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ABSTRACT. This paper continues the study begun in [GEROLDINGER, A.:
On non-unique factorizations into irreducible elements II, Colloq. Math. Soc.
Jénos Bolyai 51 (1987), 723-757] concerning factorization properties of block
monoids of the form %(Z,,S) where S = {1,a} (hereafter denoted %, (n)). We
introduce in Section 2 the notion of a Fuclidean table and show in Theorem 2.8
how it can be used to identify the irreducible elements of %4(n). In Section 3
we use the Euclidean table to compute the elasticity of %, (n) (Theorem 3.4).
Section 4 considers the problem, for a fixed value of n, of computing the com-
plete set of elasticities of the %,(n) monoids. When n = p is a prime integer,
Proposition 4.12 computes the three smallest possible elasticities of the %4 (p).
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1. Introduction

This paper continues the study begun in [8] and continued in [2], [7] and [12]
concerning factorization properties of block monoids of the form %(Z,, S) where
S = {1,a} (hereafter denoted %,(n)). To set the stage for the reader, we open
with some basic definitions and a general description of the problem area, before
reviewing our specific results.

Given an abelian group G and S C Gy = G \ {0}, let Z#(G,S) be the free
abelian monoid with basis S. An element B in # (G, S) is called a sequence and
the total number of times that each element g € S appears in B is called the
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multiplicity of g in B, denoted as vy(B). Each sequence B then has a unique

representation of the form B = [] g¥9(B) The following are some of the basic
g€eS
notions to be considered:

e For G finite, the cross number k(B) := > 39|§7TB.
ges

o Cc #(G,S) divides B, if vy(C) < vy(B) for every g € S.

e The length of B: |B| = ) v4(B) € N.
geSs

e The sum of B: 0(B) = }_ vye(B)g.
geS

The monoid homomorphism

o: #(G,S) - G, O’( Hg”g(B)) = ng(B)g

ges geS

maps a sequence to the sum of its elements. Note that ker(o) forms a submonoid
of #Z(G,S). A sequence B is called a block, if o(B) = 0, equivalently, if B €
ker(o). Let #(G,S) denote ker(o), the set of all the blocks in #(G,S). It is
called the block monoid over G determined by S (see [9] for more information

on block monoids). Note that the empty block 1 = [] ¢° € #(G) acts as the
geSs
identity in #(G,S). A block B is said to be irreducible if any block C that

divides B is either the empty block or itself.

The reader should note that block monoids are a central tool for investigating
the arithmetic of general Krull monoids (see [10, Chapter 6]). The following
related questions concerning arithmetical invariants associated to a block monoid
over a finite abelian group G have been studied in the literature.

1) The set of all cross numbers W(G) = {k(S) : S € & (B(G))} (see |

2) The system of all sets of lengths ,? (@)= {L : Be %(G)} (see [ ])

3) The set of all elasticities {p(L) : L € Z(G)} (see (3]).

4) The set A*(G) = {minA(%(Gy)) : Go C G with p(B(Go) # 1}
of differences in long sets of lengths (see [10, Chapter 6.8].

Our main interests in the study of block monoids are twofold. The first is
to determine all the irreducible blocks of %(G,S). The second is to consider
factorizations of blocks as a product of irreducible blocks. Such a study requires
the following definition. The elasticity of 2(G,S) is defined as

o(B(G,S)) = sup{% :B1...B,=C1...Cp,
with each B; and C; irreducible in B(G, S)}
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ELASTICITY AND THE EUCLIDEAN TABLE

and measures the degree of non-uniqueness in factorizations of the monoid. A
wide array of the recent mathematical literature has considered problems related
to elasticity in both monoids and integral domains. The interested reader can
find more information concerning elasticity in [1] and [11], while [5] is a good
reference for problems in general in the area of non-unique factorization. More-
over, two recent papers by Schmid ([14] and [15]) explore questions related
to non-unique factorizations specifically in block monoids.

It has been shown that the elasticity of (G, S), or at least certain upper
and lower bounds for it, can be obtained by considering the cross number ([6,
Corollary 1.7]). In particular, for those block monoids %(Zy», S) with p a prime
integer, the elasticity is given by the minimum cross number (see [7]). Our spe-
cific interest here is in the case where G = Z,, and S is a subset of two elements
of the form {1,a} with ged(a,n) = 1 (for simplicity, we denote such a block
monoid by Z,(n)). In [8], Geroldinger studies the irreducible elements of
A (n) and the associated sets of lengths for their general blocks, using contin-
ued fractions. In 2], Anderson and Chapman study elasticities in the
particular case where n = p* is a power of a prime. They show that if k = 1
and p(%AB.(p)) # 1, then p(AB.(p)) > p—2+p—1. The case where p = 2 and k& > 1 has
been recently studied in greater detail by Kattchee in [12]. Chapman and
Smith in [7] develop a method, distinct from that of [8] for determining the
irreducibles of %B,(n) using the Euclidean Division Algorithm.

Following the introduction, the results of this paper are broken into 4 sections
and can be summarized as follows. We expand upon Geroldinger’s study
of continued fractions in [8] and in Section 2 introduce the notion of a Fuclidean
table. We show in Theorem 2.8 how it can be used to identify the irreducible
elements of %,(n). In Section 3 we use the Euclidean table to compute the
elasticity of %B,(n) (Theorem 3.4). Section 4 considers the problem, for a fixed
value of n, of computing the complete set of elasticities of the %,(n) monoids
(which we denote by T2(n)). When n = p is a prime integer, Proposition 4.12
computes the three smallest possible elasticities of the %, (p). Section 5 contains
a detailed proof of Proposition 4.12.

2. The irreducibles and the Euclidean table

In this section, we consider the irreducible blocks in the block monoid #(G, S)
where G = Z, and S is a subset of two elements of the form {a,b} with 1 <
a < b < n such that ged(a,b,n) = 1. In [8, Proposition 5], it is shown that
there exist n’ € Z and 1 < o’ < n’ — 1 such that ged(e,n’) = 1 and that for
S'—{1,a'} C Z,, B(G,S) is isomorphic to B(Z,:,S’). Thus, we may restrict
our attention to the block monoids of the form %(Zy,, {1,a}) with gcd(a,n) = 1.
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Following the notation in [7], we denote the block monoid of this type as %, (n),
that is
Ba(n) = {i"&” : where u,v > 0 and u + av = kn with k > 1}.

The irreducible blocks in %,(n) have been previously studied. We first present
two previous methods for describing the irreducibles.
Method I: In [8], Geroldinger provides a description of the irreducibles in

B (n) using the continued fraction of 2, where g € {1,2,...,n — 1} is minimal
such that ag+ 1 = 0 (mod n). Let [b, b1,...,by,] be the continued fraction of
% with the convergents £t, 4 =1,2,...,m and set p_y = 0, p_1 = 15 g2 = 1,

q-1 = 0. For each N € N, he defines the integer my = [N - %] + 1 and the
block B(my) in %Ba(n) with v1(B(my)) = my for which the multiplicity of a
is minimal. With these notations, he proves the following.

ProposITION 2.1.

(1) ([8, Proposition 8]) A block B € B,(n) not equal to 1™ or a" is irreducible
if and only if B = B(my) for some N € {0,1,...,q—1}.

(2) ([8, Proposition 10]) Let N € {0,1,...,q—1}. Then B(my) is irreducible
if and only if N is in one of the following two forms:
(i) N =gqj_1+cjq; with0 <cj <bji1, 0<j < m with j even.
(i) N=g; withj= -1 0or0<j<m with j odd.

We note that in (i), each of those j’s with b; 41 = 1 does not yield any value

of N. Note also that j = —1 in (ii), which corresponds to the irreducible block
1'a?, is not included in the original theorem.

Ezample 2.2. Consider %g(19). Note that ¢ =7 and [2, 1,2, 2] is the continued

fraction of 1—79 with the convergents %, %, —g; %. Below is the list of N for which

B(my) is irreducible, the value my, and the block B(my):

N=q+g@=4 m=[4-2]+1=11 1"8

N=g_1=0 mo=1[0-2]+1=1 11§

N=q=1 mp=[1-32]+1=3 1382
These three with the two trivial irreducibles 1!? and 819 give all the irreducible
blocks in %s(19).

Method II: The second method by Chapman and Smith (in [7]) provides
a different description of the irreducibles in %,(n) using the Euclidean Division
Algorithm for n and a. They classify the irreducibles into two types as follows.

Type 1 1*a® with 0 < u < a.
Type 2 1%a@" with a < u < n.
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ELASTICITY AND THE EUCLIDEAN TABLE

They then give the condition, distinct from Geroldinger’s, for a block to be
irreducible of each type.

PRrROPOSITION 2.3. ([7, Theorem 2.1])

a) 17a% is irreducible of Type 1 if and only if ry, < r;, whenever i < k,
where n-k = a-qx+1y is the Euclidean division for values of k, 1 < k < a.
n

b) 1*a” is irreducible of Type 2 if and only if u+av =n and 0 < v < [2].
Ezample 2.4. We revisit our earlier example %g(19). Consider the divisions

1x19=8-2+3 «+—

2x19=8-446

3x19=8-7T+1 «—

4%x19=8-9+4

5x19=8-11+7

6x19=8-14+2

7x19=8-164+5

8x19=8-19+0 «—.

The criteria for Type 1 irreducibles then yields 1382, 1187, and 1'98°. Type 2
irreducibles are 1198° and 11181,

Our main theorem translates Geroldinger’s result in terms of the con-
tinued fraction of 2. Before introducing our result, we first set up the main
computational tool, namely, the Fuclidean Table. As is well known, the Eu-
clidean Algorithm applied to two given positive integers, n and a, is a very
efficient tool to compute the ged(a,n) and also to calculate the continued frac-
tion of %. We describe our notation, which is standard — except we avoid p’s
and ¢’s for convergents and r’s for remainders so as not to cause confusion with

the calculation done in [8].

DEFINITION 2.5. Given n, a with 1 < a < n and ged(a,n) = 1, we define finite
sequences, {ax} (for £ > 0) and {zx}, {yx}; {sk} (for k& > —2) recursively as
follows:

(1) For k>0, ax, = [z::f] with s_o =n, s_; =a.

(2) Sk = Sk—2 — Q) - Sg—1 for k > 0.
(38) z_2 =1, 21 =0and Ty = Tp—2 + ar - x—1 for k > 0.
(4) y—2=0,y-1 =1 and yx = yx—2 + ax - Yyx—1 for k> 0.
By the assumption ged(a,n) = 1, the recursion will continue until one gets
sg—1 = 1 and s = 0. Let m denote the last index of the continued fraction of

 such that s;,—1 = 1 and s, = 0. Note that the indexing (starting at —2) is
simply to provide the standard indexing on the continued fraction. We note the

following facts.
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Remarks 2.6.

(1) The continued fraction of 2 is [ag, a1, ..., am].

2 mo
(2) The convergents are £, % .. 2= =2,

(3) Wehaverg <1 < <zm=acandyg<y; < - < Ym n.
(4) We also have a > sg > -+ > 8;—1 = 1 (the remainders).
(5) Forall k > 0, zxn — yga = (=1)Fsy.

In our main theorem, we require that the length of the continued fraction be
odd, which can be always done as follows: Let [ag,a1,...,a:] be the continued
fraction of  minimal in length. Minimality in length implies that a,, > 1. since
otherwise (that is if a,, = 1), it can be reduced to [ag, a1, .., am-1 + 1], which
is shorter in length. If m is even, then the length of the continued fraction is
odd and hence we are done. Suppose now that m is odd so that the continued
fraction has even length. We take [ag,a1,...,an — 1,1] which still gives the
continued fraction of 2 and is in odd length as desired. We call the continued
fraction in odd length obtained in each case the odd continued fraction of
and denote it as [ad, a$, ..., a%.]. In a similar manner, we can always make the
continued fraction of % in even length. Call this the even continued fractior
of 2 and denote it by [a§,af,...,ap.]. Let {zg}, {yg}; {si} and {x7}, {y}}:
{57} respectively denote the corresponding sequences determined by even and
odd continued fraction. It is easy to see that if m is even, the odd continued

fraction of Z will be the same as the original continued fraction lap,ar,...,a,]
and the even continued fraction of % will be [ag,a1,...,am — 1,1] such that
m® =m+1, af = ag; s, = s forevery k <m®—-2,af._, =ay, —1;85,._, — 1

and aj,. = 1; sy, = 0. Similarly, if m is odd, the even continued fraction of -
will be the same with the original and the odd continued fraction of 2 will be
given by [ag, a1, ..., am — 1,1} such that m® = m+1, af = ax; s = sy for every
k<m®—2,a%._1=0am—1;80._ 1 =1and af,o =1;s2., =0.

We now introduce the FEuclidean Table. For ease of notation, we will occa-
sionally omit the superscripts as in the following definition, if it does not cause
any confusion.

k| o oy sk ax
21z y2 n -
iz y1 a
0Ol 0o w0 so ao
1z w1 s1 ar
2| 2 Y2 S22 ap

m Tom, Ym Sm Am
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ELASTICITY AND THE EUCLIDEAN TABLE

DEFINITION 2.7. Let [ag,a1,...,a,] be the odd continued fraction of 2 and
{zx}, {yx}; {sk} the corresponding sequences defined as in Definition 2. 5. The
table formed above is called the Euclidean Table for n and a.

We proceed to show that the irreducible blocks in %, (n) can be easily ob-
tained from this table.

THEOREM 2.8. Let [af,af,...,a}.] be the odd continued fraction of 2 and let
{sp}, {zx} and {42}, for k = —2,—1,...,m® be the corresponding sequences
described as in Definition 2.5. Then B = 1"a" € %By(n) is irreducible for exactly
the following values of u.
" {sz—tk-szﬂ, 0<tk <agyy —2<k<m®—2 withk even.
s

o
me

For each of these u, the corresponding v and T for which T-n = av+u are given
by

v=yp +tkYRe1s — -2 with k even or v = y%,.0;

NCR N
NN

k
k

//\ //\

T =2 +tk Tyy, — -2 with k even or 7 = 29,

Ezample 2.9. We again consider the block monoid %s(19). The odd continued
fraction of %89 is [2;2,1,1,1]. The Euclidean Table for 19 and 8 is given below

k|ze ye sk ax

211 0 19 -

-1 0 1 8 -

0] 1 2 3 2

1712 5 2 2

213 7 1 1

3] 5 12 1 1

418 19 0 1

and %s(19) has the irreducible blocks,
k= u=19-8t for 0<t<2 — 11980;1118!

k::0 u=3-2t for 0<t<l — 1382
k=2: u=1-t for 0<t<l — 1187
k=4: u=0 - 10819,

The rest of the section will be devoted to the proof of Theorem 2.8. As we
are translating Geroldinger’s result in terms of the continued fraction of Z,
we first recognize the relation between the continued fraction of % and that of
2 where g is the value described at the beginning of Section 2 in Method I. The

following lemma is an elementary exercise in continued fractions (see [13, p.26,
Exercise 7]).
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LEMMA 2.10. ([13]) If [ao,a1,...,am] is the continued fraction of %, then
[am,@m—1,...,a0] is the continued fraction of

a) 7, where q is the least positive integer with ag +1 =0 (mod n), when m

is odd, and
b) %, where b is the least positive integer with ab—1 =0 (mod n), when m
is even.
LEMMA 2.11. Let [ag,a1,...,an] be the even continued fraction of % and {s}
be the corresponding sequence of the remainders. Let z—; denote the convergents
for the continued fraction [am,am—1,...,a0] of ;—‘ with p_o =0; p_1 — 1. Then

for each j =—=2,-1,0,...,m, p; = Spm—j—2.

Proof. By assumption, p_s = 0 = 8y = Sy (—g)—2 and p_; — 1 = 55,1 —
Sm—(—1)—2- Suppose that the result holds up to j — 1. Then

Pj =DPj-2 + Am—j  Pj-1 = Sm—j T Am—j " Sm—j—1

= Sm—j—2 — Gm—j " Sm—j—1 + Am—j * Sm—j—1 = Sm—y—2.

We also need the following result.

PROPOSITION 2.12. ([8, Proposition 9])

J J
a) If N =Y cig; with0 <2k < j <m and ca, > 0, then [N-%] = > ap.
i=2k i=2k

J
b) If N = 3 cig with0<2k+1<j<m and cor+1 > 0, then [N%] =
i=2k+1

J
Z Cipi — 1.

i=2k+1

Proof of Theorem 2.8. Note that our theorem requires an odd continued
fraction of =, while Proposition 2.1 does not require any condition on the length
of the continued fraction of %. We will begin with the even continued fraction
of 2 with which we can rewrite Geroldinger’s result using the previous two
lemmas. We then will convert the result in terms of the odd continued fraction.
Let [af,af,...,a5,.] be the even continued fraction of 2 and let b; = af,._,.
Then by Lemma 2.10, [bo,b1,...,by] gives the continued fraction of %. We
know that an irreducible block # 1™ or a" in %,(n) is of the form B(my),
where my = v1(B(my)) by Proposition 2.1. In order to prove the theorem, we
will first show that the list of my provided in Proposition 2.1, with 1 and n
added, is identical to that of v in Theorem 2.8. Using Proposition 2.1 and 2.12,
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ELASTICITY AND THE EUCLIDEAN TABLE

mpy with 1 and n excluded, is described as follows.

mN = [N Ej| +1
q
pj—1+¢j-pj, if0<c¢; <bjyr, 0<j<m® with j even (1)
Pj if j=—1o0r0<j<m® with j odd.

We rewrite (1) in terms of af and sf using Lemma 2.11 and obtain

Sme_] 1 + Cj - me_] 2 if 0 < Cj < asn"—j—lv
mNe= 0 < 7 < m® with j even (2)
if j = —1o0r0< j <m® with j odd.

€
Sm"——j—2’

Note that if j is even, m¢ — j — 1 is even and if j is odd, m® — j — 2 is even also,
since m€ is odd. Thus (2) can be simplified to

s§+ep-si_q, f0<cp<af; 0<k<m®—1with k even
myN =
5%, if 0 <k <m®—1 with k even

=sp—ck-Sh_qy, f0< cx <ay; 0< k<m®—1 with k even
S§_o—af - Sh_q+cr-Sh_q, 0 < e, <ay; 0< k< m®—1 with k even

=sz —tg - S5_q1, f0 <ty =af —ck <ai, 0 <k <m®—1 with £ even

=SE —tr-Sky, if 0 <tp <agyg, —2 <k <m°—3 with k even. (3)
To rewrite (3) in terms of the odd continued fraction of 2, we divide into cases
according to the length of the original continued fraction of . Suppose first
that it is even. Then the even continued fraction is the same as the original
and the odd continued fraction is given by [ao, a$,...,a%. —1,1]. That is, with

m® =m®+1, a} = af, for k <m° -2, ag,._; =ame—1anda = 1. And
accordingly, s = s for k < m°® — 2. Thus (3) becomes
my = 8§ — tk - Shy1s 0 <ty <aj o —2<k<m’—4with k even.  (4)

Recall that this list misses n = s®, and 0 = s2,, each of which corresponds to
the block 17a° and 1°a™ respectively. To include s°, to the list, we modify the
inequality 0 < tx < aj,, to 0 <ty < af,, (excluding af, , to avoid repetition).
Doing so, we lose s9,0_,. Allowing k to be m?® — 2 will take care of the problem,
since a(mo_2)+2 = a2,0 = 1 and hence t,,0o_o with 0 < ¢,,0_2 < 1 can only be 0
whose corresponding value of my is s2,._,. Finally, by adding s%,. to (4), we

obtain the complete list of the multiplicities of 1 for the irreducible blocks in
Ba(n):

0 (5)

me

mN:{sz—tk-szH, 0 <tp <agyq —2< k< m®—2with k even
s

and this gives exactly the same set of values of u in Theorem 2.8.
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Now we suppose that the continued fraction of % is in odd length. Then the
odd continued fraction is the same as the original and hence the even continued
fraction is of the form [ag,a$,...,a%,. —1,1]. Thus with m® = m°+1 af = aj
for k < m® -2, a%._; = alo — 1 and af,. = 1 and accordingly, s}, = s}, for
k < me®— 2. Then (3) becomes

$9 — bk %41, 0 <tr < agyo,
my = for -2 < k<m®—5=m°—4 with k even
$90_g —tmo—28mo_1, 0<tpy<alo—1, fork=m®—-3=m°—-2.
(6)
Allowing t,,0—2 = a%,. to the second line of (6) yields
my = S,Ono_z — tmo_2 . ano_l, 0< tmo—_2 < a,,o.no
by which 0 has been added to the list. This is because s%,._, = af,. and
82 0_1 = 1 by (3) in Definition 2.5 and hence with t,,0_g = a%,., mn = §%0_5 —
a%0 + 8%0_1 = a8, — a9, = 0. Now (6) becomes
my =85 —tr 5541, 0<tp<ap,,, for —2<k<m®—2with keven. (7)
It remains to add n = s, to the list. This can be done, as in the first case, by
modifying the inequality 0 <t < ag,, in (M to0 <ty < ag,o- As aresult, we
obtain
e — sp =tk 8341, 0<tp <af,, —2<k<m°—2with k even
N = S?no
which is identical to (5). This proves the part of the theorem that describes
values of u.

To prove the statements on the values of v and 7, we divide the argument
into cases. For ease of description, we let [ap,aq,...,an] be the odd continued
fraction of 2. We know that when k = —2, the corresponding value of u is given
by s_o —t-s_1 =n—at, for 0 <t < ag. Note that y_o +¢-y_; =t. For each
0<t<ag,wehaven =at+(n—at) =a-(y_2+t-y_1)+u. Sincet < ap = 2],
we have a < u. Thus, by Proposition 2.3, each ¢ yields the Type 2 irreducible
1“@? with w = s_9 —t-s_1 and v = y_g + ¢t - y_1. The corresponding value of
7 is 1 which is equal to z_o + ¢ - z_1 as desired. Now consider the case where
0 <k <m— 2 with k even. By 5 in Remarks 2.6, we have

ZTpn = a-Yg+ Sk (8)
Tk+1°M = Q- Yk+1 — Sk+1- (9)

Multiplying (9) by #x and adding it to (8) yields
(:Uk + tg - :L‘k+1)n =a(yg + tk - Yr+1) + (Sk —tk - Sk+1), O <tk <agya. (10)

Notice that (10) yields the block 1%@" with u = sx — tx - Sk+1, which has been
shown to be irreducible. The corresponding v and 7 are given respectively as
v =9Yg +tk - Yk+1 and T = xp + tg - Tp4+1 as desired. Lastly, when k = m, (8)
becomes n - a = a - n + 0 which corresponds to the irreducible block 1°a™ with
v=n=yy, and T = a = x,,. This completes the proof. O
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The value of the description of the irreducibles given in Theorem 2.8 is related
to simplicity and the well-known computational efficiency of the basic Euclidean
Algorithm. Obviously, the basic calculation can be done quickly by machines
for very large values of n. Also, we will see in the next two sections how this
description of the irreducibles using the Euclidean Table provides us additional
cfficient algorithms for determining the elasticity of the block monoid %4, (n).

3. The elasticity of %,(n)

In this section, some of the previous results regarding the general relation
between the elasticity and the cross number will be reviewed. We will then
show that the elasticity of the block monoid %, (n) can be easily obtained using
the Euclidean Table for n and a. The results of [6] have shown that there is a
strong connection between the elasticity and the cross number. The following
proposition describes a lower and upper bound for the elasticity in terms of the
cross numbers.

ProprosITION 3.1. ([6, Corollary 1.7]) Given a block monoid #(G, S), set
M(#(G,S)) = max{k(B) : B is an irreducible block in B(G,S)},
m(#(G,S)) = min{k(B) : B is an irreducible block in B(G,S)}.

Then

max{M(B(G,S)),m(B(G,S)) '} <p(B(G,S)) < M(2B(G, S))m(B(G,S)) "

We immediately have the following.

COROLLARY 3.2.
(i) If M(A(G,S)) =1, then p(B(G,S)) = m(B(G, S))~ L.
(ii) If m(LB(G,S)) =1, then p(B(G,S)) = M(A(G,S)).

The elasticity of the block monoid %,(n) has been studied in [7] where the
following result can be found.

ProrosITION 3.3. ([7, Theorem 3.2]) For each irreducible block B of %Ba(n),
k(B) < 1. Thus My(n) = 1 and p(Ba(n)) = ma(n)~t, where My(n) and mq(n)
denotes M (Bq(n)) and m(PB,(n)) respectively.

Therefore, to determine the elasticity of %,(n), it suffices to compute the
minimum cross number of the irreducibles. We now describe how to determine
this minimum value and state a result for the special case where ged(a,n) = 1.
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THEOREM 3.4. Given n and 1 < a < n with ged(a,n) = 1, let | be the first
integer > 0 for which y; > s; in the Euclidean Table for n and a. Then

yits ; .
ma(n) = L if | is even
T Bt yf s odd

n

and hence
n

p(a(n)) = {+

—_—n
Yi—1+S1-1

if | is even
if | is odd.

We only need to prove the first part of the theorem for m,(n). Notice that
for a block B = 1“a" in %,(n), the cross number k(B) is given by *“** since
ged(a,n) = 1. Thus to find the minimum cross number, it is enough to find the

minimum value of the numerator. This leads us to the following definitions.

DEeFINITION 3.5. Given a block B in #(Z,, S), set
Ka(a,n) :=min{|B|: B € %,(n)}.

The reader should note under the hypothesis above that |B| = n - k(B). The
next Corollary now follows easily from Definition 3.5 and Proposition 3.3.

COROLLARY 3.6. For n and a as in Theorem 3.4, we have my,(n) = 1‘“(7;1—

and hence p(Ba(n)) = e

Proof of Theorem 3.4. Theorem 2.8 provides the description of the irre-
ducibles blocks in %, (n).
Let By, s, denote the irreducible block 15k ~tksk+1g¥s ttkbssr for (0 <t < ag42

and —2 < k < m with k even, where [ag, a1, . . ., an] is the odd continued fraction
of 2. For each k and tj, we consider
Ky, = |Bk»f'k|
= Yk + Skt (Yrer — Skt1), 0 < tp < apqa-

Note that Kx o = yx + sk. We need to show that Ka(a,n) = Ko, if [ is even or
Ks(a,n) = Kj_1,, if | is odd. Notice that yy is increasing and s is decreasing
and hence y, — Sx is increasing as k increases. By the assumption, it follows
that yp, — sk <0, if k <l and yp — s, > 0, if £ > [. With this in mind, we will
prove the theorem by dividing it into cases. Suppose first that [ is even. For &
cven with k£ <1 — 2,
Kb, = Yk + 8k + th(Yrt1 — Sk1)
> Yk + S + ak+2(yk+1 - Sk+1) (since te < Ak+2; Yk+1 — Sh+1 < 0)
= Ykt2 + Sk42 > Y2 T Skt2 + ter2 (Ykss — Sha3)

= A’k+2,tlc+2’
(11)
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since tg42 = 0 and ygy3 — Sk+3 < 0. Thus K, is decreasing as k increases up
tol—2. Fork=101-2,
K o4 = yi—2 + s1—2 + tia(y1-1 — S1-1)
> y—2 + s1—2 + o (Yi-1 — si—1) (since t_1 < ag; yi—1 — 511 < 0)
=y + s
= K0

which is less than or equal to Kj4, = i + st + ti(yi41 — Si+1), since t; > 0;
Yi+1 — Si41 > 0. For k even with k > [, we have

Kio =Yk + sk < Yk + Sk + te(Yeg1 — Sk+1)  (since tx > 05 yry1 — 841 > 0)

< Yk + Sk + Qg2 (Ykt1 — Sk+1) (since tx < ag42; Yrt1 — Sks1 > 0)
= Yk+2 T Sk+2
< Ykt + k42 + thr2(Yr+3 — Sk+3)s (since txi2 > 0; Yry3 — sp43 > 0)
= Kk+2,tk+2a

(12

which shows that K} ., is increasing as k increases from [. Hence Kj(a,n) =
Ko = yi + s;. Suppose now that [ is odd. A similar argument shows that (11)
holds for every k even with k <[ — 1 and (12) holds for k even with k > + 1.
Thus Ky, is decreasing as k increases up to [—1 and is increasing as k increases
from!{+1. When k=1-1,

Ki10=yi—1+8-1 <Yi—1+si1-1 +ti—1(y1 — 1) (since t;_1 > 0; y, — s, = 0)
<yi—1+si-1 a1 (v — s1) (since t;—1 < ai1; Y1 — 51 = 0)
=Yi+1 + S14+1
S Y41 + Si+1 + g1 (Y2 — Si42) (since ti41 > 0; Y142 — s142 > 0)
= Kit1,t4,-

Thus Kz(a,n) = Kj—1,0 = Yi—1 + Si—-1. a

For an atomic monoid H which contains a nonunit and some k € N, we set
pe(H) =sup{supL: L€ £(H), minL <k} € NU{co}.

Using pi, here is a further interpretation of the invariant K(a,n) which may
be of interest.

LEMMA 3.7. Let n € N>y, a € [1,n — 1] with gcd(a,n) = 1 and Kz(a,n) =
min{|B|: B € %,(n)}. Then

kn

oe(Ba(n) < kp(Ba(m) < gors
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for every k € N. Moreover, there is some N € N such that
knN
N(Ba(n)) = —L
PkN( (TL)) K, (CL, Tl)
for every k € N.

Proof. The first inequality follows from [10, Theorem 3.4.10.4] (with H
ABa(n)). Since L, (n) is finitely generated, it has accepted elasticity, and hence
the second assertion follows from [10, Proposition 1.4.2.3] and Corollary 3.6. O

Our next example illustrates an application of our results.

Ezample 3.8. Consider HBe05(2116). There are more than 100 irreducibles in this

. R n 2116 . . T o
monoid. However, the elasticity Jotss = 301 18 obtained immediately by using

Theorem 3.4 and the Euclidean Table below.

kilze oy Sk Qg
211 0 2116
-110 1 605

0]1 3 301 3

112 7 3 2

21201 703 1 100

31404 1413 1 2

4| 605 2116 0 1

Next, we will consider the case where a and n are not necessarily relatively
prime. As briefly mentioned at the beginning of Section 2, the study of the block
monoids of the form %(Zn, {a, b}) can be reduced to the case where b = 1 and
ged(a,n) = 1. This is due to the following theorem by Geroldinger.
ProrosITION 3.9. ([8, Proposition 5.1]) Givenn >3 and1 a,b<n.lt

oo ged(a, b, n)
~ ged(a,n) - ged(b,n)’
Then there exists 1 < o’ < n' with ged(a’,n’) = 1 such that B(Zy,{a,b}) ~
By (0).

The explicit description of the value a’ is given in the proof of the theorem
(see the proof for details). Applying Theorem 3.8 to the case where b = 1 yields
a = Thus we have the following.

—a
ged(an)®

COROLLARY 3.10. Givenn and 1 < a < n, let a’ =
Then Bo(n) = Ba(n').
Note that ged(a’,n’) = 1. Thus the elasticity of %, (n’) and hence the

elasticity of %,(n) can be easily obtained by using the Euclidean Table for n’
and a’ by Theorem 3.4. Our goal is to describe the result in terms of n and a.

a
ged(a,n)
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not of n’ and a’. Let [ag,as,...,amn] and [ag,d],...,al,] be the odd continued
fraction of & and ”—I respectively. And let {sx}, {zx}; {yx} and {s}c} {zi}s {v}

respectlvely denote the corresponding sequences for 7 and for Z;

. The key is to
notice that 2=

2 - and hence both of the fractions have the same odd continued
fraction. That is, ax = a} for every 0 < k < m. Recall that 2’5 =1 = z_y;
2, =0=z_1and y 5, =0=y_9; ¥y ; =1=y_;. Thus, by the recursive
definition given in Definition 2.5, we must have z; = z}, and yx = y;, for every
k > —2. Then the Euclidean Table for n and a is the same as the Euclidean
Table for n’ and a’ possibly except for the column with the remainders. To see
how {sx} and {s}} are related, consider the division

Sk_o2 = Sk—1 * Gk + Sk.

Let d = ged(a,n). Since d|(n = s_2) and d|(a = s—1), d divides sg. Then, by
induction, we know that d divides si for every 0 < k < m. Dividing each side
of the above division by d, we obtain,

e i T (13)
Note that s < sk—1 implies 2 < 2£21 and hence (13) yields the Euclidean
division. Since s’y =n' =12 = s—f— and s, = o’ = % = 331, we must have
so = 2. Once again, by induction, sy = % for every 0 g k < m. We now apply
Theorem 3.4 to the block monoid %,’(n’) and obtain

Ko(d,n') = Y+ s’ if [ is even
’ yi_,+s,_, iflisodd,

where [ is the first integer such that y; > s]. Note that p(Za(n)) = p(%Ba(n'))

by Corollary 3.9, where each is given respectively by & (’(‘1 = and % (Zi 77y Thus
n

(14)

’

= Rylam) = Kz(a, o) which implies
Ks(a,n) =d- Ky(d',n). (15)

With the relation between the sequences described above, we may rephrase (14)
as follows.

n
we have gy =

Ka(a,n) = dyi + s if [ is even
2 dyi_1 + si—, if s odd,

where [ is the first integer such that y, > 2. Summarizing, we obtain the
following.

COROLLARY 3.11. Giwen n and 1 < a < n, let d = ged(a,n) and let | be the
first integer > 0 for which y, > % in the Euclidean Table for n and a. Then

n

Ty if | is odd.

p(*@a(n)) = {d—ylnTS—l Zfl 1S even
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Ezample 3.12. Let n = 2° = 512 and a = 326. Consider the block monoid
PB326(512). Note that d = ged(326,512) = 4. The Euclidean Table given below
shows that yj first exceeds % at k = 1. Thus, the elasticity of H326(512) is

given by 4;;1_350 =g =2
kKlze yr sk ak
211 0 512
-1]0 1 326
0|1 2 40 2
115 11 36 5
216 13 4 1
3153 115 4 8
4159 126 0 1

4. The complete set of elasticities

In this section, we will fix a prime p and consider the set of the elasticities of
ABa(p) for 1 < a < p. In general, let T2(Z,) denote the set of the elasticities of
ABa(n) for 1 < a < n. We know that the elasticity of %B,(n) is given by m’;—n
by Theorem 3.4. Hence

Yo(Zy,) :== {m 1 <a<n}.

Since n is fixed, Y2(Z,) is basically determined by the values of Ka(a,n) for
] < a < n. With this in mind, given n, let

Y*(Zn) = {Ka(a,n): 1<a<n}.

For ease of notation, we write Y?(Z,) = T2(n).

Throughout this section, we will focus on the case where n = p is a prime.
Using the algorithm based on Theorem 3.4, T?(p) can be computed fairly fast
(even for large primes) when run by a machine. Appendix A shows the list of
T2(p)'s for 5 < p < 97.

The structure of Y2(p) has been studied by Chapman and Smith in
[7] (Min(p) is their notation). They observed that each row of Table 1 begins
with a string of consecutive numbers followed by a series of ‘gaps’. Both of the
observations, the length of the string and the top values which determine the
gaps, become of interest. The following are two previous results on each part,
described in our notation.

ProPOSITION 4.1.
(1) ([7, Theorem 4.5]) {2,3,...,5} C Y%(p) for all prime p > s* — s.
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(2) ([7, Theorem 4.7]) Let p be a prime and let a be an integer with 3 < a < p—1
and a # 3(p+1). Then Ka(a,p) < 3(p+4).

It is observed that }"2'“—1 = K5(2,p) = K2(271,p) and ["’:'3'—4] = K5(3,p) are
always in Y2(p). [7, Theorem 4.7] verifies that P‘g—l is given only by a = 2 and

a=2"1= L;r—l and that for any other a, K2(a,p) < [%4] From this, it follows
that:

PROPOSITION 4.2. ([7, Theorem 4.8]) The mazimum value in Y2(p) is 2t and
the second largest value is [},45_4]’ forp>5.

Before we move on, we provide an alternate proof to Proposition 4.1(1) using
the Euclidean Table.

Alternate Proof of Proposition 4.1(1). Lett=s—1landa=p—t.
The assumption p > s? — s is then equivalent to p > t? +¢. This implies that
2 > ¢+ 1 and hence [Et] = [B — 1] > ¢. Note that t* > ¢ holds for every ¢ > 1
which, when combined with p > t2 + ¢, yields p — t > ¢t. Thus, the Euclidean
Table for p and p — t is given as below

k |z Yk Sk ag
2101 0 p -
-110 1 p-t -
01 1 t 1
N I L A

and we have y; = [th] > [’f —1] >t >r =s;. Hence Ky(a,p) = yo + 5o =
t+1=s. O

In the rest of this section, we will be investigating further the largest values
in T2?(p). We first consider the case where Ks(a,p) = a which is observed in
Ko(2L p) = =’”2'—1 and for other large values as well. The following proposition
provides a necessary condition for this to be the case.

PROPOSITION 4.3. Let a prime p and 1 < a < p be given. If K2(a,p) = a, then
q+r = a, where p = aq + r is the Euclidean Division.

Proof. Wewill prove the theorem by showing that K»(a, p) is given by yo+sg =
g +r. The result will then immediately follow. Suppose that K2(a,p) = v + s,
for some [ > 2. Then, in particular, we must have y; = q[%] +1< a—r[%] =35
which implies that (¢ + 7)[2] < a — 1. This is a contradiction, since ¢ +r >
Ks(a,p) =a and [2] > 1. O
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Considering Proposition 4.3, we note that combining the division p = aq +1
and ¢ 4+ 7 = a yields that « = 2X2. We will show that every a in this fora

q+1-
vields Ks(a,p) = a for certain consecutive values of ¢ under a special conditior
on p. Given an integer t > 2, set m; = lem{1,2,...,t}. Consider the case where

p =1 (mod my).

LEMMA 4.4. Suppose that p = 1 (mod my). Then for every s < t — 1
(s+1[(p+s).

Proof. Write p=m¢q+ 1. Then p+s=myq+ s+ 1. Assuming s <t —1. 01
cquivalently s + 1 < t, yields (s + 1)[m; and the result follows. O
PROPOSITION 4.5. Let p be such that p=1 (mod m;). Let a; — ’;if, for ever
1<s<t—1. Then Ky(as,p) = as.

Proof. Solving as = %i—li for p, we obtainp  ass+(as—s). Clearly as—s < as.

Note that for t > 4, p = me = t(t =1)-2> (s +1)s- 2 = 25> 4+ 2s. This implies
2
that a, —2s = BX3 —2s = p=22-=% > 0 and hence a;,—s > s. Thus the Euclidean

Table for p and a, is given by

k|lz oy Sk ag
201 0 P
110 1 as

01 S as—8 S
111 s+1 S 1

which shows that Ky(as,p) = s + (as —s) = as. When t = 2, the smallest
prime p with p = 1 (mod m2) is p = 3 and the only possible s is 1. This gives
Qs = ‘fi—i = 2and we haveas—s > s. Forp > 5 withp =1 (mod my), as—s > s
always follows. The Euclidcan table for p and a; is then in the same form as
the above and hence Ks(as,p) = as. Let ¢ — 3. Then s < 2. For p > 13 with
y =1 (mod m3), as — s > s always for any s < 2 and hence the result follows.
Now let p = 7. If s = 1, then the corresponding a, = a; — % = 4 and <o
as — s > s holds. Again the Euclidean table for p and a, is the same as the
above and hence the result follows. If s = 2, then a; = 3. From the Euclidean

Table for 7 and 3, we easily obtain Ky(as,p) = as. O

We provide an example which illustrates results in Proposition 4.1 and Propo-
sition 4.5.
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Ezample 4.6. Let p = 421. Below is the full set of T2(421).

T2(421) = {2,8,4,5,6,7,8,9,10,11,12,13, 14, 15,16, 17, 18, 19, 20, 21,
22,23, 24,25, 26,27, 28,29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40,41,43,44, 47,49, 53,57, 61,63, 71, 85, 86,106, 141, 211}.

Note that 421 = (mod 420) and 420 = my. Thus by Proposition 4.5, for
every 1 < s < 6, = s+1 yields Ks(as,p) (those values in bold-face) with
Ky(as,p) = as. These are not the 6 largest values, but do give 6 of the top
8 values in Y2(421). On the other hand, note that every s < 21 satisfies the
condition p > s2 —s. Thus the string of the first twenty values in Y2(421) (those
in italic) are obtained by Proposition 4.1.

We return to the problem of determining the top values in Y2(p). We first
observe the following, summarizing what gives the two largest values.

Remark 4.7.

(i) For every prime p,p =1 (mod 2) and 25+ +1 = [2] +1 gives the maximum

value p—;l in T2(p).

(ii) Given a prime p, either p = 1 (mod 3) or p = 2 (mod 3). In cach case,
%1 +1= [ ] +1 and 2 2 +2 = [ﬂ—’] + 2 respectively gives the second
largest value [2£1] in TQ( ).

Thus it seems that the first and the second largest values in Y2(p) are deter-
mined respectively by what p is congruent to modulo 2 and modulo 3. We will
write Mod(p, t] to denote the least positive residue of p modulo ¢t. Through the
next two propositions, we will see that for each ¢t > 2, Mod|p, t] yields at least
one value in Y?(p) of the form [] + 7, for some r < Mod|p, t].

PROPOSITION 4.8. Given a prime p and an integer t > 2 with p >
[ﬂ +j and [g] +1 (16)

are always in Y%(p) where j = Mod|p, t]. Each is given respectively by a =t and

) ,
q — L Upti lt)pﬂ.

Proof. Let p=j (mod t). Since p > t? and ¢t > j, it follows that yo = —*l =
t 1> j=spin the Euclidean Table for p and ¢ and hence Ka(t,p) = p—l +7,
as desired. Let a = (t—lt)’ﬂ =p— —J—. Then a — —l (—ti)pﬁ >0 dUC to
the assumption ¢ = 2. Thus the Euchdean Table for p and a is glVCn by
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k| zk Sk a
21 0 -
(t=Dp+j
100 1 Pt
0oj1 1 B 1
11 ¢ j t—1
which shows that K3(a,p) = 274 + 1. O

In particular, the first part of Proposition 4.8 tells us immediately what
Ka(a,p) is, for every a with a < /p.

COROLLARY 4.9. Given a prime p and a < \/p, Ka(a,p) = [2] +Mod[p, a].

Ezample 4.10. Let p = 79. Below is the list of the values in Y2 (79) obtained by
using Proposition 4.8, for 2 <t <6 < [\/ﬁ]

t=2 79=1 (mod2) — [72—9]+1:40
t=3 79=1 (mod3) — [? +1=27
79 _
t=4 7923 (mod4) — Jlijt3=
[B]+1=20
BDl+4=1
t=5 79=4 (mod5) — [759}+ J
[B]+1=16
t=6 79=1 (mod6) — [% +1=14.

Consider the special case where p =t — 1 (mod t). Then by Proposition 4.8,
we obtain two values (unless t = 2), [B] + (t—1) and [B] + 1. Our next
proposition shows that we may obtain values other than these two.

PROPOSITION 4.11. Suppose that p=t — 1 (mod t). Then for any s|(t — 1),

py, t—-1 2
]+ —e1*0 (17)

. _ sp+1)
and is given by a = =E=1.

Proof. Note that p+ 1 = 0 (mod t) implies t| (p + 1). For each s| (¢t — 1), let
as = 5(”T+l). Then from the Euclidean Table for p and as given below,
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k| zr  yk Sk a
2! ’ S(pz—)H) B
_(1) (1) t_i; pII) t=1

1]|s ; tf t= ;

we have y; > s; and hence K (as,p) = yo + So = &z_l) + % as in the
statement. O

For instance, in Example 4.10, 79 = 4 (mod 5) yields one more value in
Y2(79) other than 19 and 16, namely, [?] + % = 17 by Proposition 4.11.

Thus, for each ¢, Mod [p, t] yields the values described as in (16) and (17).
The following list shows these values for 2 <t < 4.

List 1
t=2 p=1 (mod2) — £%3+1=[ﬂ**
p=1 (mod3) — ‘1)5—1+1:[§]+1
=3 \p=2 (mod3n — {?iw:[%]”
B +1=[f]+1
p=1 (mod4) — %"‘1:[%]"_1
t=4 p=3 (mod4) — {gi?z%i?

Note that considering Mod [p, 12] automatically gives Mod [p, 2], Mod [p, 3|
and Mod [p, 4]. When we divide the cases according to Mod [p, 12], List 1 can be
rephrased as follows.

List 2
p=1 (mod2) — [E]+1
p=1 (mod12) — <{p=1 (mod3) — [B]+1
p=1 (mod4) — [§]+1
p=1 (mod2) — [B]+1
(5] +2
=5 d12) — =2 d3) — ¢
P (mod 12) P (mod 3) (2] +1
p=1 (mod4) — [B]+1
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(p=1 (mod2) — [§]+1
p=7 (mod12) — p=1 (mod3) — [g[]giri?)

p=3 (mod4) — {[§]+1

p=1 (mod2) — [E]+1
p=11 (mod12) — (JP=2 (modd = %ii

Our computation suggests that these are the 37¢, 4t* and 5! largest values in
Y2 (p). Another aspect suggested by the computation is that for a fixed t with
2 <t <4, [%] + Mod [p, t] gives the maximum and [%] + 1 gives the minimum
among the values described in (16) and (17). In other words, the next largest
value to [2] 41 in T2 (p) seems to be given by [£7] +Mod [p, ¢ + 1] for t = 2,3.
Notice that for t = 2, this has already been verified to hold by Chapman-
Smith, since the second largest value [E£?] in Y2 (p), as mentioned in Re-
mark 4.7(ii), is equal to [5] 4+ Mod [p,3]. A case by case proof establishes that
it also holds for ¢t = 3 (see Section 5 for the proof). We state the result below.

PROPOSITION 4.12. Given a prime p # 29 and 1 < a < p, we have either
K> (a,p) < [B] +Mod [p,4] or K3 (a,p) > [2] + 1.

The result does not extend to ¢ = 5. Note that p = 1 (mod 60) implies
p =1 (mod 12) which yields three largest values as described in List 1. It also
implies p = 1 (mod 5) which yields %4 = [%] + 1 by Proposition 4.8 and this
is expected to be the next largest value. However, computation shows that
p+9
—— €T2(p) (18)
and gives the 4th largest value in Y2 (p). It turns out that this is a particular
example of the following general fact.

PROPOSITION 4.13. Given an odd integer t > 5, let p be a prime such that
p=1 (mod t) with p > t. Then

t—1
E]+—=5—erm (19)
and is given by a = (1) (B2) + 1.

Proof. Writep =tg+1andleta= (2)g+1. Fort>5, (5)g>q+1
and clearly t > % Thus the Euclidean Table for p and a is given by
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k|oe  yk Sk a
21 0 P -
-1]0 1 (%lq+1 -
01 1 faﬁq 1
1]1 2 g+1 1
2| 2 - ()41 5
s\ 0 s

and Ky (a,p) =ya+sa=t—2+q— (5F) +1=22 + 51,
We note that 22 in (18) is equal to 2% + 251, in the form of (19) with t = 5.

5. Proof of Proposition 4.12

The proof will be a case by case analysis with the first two major cases being
the residue of p modulo 4.
Case 1 p=4k+1:
We will assume k > 25 with the finite number of cases k < 25 easily verified by
direct calculations (such as in the table in Appendix A).

There are three subcases required to show that the desired inequalities hold
for K5 (a,p) for integers j where a = j (mod k):

Subcase 1A 0< j < 5;

Subcase 1B 6 < j < [%];

Subcase 1C [%] <j<k-1

Subcase 1A 0 < j < 5: Each case here is verified by considering the ap-
propriate Euclidean Table. Since the calculations are routine, we only illustrate
this with one example j = 3. If a = 3 (mod k), then

a=3, k+3, 2k+3, or 3k+3,

since2<a< k-1

(i) It has already been established K> (3,p) = [§] + Mod [p, 3].

For the other values, we get the relevant values from the Euclidean tables as
follows:

(ii) Fora=k+3,y0=3; s =k —8,s0 Kz (a,p) < k-5 < k+1

(ili) For a = 2k + 3, yo < 2 (22) + 1; 55 < 4,50 K3 (a,p) < 2 <k + 1.

(iv) Fora=3k+3,yg=1;80 =k — 2,50 Kz (a,p) <k—-1<k+1

In all cases, since k + 1 < [2] + Mod [p,4], we have the desired inequality.

4
The other values of j where 0 < 7 < 5 are verified in the same way.
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Subcase 1B 6 < J < [%]

(i) @ = j: Since a = j = 6 and Mod [p,a] < a, it follows that Kj (a.p)
1 (j,p) < [B] +Mod[p,s] < [§] + [4] < %5+ 5 < S5 <k 1.

(ii) a = k+j: K2 (a,p) <yo+so =k—3j+4 < k+1 by the Euclidean Table
below.

k |z ye Sk aj
2011 0 4k +1
100 1 k4
011 3

k-3;+1 3

(i) @ = 2k + j: Note that 6 < j < [%] implies 6 < j < =5=. Then the
Euclidean Table is given by the below.

k|zp Sk aj
21 0 4k +1
a0 1 2%+
01 1 2k—j+1 1
11 2 2j-1 1

« For 28 < j < [£], [Z5] = 2 and Mod[2k—j+1,2) - 1] —
9%k —5j+3. Thus Ko(a,p) < yo+ 80 = 5+ 2k —5j +3 = 2k — 5] + 8 <
2k — 5 (2£44) 4 8 = 26430 and this is less than or equal to k + 1.

* Consider the case 6 < j < L;M. Note that Kj(a,p) < y2 + s2 <

2 <%'.—Zlil)+1+2j 2. Since 2]; I+1 attains maximum at j = 6 and 2j—2 attains

maximum at j = 2k7+4, K5 (a,p) < (2’c 5)+1+2(2’°7+4) 2= % k+1.
(iv) a = 3k + j: Ka(a,p) < yo+ so=k—j <k+1, by the Euclidean Table
below.

k |z ye Sk a
21 0 4dk+1
100 1 3k+j

0l1 1

Subcase 1C [§]<j<k—1:
i) @ = j : Note that |2 > 4, since [2] > 4kl — g (2k4l) > 5 for k<6
a k—1 k 1

which is not the case. Also [5] 11. To see this, we divide into cases.
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* When £k = 3m, p = 12m + 1 and [%] = m and hence [5]

AND THE EUCLIDEAN TABLE

p —
SO~

p

% Similarly when k = 3m + 1, p = 12m + 5 and [%] = m and hence [5] <

12m+1 __

“m+1 T 11.

p _ 12m+45 __
[ = e

Let q= [%] Note that K2 (a7p)

4k + 1 — qj < j which implies

4k+1

7= q+1”

< ¢+ Mod[p,a] = ¢+ (4k + 1 — qj) with
Then ¢ +4k+1—qj <

(¢g+1)+

4k —q (‘“C“) Suppose that (¢ + 1) + 4k — g (4k+1) < k+1. Then (q+1)* -

q+1

¢ (%) < (=3k+1) (¢ +1) which implies ¢ — gk + 3k < 0. This will hold for

q+1

Vk2—12k k+Vk2—12k
]‘__2— < q < _+2— ar

d it includes 4 < ¢ < 11.

(ii) a = k + j: We divide into cases.
elf k=3m,thenp=12m+land m+1<j<3m—1.

* When j =m+1, Ky (a,p) =4m+1= 2% + 1.
k| zeg Yk Sk ak
201 0 12m+1
110 1 4m+1
01 2 4m-1 2
11 3 2 1

* When j = m+2, K (a,p) <

Yo +s2 < 3(12=3) 244 =

will be less than or equal to 3m + 1 =k + 1.

k| ze yk Sk ak
2101 0 12m+1 -
-110 1 4m 4+ 2
01 2 4dm — 3 2
111 3 5 1
* Suppose that m +3 < j < 12"81—”.
k|zp yi Sk ag
21 0 12m+1
-110 1 3m+)
011 2 6m—2j+1 2
111 3 3j—-3m—-1 1

12”?’2 12m+2L and this
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We have 3 (a,p) < got+s2 < 3 [gﬁgfi;fi}+2+3j—3m—2, Note that [gé%fi—fﬂ

Qttaigs ingaximum when j = m + 3 and 3j — 3m — 2 attains maximum when
J =75 Then K, (a,p) < 3 (4=2) + 12mE3 = 24m15 < 3y 4 1=k + 1.
* Suppose that 12&8+—3 <j<3m-1.

k|zp yk Sk ag
201 0 12m+1

{0 1 3m+j -
01 2 6m—-2j+1 2
111 3 37—-3m—-1 1
202 5 9m—5j+2 1

From the Euclidean Table above, we have K3 (a,p) < ya+52 = 5+9m—5j+2 <
9m —5 (%) +7= % and this is less than or equal to 3m+ 1=k + 1.

elfk=3m+1(p=12m+5), then m+1 < j < 3m.
* When j =m +1, K3 (a,p) =4m+3>4m+2=[E] + 1.

k|zp yk Sk ag
211 0 12m+5 -
-110 1 dm+2 -
01 2 dm+1 2
1)1 3 1 1

k| Yk Sk ay
201 0 12m+5

-110 1 4m + 3

0|1 2 4m — 1 2
111 3 4 1
2lm 3m—1 3 m—1

+ When j = m +3, Kz (a,p) < yo + 52 < 3 (42-2) + 2 + 6 = 122254 by the

Euclidean Table below and this is less than or equal to 3m + 2 =k + 1.
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k Tk Yk Sk (477
201 0 12m+5
-110 1 4m+4

1 2 4m-3 2

111 3 7 1

*+ When j = m +4, K> (a,p) < y2 + 52 < 3 (4%52) + 2+ 9 = 122=9 which
is less than or equal to 3m +2 =k + 1.

k Tk Yk Sk Ak
211 0 12m+5 -
-110 1 4m+5 -
01 2 4dm-5 2
111 3 10 1

* When m 45 < j < 2118 the Euclidean Table is given by

k |z Sk ag
201 0 12m+5 -
-110 1 3m+j -
01 2 6m—2j+5 2
11 3 3j-3m-5 1
and K (a,p) < y2 + 82 < 3 [gjl_'ﬁnj—fg} + 2435 —3m — 6. Note that [%}

attains maximum when j = m + 5 and 37 — 3m — 6 attains maximum when
J =125 Then Ky (a,p) < 3 (4252) +2 4 3 (124H8) — 3m — 6 = Z6mtld
which is always less than or equal to 3m +2 =k + 1.

* When % < J < 3m, the Euclidean Table is given by

k T Yk Sk ay,
211 0 12m+5 -
110 1 3m+j -
0|1 2 6m—-2j+5 2
1{1 3 3j-3m-5 1
212 5 9m—-554+10 1
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and K3 (a,p) < y2 + 52 =5+ 9m — 55 + 10 < 9m — 5 (12H18) 4 15 = 12m+dd
which is less than or equal to 3m +2 =k + 1.

(iii) @ = 2k 4+ j: We divide into cases.
o Consider the case where [g] <7< %T+2
by the below.

. Then the Euclidean Table is given

klzey  yk Sk ag
211 0 4k + 1 -
-11(0 1 2k +j -
0|1 1 2%—j+1 1
1]1 2 2%—-1 1
211 2¢+1 r q

*x For j > 2k+3 ,qg=1land r =2k —3j+2. Then Ky(a,p) <2¢+1+r =
342k —3j +2 <5+2k-3 (2]“—5+—3) = 4’“5;16 and this is less than or equal to
kE+1.

* Suppose that [%] < J < 2"—;“?3 This implies M < J < @, since
% < [%] Then ¢ = 2 and r = 2k — 55 + 3 and hence K2 (a,p) < 2q+1+4r=
2k — 55 + 8 < 2k — 5 (2£44) + 8 = 2E£36 which is less than or equal to k + 1.

e Consider the case where 2k+2 <j<k-1

a) Suppose that @ < j <k —1. The Euclidean Table is given by

klzy y Sk a
211 0 4k +1

o 1 2%+j -
0l1 1 2%—j+1 1
112 3 3j—2k—-1 2
203 4 4k—4j+2 1

and K (a,p) <ya+s2 =4+ 4k — 45 +2 < 4k — 4 (&2 4 6 = 25430 which is
less than or equal to k + 1.

b) Suppose now that M <j< M We divide into cases.
* If k = 3m, thenp—12m+1and2m+1 j < 18m3,

*x When j =2m+1, K5 (a,p) =4m+1= [3] + 1 by the Euclidean Table
below.
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kK| e yk Sk a
211 0 12m+1 -
-110 1 8m+1 -

01 1 4m 1

112 3 1 2

*x When j = 2m+ 2, K3 (a,p) = 3m+ 1 = k + 1 by the Euclidean Table

below.
k| Yk Sk ak
211 0 12m+1 -
-110 1 8m + 2 -
01 1 4m — 1 1
112 3 4 2
2|2m—1 3m—2 3 m—1

xx When j = 2m + 3, Ky (a,p) < y2 + 52 < 3 (¥%=2) + 146 = 12mti3
which is less than or equal to 3m + 1.

k|lzr w Sk a
211 0 12m+1
-110 1 8n+3 -

011 1 4m — 2 1

1]2 3 7 2

x% When 2m + 4 < j < 18243 the Euclidean Table is given by

k |z yk Sk a
211 0 12m+1 -
-110 1 6m +j -
01 1 6m-—j+1 1
112 3 3j—6m-2 2

and K3 (a,p) < y2 + 52 < 3 (fj—’l%,%%) +1+3j — 6m — 3. Note that S7=itl
attains maximum at j = 2m+4 and 3j —6m — 3 attains maximum at j = —18’?+3.

Thus K3 (a,p) < 3(4";0'3) +1+3 (l%) — 6m — 3 < 24=13 and this is

always less than or equal to 3m + 1.
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xIfk=3m+1,thenp=12m+5and 2m+2 < j < 187?+9_

x+ When j = 2m + 2, Then K3 (a,p) =4m +2 = [E] + 1.

k| zp yk Sk ag
2101 0 12m+5 -
-110 1 8nm+4 -
0|1 1 dm +1 1
112 3 2 2

+x When j = 2m+3, K3 (a,p) < y2+52 < 3 (4) + 1+4 = 120425 which
is less than or equal to 3m +2 =k + 1.

k|xr Sk ag
211 0 12m+5 -
-110 1 8m+5 —
01 1 4m 1
1|2 3 5 2

sx When j = 2m + 4, K (a,p) < y2 + s2 < 3(

which is less than or equal to 3m +2 =%k + 1.

k |z Sk ag
211 0 12m+5 -
-110 1 8qm+6 —

01 1 4m —1 1

112 3 8 2

4m—1

8

2m
) 4147 = L2minl

*x* When 2m + 5 < j < w, the Euclidean Table is given by

kize Sk ak
211 0 12m+5 -
(0 1 6m4j+2 -
01 1 6m—j+3 1
112 3 3j—6m—4 2

anng(a,p)<y2+32<3<-3%m_—g%)+1+3j—6m

attains maximum at j = 2m + 5 and j < 242 Thus K; (a,p) < 3 (

_ 6m—j+3
5. Note that 3—6m—d

4m—2
11

)+
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143 (18"—;“’) —6m—5 < 2~16’7”7—_24 and this is always less than or equal to

3Im+2=k+1.
(iv) @ = 3k + j: By the Euclidean Table below, K (a,p) < k—j <k + 1.

k I Tk Yk Sk Qg
-2 01 0 4k +1 -
100 1 3k+j -
01 1 k—j+1 1

Case 2 p =4k + 3:
Again we assume k > 25 and the argument is then given along the same lines
as the previous cases showing the desired inequality for the three subcases de-
termined by j where a = j (mod k):
Subcase 2A 0 < j < 5;
Subcase 2B 6 < j < [%];
Subcase 2C {%] <j<k-1
Subcase 2A 0 < j < 5: This case (with the six possible values of j) is
handled in exactly the same manner as was illustrated in the case p = 1 (mod 4).
We will not repeat the argument for this case.
Subcase 2B 6 < j < [%]
(i) @ = j: Since a = j > 6 and Mod [p,a] < a, it follows that K> (a,p) <
(2] +Mod [p, 5] < [B] + [§] < 42 + & = 8553 <k + 3 = [£] + Mod [p,4].
(ii) @ = k+j: By the Euclidean Table below, K3 (a,p) < yo+s9 = k—3j+6 <
k+3
k| zp yk Sk ag
2101 0 4k + 3 -
al0 1 k45 -
01 3 k-3;j+3 3

(iii) @ = 2k + j: The Euclidean Table is given by the below.

k| zp Yk Sk ak
211 0 4k + 3 -
110 1 o%+j -
01 1 2%—j+3 1
1)1 2 2j-3 1
21qg+1 2¢q+1 r q
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We divide into cases.

+ For 25812 < j < [£], we have ¢ = 2 and r = 2k — 55 + 9. Then K; (a,p) <
2q + e 542k —5j+9=2k—5j+14< 2k —5(2H2) + 14 = 438 and
this is less than or equal to k + 3.

* For 6 < j < 2’“%”, % attains maximum at j — 6 and 2j — 4 attains

maximum at j = 2582, Thus K, (a,p) < y2 + 2 <2(%J‘13—)+1+21—4

2 (22) 142 (22H2) 4 = SE=15 which is always less than or equal to k+3.
Subcase 2C [H <j<k-1
(i) a = j: We have [g] = 4k’f_+3 4. Also E] < 11. To see this, we divide
the cases.
* When k =3m + 1, p = 12m + 7 and [%] +1 = m+ 1 and hence [ﬂ <

p _ 12m+47 __

GlF ~ mel =11.
* When £ =3m+ 2, p=12m + 11 and [%] + 1 =m+ 1 and hence 5’} <
P — 12m+11 =11

[5]+1 m+1 :

Let ¢ = [%} Note that K3 (a,p) < ¢+ Mod[p,a] = q + (4k + 3 — ¢j) witl

lk +3 — qj < j which implies j > 4’“:13. Then q + 4k +3 ¢qj < (¢+3) +

2
4k — q4qkj13. Suppose that (g + 3) + 4k — q4qk:13 k+ 3. Then (¢ +3)
[4q"j13 < (=3k+43)(g+1). Then ¢*> — (k +2) g+ 3k < 0 and this will hold for
kt2—vk —Bk+d kz Sktd g < Et2ty k2 k24 vh® 8kt which includes 4 < g < 11.

(ii) a = k + j: We divide the cases.
oIfk=3m+1, thenp=12m+7and m+1<j < 3m.

* When j=m+1, Ky (a,p) =4< k+3by the Euclidean Table below.

k|2 Yk Sk ay
201 0 12m+7
-110 1 4dm+2
01

3 1 3

* When j = m + 2, Ky (a,p) = yo + So = 4m + 3 which is equal to H] + 1.

Tk Yk Sk ag

1 0 12m+7
-11]0 1 4m+3

1

1

2 4m+4+1 2
3 2 1

446



ELASTICITY AND THE EUCLIDEAN TABLE

* When j = m + 3, Kz(a,p)<y2+52:3[4l5——1]+2+4<3(4m\5~1)+6:
12&52 which is less than or equal to 3m +4 =k + 3.

k|zr yk Sk ag
211 0 12m+7 -
-110 1 4dm+4 -
01 2 4d4m-1 2
111 3 5 1

* When m +4 < j < 12";3413, the Euclidean Table is given as follows.

k Tk Yk Sk 7%
-2 |1 0 12m 47 -
210 1 3Im+j+1 -
01 2 6m-2+5 2
111 3 3j—3m—-4 1
2|qg+1 3q¢g+2 r q

Then K (a,p) < y2+82 =3¢+2+7r <3 [%Lfg] +2+3j—3m—5. Note that

[%ﬂjﬂ attains maximum when j = m+4 and 35 — 3m — 5 attains maximum
24m+6

when j = 12m+13 Then K, (a,p) < 3 (4272) +2+3 (L2mt13) —3m -5 = g2
which is always less than or equal to 3m + 4 = k + 3.
* When Lms-iﬁ < j < 3m, the Euclidean Table is given by

Sk ak
0 12m+7 -
1 3m4+j+1
2 6m—2j+5
3
5

Y

>

2
3j—3m—-4 1
Im—-55+9 1

]
N = O = NR
N = = O R
>

and K; (a,p) < 5+ 9m — 5j +9 < 9m — 5 (12m2£13) 4 14 — 12m4? and this s
less than or equal to 3m +4 =k + 3.
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oelf k=3m+2,thenp=12m+11land m+1<j<3m+ 1.
* When j =m + 1, K» (a,p) = 5 < k + 3 by the Euclidean Table below.

k| ze e Sk ay
201 0 12Zm+11 -
-110 1 dm + 3

0|1 3 2 3

+ When j = m + 2, K» (a,p) = 4m +5 > [E] + 1.

k|ze yk Sk a
211 0 12m+11 -
-11(0 1 dm + 4 -
01 2 4m + 3 2
1)1 3 1 1

* When j =m+3, K2 (a,p) =3m+3<3m+5=k+3.

k |z Yk Sk ag
201 0 12m+11 -
-110 1 Im+5 -
01 2 dm+1 2
1(1 3 4 1
212 3m+2 1 m

* When j = m+4, K2 (a,p) < 9o+ so < 3(4”%1) +246= % by the
Euclidean Table given below and this is less than or equal to 3m + 5 =k + 3.

k Tk Yk Sk Qg 5
201 0 12m+411

-110 1 4m 46 -

0]1 2 4m —1 2

1)1 3 7 1

* When m + 5 < j < 22417 the Euclidean Table is given by the below.
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klzr Sk ag
1 0 12m+ 11 -
110 1 3m+j+2 -
1
1

2 6m-—2j+7 2
3 3j—-3m-5 1

Note that [g—%} attains maximum when j = m+5 and 37 — 3m — 6 attains

maximum when j = 2217 Thus K3 (a,p) < y2 +s2 < 3 [%ﬁ__?jn%} +2+35—

3m—6 <3 (4752) + 24 3 (L2mELT) — 3y — 6 = 108759 which is always less
than or equal to 3m +5 =k + 3.

* When % < j € 3m + 1, the Euclidean Table is given by

k|lzr y Sk ay
211 0 12m + 11 -
110 1 3m+j+2 -
ol1 2 6m-2j+7 2
111 3 3j—-3m-5 1
212 5 9m—-55+12 1

and K3 (a,p) < y2 + s2 = 5+ 9m — 55 + 12 < 9m — 5 (12mHT) 4 17 = 12mi51
which is less than or equal to 3m + 5 for every m.
(iii) @ = 2k + j: Consider the following cases.

e For [%] <5< 2’“—3+@, the Euclidean Table is given by

k | g Yk Sk ag
201 0 4k + 3 -
100 1 2k+j -
011 1 2k—j+3 1
1)1 2 2j—3 1
21qg+1 2¢g+1 r q

We divide into cases.

x For j > %T+9, g=1and r = 2k —3j + 6. Then K3 (a,p) < y2 + 50 =
20+ 1+7=3+2k—3j+6<9+2k—3(2£2) = &8 which is less than or
equal to k + 3.
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«For [£] <j < 22 g=2andr = 2k—5;j+9. Then K2 (a,p) < 2¢+1+7 =
5+ 2k —5j+9=2k—5j+14 < 2k — 5 (2%£12) 4 14 = 2522 and this is less
than or equal to k + 3.

o Consider the case where %:,';f—@ <j<k-1.
a) For 815 < j < k — 1, the Euclidean Table is given by

k |z yk Sk ag
211 0 4k + 3 -
alo 1 2%+45 -
01 1 2%-j+3 1
112 3 3j-2%—-6 2
203 4 4k—4j4+9 1

and Ks (a,p) < y2 + s2 = 4 + 4k — 45 + 9 < 4k — 4 (%&415) 13 = &L which
is less than or equal to k + 3 for every k£ > 3.
b) For 256 < j < kH18 we divide the cases:
«If k= 3m+1, then p = 12m + 7 and 2m + 2 < j < 18742l
s+ When j = 2m + 2, Then K> (a,p) =5 < k + 3 by the Euclidean Table

below.

k| zp yk Sk a
211 0 12m+4+7 -
-110 1 8nm+4 -
0|1 1 4m + 3 1
11 2 dm+1 1
212 3 2 1

#* When j = 2m+3, K3 (a,p) = 4m+3 = [B] +1 by the Euclidean Table
below.

k| ze yk Sk a
211 0 12m+7 -
-110 1 8n+5 -

01 1 4m+2 1

112 3 1 2

** When j =2m +4, Ko (a,p) <y2+5=3m+2<3m+4=k+3.
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x* When j =2m+5, K3 (a,p) < y2+ S2 <3(47m)+1+6= Lm?'& which

is less than or equal to 3m + 4 = k + 3.

k Tk Yk Sk g
201 0 12m+47
-110 1 8m+7 -
0|1 1 4m 1
1|2 3 7 2

k |z Yk Sk ag
2101 0 12m+7 -
-110 1 8dm+6 -
01 1 dm+1 1
112 3 4 2
212m+1 3m+1 1 m

+* When 2m + 6 < j < 18721 the Euclidean Table is given by

k|zp wr Sk ag
211 0 12m+7 -
10 1 6m+j+2 -
01 1 6m—j+5 1
112 3 35—-6m-—-8 2

and K3 (a,p) < ya2 + s2 <3<

6m—7+5
3j—6m—8

)+1+3j—6m—9. Note that

attains maximum at j = 2m—+6 and 35 —6m—9 attains maximum at j =

bm—j+5

m—_8

_ 18m+421
.

Thus K3 (a,p) < 3 (4252) +1+3 (B2L) —6m—9 < 2047449 and this is always

10
less than or equal to 3m + 4.

x*Ifk=3m+2,thenp=12m+ 11 and 2m +3 < j < _18m7+27‘
*xx When j = 2m + 3, then K (a,p) =4 < k + 3.

k|xp wi Sk a
211 0 12m+11 -
-110 1 8m+7 —
011 1 4m + 4 1
11 2 dm + 3 1
212 3 1 1
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+x When j = 2m +4, Kz (a,p) =4m+4 = [§] + 1.

k|z, yr Sk ay
211 0 12m+11 -
-110 1 8m+ 8 -
011 1 4dm + 3 1
12 3 2 2

s« When j = 2m + 5, K2 (a,p) < g2 + 52 < 3(4F2) +1 44 = 12m23
which is less than or equal to 3m + 5 =k + 3.
k |z yk Sk a
201 0 12m+11
-110 1 8qm+9 -
011 1 dm + 2 1
112 3 5 2
x* When j = 2m + 6, Ko (a,p) < y2 + 52 < 3 (4m+1) +14+7= 12”?67
which is less than or equal to 3m + 5 = k + 3.
k |z yk Sk ak
211 0 12Zm+11
-11]0 1 8m+10
011 1 dm+1 1
112 3 8 2
** When 2m + 7 < j < 181427 the Euclidean Table is given by
klzy yk Sk ag
211 0 12m + 11
-110 1 6m + j+ 4
01 1 6m—j+7 1
112 3 3j—-6m—-10 2
and K3 (a,p) S ya+s2 <3 (aﬁigmﬁo) +143j—6m —11. Note that 32"~
attains maximum at j = 9m +7and j < 18m7+27_ Thus Ko (a,p) <3 (41_T) +

1+3( Bm.iQ)
3m+5=Fk+3.
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6m — 11 < 216m+121

and this is always less than or equal to



ELASTICITY AND THE EUCLIDEAN TABLE

(iv) a =3k +j: Ko(a,p) <yo+so=k—j+2<k+3.

k| 2k Sk ay
211 0 4k + 3 —
alo0 1 3k+j -
0l1 1 k—j+3 1

This completes the proof.

11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97

Appendix A. Computation of T2 (p) for 5 < p < 97

Y2 (p)
{2,3}
{2,3,4}
{2,3,4,5,6}
{2,3,4,5,7}
{2,3,4,5,6,7,9}

{2,3,4,5,7,10}
{2,3,4,5,6,7,8,9,12}
{2,3,4,5,6,7,8,9,10,11,15}
{2,3,4,5,6,7,8,10,11, 16}
{2,3,4,5,6,7,8,9, 10, 13,19}
{2,3,4,5,6,7,8,9,10,11, 14, 15, 21}
{2,3,4,5,6,7,8,9,11, 13, 15, 22}
{2,3,4,5,6,7,8,9,10,11,12, 14, 16,17, 24}
{2,3,4,5,6,7,8,9,10,11,13, 14, 18,19, 27}
{2,3,4,5,6,7,8,9,10,11,12, 13, 14, 15,17, 20, 21, 30}
{2,3,4,5,6,7,8,9,10,11,12,13, 14, 16, 21, 31}
{2,3,4,5,6,7,8,9,10,11,12, 13, 14, 15,17, 19, 23, 34}
{2,3,4,5,6,7,8,9,10, 11,12, 13, 15, 16, 18, 20, 24, 25, 36}
{2,3,4,5,6,7,8,9,10,11,12, 13, 14, 15,17, 19, 25, 37}

9
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