

(3) R is an IF-ring such that very R-module has an FC0-envelope.
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Proof: (1) ⇒ (2) is trivial.
(2) ⇒ (1) If every R-module has a monomorphic flat envelope, then R is an

IF-ring. Now by using [2, Theorem 9], we get that wD(R) ≤ 2. Hence R is von
Neumann regular by [5, Proposition 5].

(1) ⇒ (3) follows from Proposition 2.13.
(3) ⇒ (2) By Proposition 2.11, every R-module has a flat envelope. Since every

injective module is flat, the flat envelope must be monomorphic. �

3. An application to cotorsion pairs

We begin with the following

Proposition 3.1. For a family {Fi} of right R-modules, if ΠFi is a right FCn-

module, then ⊕Fi is a right FCn-module.

Proof: The result follows since ⊕Fi is a pure submodule of ΠFi. �

Remark 3.2. By [17, Corollary 3.5(c)], if a class G of modules over a ring is
closed under pure submodules, then G is preenveloping if and only if it is closed
under direct products. If a class F is closed under pure quotient modules, then
F is precovering if and only if it is covering if and only if F is closed under
direct sums by [13, Theorem 2.5]. From Proposition 3.1, we know that if FCn is
preenveloping, then FCn is covering. Moreover, FCn is a Kaplansky class by [13,
Proposition 3.2].

Lemma 3.3. FCn is covering if and only if FCn is closed under direct sums.

Proof: This follows from Proposition 2.3 and [13, Theorem 2.5]. �

Corollary 3.4. For a left coherent ring R, every left R-module has an FP-

injective cover.

Theorem 3.5. (⊥(FC⊥n ),FC⊥n ) is a complete cotorsion pair. Moreover, if R
is a ring such that fd((RR)+) ≤ n and FCn is closed under direct sums, then

(FCn,FC⊥n ) is a perfect cotorsion pair.

Proof: Let E be a right R-module with fd(E+) ≤ n. By [9, Lemma 5.3.12],
if CardR ≤ ℵβ, then, for each x ∈ E, there is a pure submodule S ⊆ E with
x ∈ S such that CardS ≤ ℵβ (simply let N = Rx and f = idN in the lemma).
By Proposition 2.3, S ∈ FCn and E/S ∈ FCn. So we can write E as a union
of a continuous chain (Eα)α<λ of pure submodules of E such that CardE0 ≤
ℵβ and Card(Eα+1/Eα) ≤ ℵβ whenever α + 1 < λ. Moreover E0 ∈ FCn and
Eα+1/Eα ∈ FCn. By [9, Theorem 7.3.4], we see that if C is a right R-module
such that Ext1(E0, C) = 0 and Ext1(Eα+1/Eα, C) = 0 whenever α + 1 < λ,
then Ext1(E, C) = 0. So if Y is a set of representatives of all right R-modules

G ∈ FCn with CardG ≤ ℵβ , then C ∈ FC⊥n if and only if Ext1(G, C) = 0 for all

G ∈ Y . But then this just says that the given cotorsion pair (⊥(FC⊥n ),FC⊥n ) is

cogenerated by the set Y . Hence (⊥(FC⊥n ),FC⊥n ) is a complete cotorsion pair by
[8, Theorem 10].
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By Proposition 2.3 and hypothesis, FCn is closed under direct limits. Since R ∈
FCn, we may assume R ∈ Y . So the class ⊥(FC⊥n ) consists of direct summands
of Y -filtered modules by [12, Corollary 3.2.4]. By an induction on the length of

the Y -filtration, we get that ⊥(FC⊥n ) = FCn. Therefore, (FCn,FC⊥n ) is perfect
by [12, Corollary 2.3.7]. �

Corollary 3.6 ([15, Theorem 3.4(1)]). For a left coherent ring R with FP-

id(RR) ≤ n, (FIn,FI⊥n ) is a perfect cotorsion pair.

Corollary 3.7 ([12, Theorem 4.1.13]). Let R be a left noetherian ring. Then

Cn = (⊥(I⊥n ), I⊥n ) is a complete cotorsion pair. Moreover, if id(RR) ≤ n, then

Cn = (In, I⊥n ) is a perfect cotorsion pair.

Let C be a class of modules. Then C is definable [12, Definition 3.1.9] provided
that C is closed under direct limits, direct products and pure submodules.

Theorem 3.8. If R is a right IF-ring such that FCn is closed under direct

products, then FCn is definable and (FCn,FC⊥n ) is a perfect cotorsion pair.

Proof: By hypothesis and Proposition 3.1, FCn is closed under direct sums.
Thus FCn is definable by Proposition 2.3 and (FCn,FC⊥n ) is a perfect cotorsion
pair by Theorem 3.5. �

Remark 3.9. If R is a ring such that (FC0,FC⊥0 ) is a cotorsion pair, then R is a
right IF-ring.

Acknowledgments. The author wishes to express his gratitude to the referee
for his/her careful reading and comments which improve the presentation of this
article. Also the author would like to thank Professor Nanqing Ding for his
constant encouragement.

References

[1] Anderson F.W., Fuller K.R., Rings and Categories of Modules, 2nd ed., Graduate Texts in
Mathematics, 13, Springer, New York, 1992.

[2] Asensio Mayor J., Martinez Hernandez J., Flat envelopes in commutative rings, Israel J.
Math. 62 (1988), no. 1, 123–128.

[3] Asensio Mayor J., Martinez Hernandez J., Monomorphic flat envelopes in commutative
rings, Arch. Math. (Basel) 54 (1990), no. 5, 430–435.

[4] Cheatham T.J., Stone D.R., Flat and projective character modules, Proc. Amer. Math.
Soc. 81 (1981), no. 2, 175–177.

[5] Colby R.R., Rings which have flat injective modules, J. Algebra 35 (1975), 239–252.
[6] Couchot F., Exemples d’anneaux auto-fp-injectifs, Comm. Algebra 10 (1982), no. 4, 339–

360.
[7] Ding N.Q., Chen J.L., The flat dimensions of injective modules, Manuscripta Math. 78

(1993), 165–177.

[8] Eklof P.C., Trlifaj J., How to make Ext vanish, Bull. London Math. Soc. 33 (2001), no. 1,
41–51.

[9] Enochs E.E., Jenda O.M.G., Relative Homological Algebra, de Gruyter Expositions in
Mathematics, 30, de Gruyter, Berlin, 2000.



FC-modules with an application to cotorsion pairs 519

[10] Enochs E.E., Jenda O.M.G., Xu J., The existence of envelopes, Rend. Sem. Mat. Univ.
Padova 90 (1990), 45–51.

[11] Fieldhouse D.J., Character modules, Comment. Math. Helv. 46 (1971), 274-276.
[12] Göbel R., Trlifaj J., Approximations and Endomorphism Algebras of Modules, de Gruyter

Expositions in Mathematics, 41, de Gruyter, Berlin, 2006.
[13] Holm H., Jøgensen P., Covers, preenvelopes, and purity , Illinois J. Math. 52 (2008), 691–

703.
[14] Jain S., Flat and FP-injectivity , Proc. Amer. Math. Soc. 41 (1973), no. 2, 437–442.
[15] Mao L.X., Ding N.Q., Envelopes and covers by modules of finite FP-injective and flat

dimensions, Comm. Algebra 35 (2007), 835–849.
[16] Ramamurthi V.S., On modules with projective character modules, Math. Japon. 23 (1978),

181–184.
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