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UNIFORM CONVERGENCE 
ON SPACES OF M U L T I F U N C T I O N 

DUSAN H O L Y 

(Communicated by Eubica Hold) 

A B S T R A C T . We study spaces of multifunctions with closed values, multlfunc-
tions with closed graphs, USCO multifunctions, minimal USCO multifunctions 
and the space of densely continuous forms as metric spaces, equipped with the 
topology of uniform convergence. We give conditions under which these metric 
spaces are complete. 

©2007 
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In what follows let K, Y be Hausdorff topological spaces. Let Z be a topolog­
ical space. The symbol J3C, B and i n t B will stand for the complement, closure 
and interior of B C Z, respectively. We denote by 2 Z the space of all closed 
subsets of Z, by CL(Z) the space of all nonempty closed subsets of Z and by 
K(Z) the space of all nonempty compact sets in Z. 

Let (Z, d) be a metric space. The open d-ball with center z0 £ Z and radius 
e > 0 will be denoted by S^zn] and the e parallel body (J S£[a] for subset A 
of Z will be denoted by S£[A]. aeA 

The distance between a point z and a nonempty set A will be denoted by 
d(z,.A), where 

d(z,A) = inf{d(z,a) : a G A}. 

The diameter of a nonempty subset A of Z will be denoted by diam A, where 

diamA = sup{cl(z,y) : z G A and y G A}. 

The Hausdorff metric Hd on 2Z is defined by 

Hd(A,B) = max | sup{d(a ,B) : aeA}, sup{d(b,A): b e B}\ 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 54C35; Secondary 54C60 . 
K e y w o r d s : Hausdorff metric topo logy multifunction with closed graph, USCO multifunc­
tion, minimal USCO multifunction, densely continuous form, locally bounded densely continu­
ous form, complete me tric space, Baire space. 
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if A and B are nonempty. If A ^ 0 take Hd(A, 0) = Hd(0, A) = oo. Hd defines 
an (extended-valued) metric on 2Z. We will often use the following equality on 
CL(Z): 

Hd(A,B) = mi{s > 0 : A C 5£[£] and 5 C Se[.A]}. 

Now let X be a topological space and (Y, d) be a metric space. 
Denote by F(X,2Y) the set of all multifunctions with closed values from X 

to Y. Let g be the (extended-valued) metric on F(X,2Y) defined by 

g($,V) = sup{Hd(<f>(x)^(x)): xtX) 

for each <£, \I> £ F(X, 2Y). The open sphere of radius e around <£ with the centre 
<I> looks like: 

{V eF(X,2Y): g($^)<e}. 

It is known ([Be]) that if d is a complete metric on y , then Hd is a complete 
metric on 2Y. Then the following holds: 

THEOREM 1. Let X be a topological space and (y, d) be a complete metric space. 
Then (F(X,2Y),g) is a complete metric space. 

By the active boundary of F at xo (PracF(xo)) we mean 

FrzcF(x0) =f){F(W)\F(x0) : W G @(x0)} 

where &(x0) stands for a neighbourhood base at x0 and F(W) = \J{F(x) : 
x G TV}, see [Do]. 

Denote by G(K", 2Y) the set of all multifunctions with closed graphs i.e., if 
$ G G(X, 2Y) the set {(x,y) : ye ®(x)} is a closed set in X x Y. 

Combining [Be, Lemma 6.1.15, 6.L16] we obtain the following result. 

PROPOS IT ION 2. Let X andY be Hausdorff topological spaces. A multifunction 
F from X to Y has closed graph if and only if F(x) is a closed set and F(x) 
contains FracF(x) for all x G X. 

THEOREM 3. If (y, d) is a metric space, then the following are equivalent. 

(a) y is locally compact. 

(b) For every space X, G(X, 2Y) is a closed set in (F(X, 2Y),g). 

P r o o f . 
(a) => ( b ) L e t $ G F ( X , 2 y ) b e i n t h e c l o s u r e o f G ( X , 2 Y ) i n ( F ( X , 2 y ) , ^ ) . 

Let { $ n : n G Z + } (Z + = {1 ,2 ,3 , . . . } ) be a sequence in G(X, 2Y) convergent 
to $ in (F(X, 2 y ) , g). By Proposition 2 it is sufficient to prove that Frac^(x) C 
$(x) for all x G X. 
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Suppose that this is not true. Then there exists Xo G X, yo G Y such that 
Ho G Frac^(xo) and y0 fi $ ( X Q ) . Let e > 0 be such that 

^ [^ (xo) ] flSe[|/o] — 0 and ^[f/o] is compact. 

Since y0 G Frac<I>(xo), there is a net 

{xw : W G 3$(xo)}, where xw G W 

(where 3)(x§) stands for a neighbourhood base at xo), in X which converges to 
xo and a net 

{Hiv : W G ^ ( x 0 ) } , where yw G 5 5 [Ho] n ( $ ( x w ) \ $ (x 0 ) ) , in Y. 

Sequence { $ n : n G Z + } converges to $ in (F(X, 2Y),g), then for | there exists 
n0 , such that $ n o G 5 2 [$]. 

Then there exists a net {z\v : TV G SS(xo)} in y such that 

O^>vV,2/vV) < o a n d z ^ G $ n o (x iy) \ $ n o ( x 0 ) . 

The net {zvV : W G £8(xo)} is a subset of compact set S^yo] a n d then has a 
cluster point ^o. Thus ZQ G Frac<£no(xo) and since 

^n0(xo) C5 5 [$ (X 0 ) ] , 

we have that zo fi $ n o (xo) . Since $ n o G G(X, 2Y), by Proposition 2 it is a 
contradiction. 

(b) = > (a) follows from [HoMc, Theorem 8] D 

THEOREM 4. If (Y, d) is a metric space, then the following are equivalent. 

(a) Y is locally countably compact. 

(b) For every first countable space X. G(X,2Y) is a closed set in (F(X,2Y), g). 

P r o o f . 

(a) = > (b) can be proved by modification of the proof of (a) ==> (b) of 
the previous theorem. 

(b) = * (a) follows from [HoMc, Theorem 8']. D 

THEOREM 5. Let X be a topological space and (Y, d) be a locally compact com­
plete metric space. Then (G(X,2Y),g) a is complete metric space. 

P r o o f . By Theorem 1, (F(X, 2Y),g) is a complete metric space and by Theo­
rem 3, (G(X, 2Y), g) is a closed set in (F(X, 2Y), g), so (G(X, 2Y), g) is a com­
plete metric space. D 
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A multifunction F: X —> Y is said to be upper semicontinuous (USC) at Xo 
if for every open set O which contains F(x0) there exists a neighbourhood V of 
x0 such that F(V) C O. 

Denote by U(X,Y) the space of upper semicontinuous nonempty compact-
valued (USCO) mult if unctions. It is known that every USCO multifunction has 
a closed graph so U(X,Y) c G(X,2Y), see [DL], [Ch]. 

THEOREM 6. Let X be a topological space and (Y, d) be a complete metric space. 
Then (U(X,Y), Q) is a complete metric space. 

P r o o f . Since by Theorem 1, F(X, 2Y) is a complete metric space, it is sufficient 
to show that U(X, Y) is a closed set in F(X, 2Y). Let $ G F(X, 2Y) be in the 
closure of U(X,Y) in (F(X,2Y), Q). Let { $ n : n G Z + } be a sequence in 
U(X,Y) convergent to $ in (F(X,2Y), Q). Since for a complete metric space 
(Y,d) the set K(Y) is a closed set in (2 y ,H^) , see [Be], $(x) is a nonempty 
compact set for every x G X. 

To prove that <& G U(X,Y), it is sufficient to show that <E> is USC at each 
x G X. Suppose it is not true. Then for some x0 G X there exists an open set 
O which contains 3>(xo) and such that for every neighbourhood V of xo there 
exists xv G V with ®(xv) n Oc •-£ 0. 

Since <fr(xrj) is a compact set. we have that S£[Q(x0)} C O for some £ > 0. 
Consider S* [<£]. There is no G Z + such that $ n G S j [$] for every n > n0. 

Let ni > n0. Since $ n i is USC at x0 , there exists W G 3B(XQ) such that 

*ni(WOcSs[*ni(xo)]. 
Since xw G W we have 

* m ( % ) C ^ j ^ ^ x o ) ] 

and since <E>ni G S^ [<&] we have 

*m(xo) c S i [ $ ( x 0 ) ] , 

then 

$ n i ( x w ) C S f [ $ n i ( x 0 ) ] C Se[$(x0)] . 

Then from 

$ K ) H (S£[$(x0)])c ^ 0 and $ni(*vV) C 5 . [$(x 0 ) ] 

it follows that iJ^($(xiy),^>ni(^w)) > f, a contradiction since $ n i G S e ^ ] . D 

A multifunction <$> eU(X, Y) is said to be minimal USCO ([DL]) if it is USCO 
and does not contain properly any other USCO multifunction from U(X,Y). 

By an easy application of the Kuratowski-Zorn principle we can guarantee 
that every USCO multifunction fiom X to Y contains a minimal USCO multi­
function from X to Y ([DL]). 

Minimal multifunctions were also studied in [Hoi], [Ml], [M2]. 
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Denote by M(X,Y) the space of all minimal USCO multifunctions. 

THEOREM 7. Let X be a topological space and (Y,d) be a metric space. Then 
M(X,Y) is a closed set in (U(X,Y),Q). 

P r o o f . Let $ be in the closure of M(X, Y) in (U(X, Y),Q). Let \I> be a minimal 
USCO multifunction contained in 3>. We claim that $ = \I> ($ , ^ are identified 
with their graphs). Suppose that there is (x0,yo) G $ \ ^ . Then there is an 
open neighbourhood U of x0 and e > 0 such that 

(t /x5 e[i /o])n* = 0. 

Let { $ n : n G Z + } be a sequence in M(X, Y) convergent to $ in (U(X, Y),Q). 

Consider S* [$]. Then there exists n0 G Z + such that o($no,$) < \. Put 

fi = $ n o \ (U x Se[yo]) and n(x) = {y : (x,y) G f)}. 

We claim that fi(x) ^ 0 for all x G I . 
It is sufficient to show that 

Q(x) ^ 0 for all x G U. 

Let x e U, since ^ is contained in $ and $ n o G S§[$], then there is y G \&(x) 
and z G ^ n o (x ) such that d(y,z) < | . Then z £ £§[2/0] • Thus we have that 

n(x) ± 0. 
Consider ft as a multifunction from X to 7 . By [DL], graph of <J>no is a closed 

set, so graph of Q is closed and then Q is an USCO multifunction. Q c $ n o and 
we claim that Q ^ <£no. Since $ n o G S^ [$], there exists y G <J>no(x0) such that 
<%),y) < f so 

ft(zo) ^ ^ n 0 ( ^ o ) . 
Thus $ n o is not a minimal USCO multifunction, a contradiction. • 

By using Theorem 6 and Theorem 7 we obtain the following theorem: 

THEOREM 8. Let X be a topological space and (Y, d) be a complete metric space. 
Then (M(X,Y), Q) is a complete metric space. 

Now we define a densely continuous form from X to Y ([HM]). 
Denote by DC(X, Y) the set of functions from X to Y which are continuous 

at all points of some dense subset of X. 
Let / b e a function from X to Y. Define 

C(f) = {x G X : / i s continuous at # } . 

Let 
/ r C(f) = {(x,y) eXxY: x G C(f), y = f(x)}. 

We define the set D(X, Y) of densely continuous form by 

D(X,Y) = {f\C(f): / Є D C ( X . У ) } . 

565 



DUSAN HOLY 

The densely continuous forms from X to Y may be consideied as multifunc­
t ion (D(X,Y) F(X,2Y)). 

Let X be a topological space and (Y,d) be a metric space. If <£ G D X, Y) 
and A X, we say that <I> is bounded on A, provided that the set $(-4) is a 
bounded set of Y. Then we say that $ is locally bounded if for all x G A" then 
exists a neighbourhood U(x) of x such that $ is bounded on U(x). 

Now define D*(X,Y) to be the set of members of D(X,Y), that are localh 
bounded. 

Let (Y,d) be a metric space. A metric space (Y,d) is called b-comp ct, if 
every bounded sub et of Y has compact closure ([Ho2]). 

Similar as in [Hoi] we show the following facts. 
Let (Y, d) be a b-compact, then 

D*(X,Y) CM(X,Y). 

In fact, since (Y, d) is a b-compact, if $ G D*(X, Y), then for a 1 G X, <£ x is 
a nonempty compact set. By a result of B e r ge [Ber, p. 112] any multifunction 
with closed graph which has a compact range is upper semicontinuous. Then 

D*(X,Y) CU(X,Y). 

Now by [DL, Theorem 4.7], if $ G D*(X,Y), then $ is minimal USCO and 

D*(X,Y) CM(X,Y). 

If X i a Baire space and (Y, d) is a b-compact metric space, tl en 

M(X,Y) CD*(X,Y). 

In fact, if $ is a USC multifunction with nonempty values, then by Fo] there 
is a dense subset E of X such that $ is lower semicontinuous at each x G E. 
Then, if <I> G M(X, Y), from the minimality of $ is easy to show that, for each 
x G E, &(x) must be single valued. Then any selection of <I> i continuous in 
erich x G X and by [DL], $ G D(X,Y). It is easy to show that, if (Y,d is a 
b compact, every USCO multifur ction from X to Y i locally bounded. 

As a result we have that if X is a Baire space and (Y, d) is a b-compact, then 

M(X,Y) D*(X,Y). 

By using of Theorem 8, by abo\e mentioned and from the fact, that every 
b-compact is complete, we have the following result: 

THEOREM 9. Let X be a Baire space and (Y,d) be a b-compa t space. The? 
(D*(X,Y), Q) is a complete metric space. 

PROPOS ITION 10. ([Hoi]) Let X, Y be topological spaces andY be locally com­
pact. If <£ G D(X,Y), then there is an open dense set U in X such that $ 
is upper semicontinuous at every point in U and for every x G U <$>(x is a 
nonempty compact set. 
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THEOREM 11. Let X be a Baire space and (Y,d) be a locally compact metric 
space. Then D(X,Y) is a closed set in ( G ( X , 2 y ) , 0 ) . 

P r o o f . The proof uses some of the ideas of the proof of [Hoi, Theorem 4.3]. 
Let $ G G(X, 2 y ) be in the closure of D(X, Y) in (G(X, 2 y ) , g). 

Put for each n G Z + 

Bn = {x G X : d iam$(x) < £ } U {x G X : $(x) = 0 } . 

We prove that int Bn is a dense set in X. Let {&k : k G Z+} be a sequence in 

£>(X,y) convergent to $ in ( G ( X , 2 y ) , o ) . Consider S_i_[$]. Then there exists 

fcn G Z+ such that 

Hd($(x),$fcn(x))<^ for all xeX. (1) 

Since $*;„ G £>(X, y ) , there exists a dense set Akn in X such that <->*,„(x) is a 
singleton and &kn is USC at every x G Akri (see proof of [Hoi, Proposition 2.2]). 
We have diam$(x) < -£- for every x G Afcn. Thus Afcn C Bn. Let x0 G A/^, 
$kn is USC at xo, then there exists a neighbourhood V of xn such that 

* * n ( Y ) c S i [**„(*(>)]. 
4n 

Let x G V, then 

$(*) c % [ $ f e n ( x ) ] c S ^ S i [**n(x0)]] C S&[*kn(x0)]. 
Art 4 n 4 n ->TI 

Since &kn(xo) is a singleton, we have that diam<fr(x) < ^ or 3>(x) = 0 and then 
V C L?n. Thus int Bn is a dense set in X. 

By Proposition 10, for all &k there exists an open dense set Uk in X such 
that $fc is USC at every point in Uk and for every x G f t , &k(x) is a nonempty 
compact set. Because of (1) and the properties of Hd we have that $(x) is 
nonempty for all x G Ukn. Put F)n = int Bn fl C/fcn • Then D n is an open dense 
set in X. 

Put B = P| F)n. Then £ is a dense set in X since X is a Baire space. For all 

x G 5 we have that $(x) is a singleton. 
Let x G X. If <£(x) 7̂  0, choose s(x) G $(x) . Let z be an arbitrary point 

in Y. We define a function / : X —> Y as follows: 

/ ( x ) = U * ) if*(*)^0, 
| z otherwise. 

We claim that / is continuous at every x G B. Let xo G F? and let e > 0. For | 
there exists n G Z + such that ^- < | . ^ ^ is USC at xo, thus there is an open 
neighbourhood U C Ukn of Xn such that 

0 ^ $fcn (x) C 5 f [*fcn (x0)] for every x G U. 
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Since <frkn G 5« [$] and $kn(x) ^ 0 for every x G U, we have that $(#) 7̂  0 for 
every x G U. 
Let x e U. We have 

/(z) e 5s[$fcn(x)] C 5§[5 f [$*„(*<>)]] c S* [5f [sf [f(x0)]]] c 5e[/(x0)]. 

Now we prove that $ = / f C ( / ) . Suppose that it is not true. Then there is 

(x0,y0)€$\f[C(f). 

There is an open neighbourhood U of XQ and S£[yo] for some e > 0, such that 

(Uxs£[2/o])n/rc(/) = 0. 
There is k G Z + such that 

$*GS f[$] . 

Then there exists z G ^^(^o) with d(yo,z) < | . 

Let gfc G DC (A", Y) be such that <f>k = gk \ C(gk)- There is x\ eU(lUk such 
that 

d(gk(xi),y0) < 4 . 

Since $fc(#i) -= gk(xi) and $^ is USC at £1, for | there exists an open neigh­
bourhood O of X\ such that for all x G O 

^k{x)<zS%\9k{xx)\. 

Let a G f / n O n 5 . We have f(a) = $(a) and 

/ ( a ) G .Sf[*fc(a)] C 5 f k ( x i ) ] C Se[yo], 

a contradiction. D 

The following example shows that the condition of Bairness of the space X 
in the above theorem is essential. 

Example 1. Denote by Q the set of all rational numbers and by R the set of 
all real numbers. Let X = Q, Y = R and consider both spaces with the usual 
metric d. Let h be a bijection from Z + to Q. For each n G Z + define the function 
fn: X —> Y as follows: If n = 1, then 

[0 X < Al(l). 

Suppose we have defined / 1 , . . . , fn. We define fn+\ as follows: Let en+i > 0 be 
such that \h(n + 1) — /i(z)| > 2en+i for alH < n + 1. Then 

/ n W + yki h(n + 1) < x < h(n + 1) + en+i, 
fn+l(x) = ., . 

\jn\x) otherwise, 
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It is easy to see that C(fn) is a dense set in X for every n G Z + . 

Put Fn = fn \ C(fn) for every n G Z+ . Fn G D(X, Y) for every n G Z + . 

Now define the multifunction F from X to Y as follows: If x = /i(l), then 

E(x) = {0, _} 

If x — /i(n), where n > 1, then 

E(_) = {/„__(_), /„_i(x) + i } . 

It is easy to see that the sequence {Fn : n G Z + } converges to F pointwise. 
Since for all x G X 

Hd{Fn{x),Fn+l{x))<^, 

{Fn : n ^ Z + } is Cauchy. By Theorem 5 there exists a multifunction H G 
G(X,2Y) such that {Fn : n e Z+} converges to H in (G(_K, 2 y ) , o). Then 
H(x) = F(x) for all x G X. Since F(x) consist of two elements for all x G X, we 
haveF^L>(_Y,Y). 

The proof of the next theorem follows from Theorem 5 and Theorem 12. 

THEOREM 12. Let X be a Baire space and (Y, d) be a locally compact complete 
metric space. Then (D(X,Y), g) is a complete metric space. 
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