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VIA THE EUCLIDEAN TABLE 
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(Communicated by Stanislav Jakubec) 

A B S T R A C T . This paper continues the s tudy begun in [GEROLDINGER, A.: 
On non-unique factorizations into irreducible elements II, Colloq. Math. Soc. 
Janos Bolyai 51 (1987), 723-757] concerning factorization properties of block 
monoids of the form &(Zn,S) where S = { l , a } (hereafter denoted £%a(n)). We 
introduce in Section 2 the notion of a Euclidean table and show in Theorem 2.8 
how it can be used to identify the irreducible elements of &a(n). In Section 3 
we use the Euclidean tab le to compute the elasticity of &a(n) (Theorem 3.4). 
Section 4 considers the problem, for a fixed value of n, of computing the com­
plete set of elasticities of the £%a(n) monoids. When n = p is a prime integer, 
Proposition 4.12 computes the three smallest possible elasticities of the £%a(p). 

©2007 
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1. Introduc t ion 

This paper continues the study begun in [8] and continued in [2], [7] and [12] 
concerning factorization properties of block monoids of the form S%(^Ln, S) where 
S = { l , a} (hereafter denoted SSa(n)). To set the stage for the reader, we open 
with some basic definitions and a general description of the problem area, before 
reviewing our specific results. 

Given an abelian group G and S C Go = G \ {0}, let &(G, S) be the free 
abelian monoid with basis S. An element B in J^(G, S) is called a sequence and 
the total number of times that each element g G S appears in B is called the 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 20M14, 20D60. 
K e y w o r d s : block monoid, elasticity of factorization, non-unique factorization, minimal zero-
sequence. 
Par ts of this work are contained in the first author 's Doctoral Dissertation wri l ten at the 
University of North Carolina at Chape l Hill under the direction of the third author. 
Par t of this work was completed while the second author was on an Academic Lecive granted 
by the Trinity University Faculty Development Committee. 
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multiplicity of g in B, denoted as vg(B). Each sequence B then has a unique 
representation of the form B = \\ gva(B\ The following are some of the basic 

ges 
notions to be considered: 

• For G finite, the cross number k(B) := ^ y , . 
ges m 

• C e &(G, S) divides B, if vg(C) ^ vg(B) for every g e S. 

• The length of £ : \B\ = £ ^g(B) £ N. 
ges 

• The swm of B: a(B) = £ vg(B)g. 
ges 

The monoid homomorphism 

a:^(G,S)->G, a( ]J g"*W J = ]TU,(£)g 
Vges / ges 

maps a sequence to the sum of its elements. Note that ker(cr) forms a submonoid 
of &(G,S). A sequence B is called a block, if o~(B) = 0, equivalently, if B G 
ker(O-). Let SS(G,S) denote ker(O-), the set of all the blocks in &(G,S). It is 
called the block monoid over G determined by S (see [9] for more information 
on block monoids). Note that the empty block 1 = \\ g° £ ^(G) acts as the 

ges 
identity in SS(G,S). A block B is said to be irreducible if any block C that 
divides B is either the empty block or itself. 

The reader should note that block monoids are a central tool for investigating 
the arithmetic of general Krull monoids (see [10, Chapter 6]). The following 
related questions concerning arithmetical invariants associated to a block monoid 
over a finite abelian group G have been studied in the literature. 

1) The set of all cross numbers W(G) = {k(S) : S G &t(3S(G))} (see [4]). 

2) The system of all sets of lengths &(G) = {L(B) : B e SS(G)} (see [10]). 

3) The set of all elasticities {p(L) : L e &(G)} (see [3]). 

4) The set A*(G) = {minA(^ (G 0 ) ) : G0 C G with p(SS(G0) ^ 1} 
of differences in long sets of lengths (see [10, Chapter 6.8]. 

Our main interests in the study of block monoids are twofold. The first is 
to determine all the irreducible blocks of SS(G,S). The second is to consider 
factorizations of blocks as a product of irreducible blocks. Such a study requires 
the following definition. The elasticity of SS(G, S) is defined as 

p(SB(G,S)) = s u p { ^ : S i . . . Bn = C1... C m 

with each Bi and Cj irreducible in SS(G,S)} 
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and measures the degree of non-uniqueness in factorizations of the monoid. A 
wide array of the recent mathematical literature has considered problems related 
to elasticity in both monoids and integral domains. The interested reader can 
find more information concerning elasticity in [1] and [11], while [5] is a good 
reference for problems in general in the area of non-unique factorization. More­
over, two recent papers by S c h m i d ([14] and [15]) explore questions related 
to non-unique factorizations specifically in block monoids. 

It has been shown that the elasticity of 3S(G,S), or at least certain upper 
and lower bounds for it, can be obtained by considering the cross number ([6, 
Corollary 1.7]). In particular, for those block monoids -^(Zpn, S) with p a prime 
integer, the elasticity is given by the minimum cross number (see [7]). Our spe­
cific interest here is in the case where G — Z n and S is a subset of two elements 
of the form { l , a} with gcd(a, n) = 1 (for simplicity, we denote such a block 
monoid by 3Sa(n)). In [8], G e r o l d i n g e r studies the irreducible elements of 
jSa(n) and the associated sets of lengths for their general blocks, using contin­
ued fractions. In [2], A n d e r s o n and C h a p m a n study elasticities in the 
particular case where n = pk is a power of a prime. They show that if k = 1 
and p(SSa(p)) ^ 1, then p(SSa(p)) > - ^ - . The case where p = 2 and k > 1 has 
been recently studied in greater detail by K a 11 c h e e in [12]. C h a p m a n and 
S m i t h in [7] develop a method, distinct from that of [8] for determining the 
irreducibles of SSa(n) using the Euclidean Division Algorithm. 

Following the introduction, the results of this paper are broken into 4 sections 
and can be summarized as follows. We expand upon G e r o l d i n g e r ' s study 
of continued fractions in [8] and in Section 2 introduce the notion of a Euclidean 
table. We show in Theorem 2.8 how it can be used to identify the irreducible 
elements of 3Sa(n). In Section 3 we use the Euclidean table to compute the 
elasticity of SSa(n) (Theorem 3.4). Section 4 considers the problem, for a fixed 
value of n, of computing the complete set of elasticities of the SSa(n) monoids 
(which we denote by T2(n)). When n = p is a prime integer, Proposition 4.12 
computes the three smallest possible elasticities of the 3Sa(p)> Section 5 contains 
a detailed proof of Proposition 4.12. 

2. The irreducibles and the Euclidean table 

In this section, we consider the irreducible blocks in the block monoid 3S(G, S) 
where G = Z n and S is a subset of two elements of the form {a, b} with 1 < 
a < b < n such that gcd(a, b, n) = 1. In [8, Proposition 5], it is shown that 
there exist n' £ Z and 1 ^ a' ^ n' — 1 such that gcd(c, n') = 1 and that for 
S' — {1, a'} C Zn / , S$(G, S) is isomorphic to <^(Zn/, S'). Thus, we may restrict 
our attention to the block monoids of the form ^ ( Z n , {1, a}) with gcd(a, n) = 1. 
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Following the notation in [7], we denote the block monoid of this type as 3Sa(
n)i 

that is 

3Sa(n) = {luav : where u,v > 0 and u + av = kn with k ^ l } . 

The irreducible blocks in SSa(n) have been previously studied. We first present 
two previous methods for describing the irreducibles. 

M e t h o d I: In [8], G e r o 1 d i n g e r provides a description of the irreducibles in 
SSa(n) using the continued fraction of - , where q G {1, 2 , . . . , n — 1} is minimal 
such that aq + 1 = 0 (mod n). Let [b0, &i , . . . , bm] be the continued fraction of 
^ with the convergents 2i, i = 1, 2 , . . . , m and set p _ 2 = 0, p__ = 1; g_2 = 1, 
q_± = 0. For each N E N, he defines the integer mN = [N • - ] + 1 and the 
block B(mN) in 3Sa(n) with v1(B(mN)) = mN for which the multiplicity of a 
is minimal. With these notations, he proves the following. 

PROPOS ITION 2.1. 

(1) ([8, Proposition 8]) A block B e 3Sa(ri) not equal to ln oran is irreducible 
if and only if B = B(mN) for some N e { 0 , 1 , . . . , q - 1}. 

(2) ([8, Proposition 10]) Let N e { 0 , 1 , . . . , q - 1}. Then B(mN) is irreducible 
if and only if N is in one of the following two forms: 

([) N = gj_i + Cjqj with 0 < Cj < bj+i- 0 ^ j < m with j even. 
(ii) N = qj with j = — 1 or 0 ^ j < m with j odd. 

We note that in (i), each of those j ' s with bj+1 = 1 does not yield any value 
of N. Note also that j = — 1 in (ii), which corresponds to the irreducible block 
l1*^, is not included in the original theorem. 

Example 2.2. Consider _#8(19). Note that q = 7 and [2,1, 2, 2] is the continued 
fraction of y with the convergents f, f, §; y • Below is the list of N for which 
B(mN) is irreducible, the value mjv, and the block B(mN): 

N = qi+q2 = 4: m 4 = [ 4 . ^ ] + l = l l l1 1^1 

N = o_i = 0 m 0 = [0 • f ] + 1 = 1 l 1^ 7 

N = gi = l mi = [1 • f] + 1 = 3 1382 

These three with the two trivial irreducibles l 1 9 and 819 give all the irreducible 
blocks in «£?8(19). 

Method II: The second method by C h a p m a n and S m i t h (in [7]) provides 
a different description of the irreducibles in £Sa(n) using the Euclidean Division 
Algorithm for n and a. They classify the irreducibles into two types as follows. 

Type 1 luav with 0 ^ u < a. 

Type 2 luav with a ^ u ^ n. 
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They then give the condition, distinct from G e r o l d i n g e r ' s , for a block to be 
irreducible of each type. 

PROPOSITION 2.3 . ([7, Theorem 2.1]) 

a) Vkaqk is irreducible of Type 1 if and only if r^ < ri, whenever i < k, 
where n-k = a-qk + rk is the Euclidean division for values of k, 1 ^ k ^ a. 

b) luav is irreducible of Type 2 if and only if u + av = n and 0 ^ v <, [^]. 

Example 2.4. We revisit our earlier example ^8(19) . Consider the divisions 

1 x 19 = 8-2 + 3 <— 
2 x 19 = 8-4 + 6 
3 x 1 9 = 8 - 7 + 1 <— 
4 x 19 = 8-9 + 4 
5 x 19 = 8-11 + 7 
6 x 19 = 8-14 + 2 
7 x 19 = 8-16 + 5 
8 x 19 = 8-19 + 0 <— . 

The criteria for Type 1 irreducibles then yields 1382, P S 7 , and 1198°. Type 2 
irreducibles are 1198° and I 1 1 ? 1 . 

Our main theorem translates G e r o l d i n g e r ' s result in terms of the con­
tinued fraction of ^ . Before introducing our result, we first set up the main 
computational tool, namely, the Euclidean Table. As is well known, the Eu­
clidean Algorithm applied to two given positive integers, n and a, is a very 
efficient tool to compute the gcd(a, n) and also to calculate the continued frac­
tion of - . We describe our notation, which is standard — except we avoid p's 
and g's for convergents and r 's for remainders so as not to cause confusion with 
the calculation done in [8]. 

D E F I N I T I O N 2.5. Given n, a with 1 < a < n and gcd(a, n) = 1, we define finite 
sequences, {a/J (for k ^ 0) and {xk}, {y/J; {$k} (for k ^ —2) recursively as 
follows: 

(1) For k ^ 0, ak = l^2-] with s_2 = n, s_i = a. 

(2) sk = sk-2 - ak ' Sk-i for k ^ 0. 

(3) X-2 = 1, x-i = 0 and Xk = Xk-2 + ak • Xk-i for k ^ 0. 

(4) y-2 = 0, y-i = 1 and yk = yk-2 + ak • yk-i for k ^ 0. 

By the assumption gcd(a, n) = 1, the recursion will continue until one gets 
Sk-i = 1 and Sk = 0. Let m denote the last index of the continued fraction of 
- such that Sm-i = 1 and s m = 0. Note that the indexing (starting at —2) is 
simply to provide the standard indexing on the continued fraction. We note the 
following facts. 
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Remarks 2.6. 

(1) The continued fraction of ^ is [ao, a i , . . . , a m ] . 

(2) The convergents are ---, - - - , . . . , ^ = - . 

(3) We have XQ < X\ < • • • < x m = a and y$ < y\ < • • • < ym n. 

(4) We also have a > s o > - - - > s m _ i = l (the remainders). 

(5) For all k ^ 0, Xkn - y^a = (—l)hSk. 

In our main theorem, we require that the length of the continued fraction be 
odd, which can be always done as follows: Let [ao, a i , . . . , am] be the continued 
fraction of - minimal in length. Minimality in length implies that a m > 1, since 
otherwise (that is if am = 1), it can be reduced to [ao, a i , . . . , a m _i + 1], which 
is shorter in length. If m is even, then the length of the continued fraction is 
odd and hence we are done. Suppose now that m is odd so that the continued 
fraction has even length. We take [ao ,a i , . . . , a m — 1,1] which still gives the 
continued fraction of - and is in odd length as desired. We call the continued 

a ° 
fraction in odd length obtained in each case the odd continued fraction of 
and denote it as [ag, a j , . . . , amo]. In a similar manner, we can always make the 
continued fraction of — in even length. Call this the even continued fractioi 
of ^ and denote it by [a§, a\,..., a m e ] . Let {_|}, {ye

k}; {se
k} and {_£}, {y°k}: 

{sk} respectively denote the corresponding sequences determined by even and 
odd continued fraction. It is easy to see that if m is even, the odd continued 
fraction of ^ will be the same as the original continued fraction [ao, a i , . . . , a- ] 
and the even continued fraction of - will be [ ao , a i , . . . , a m — 1,1] such that 
me = ra+ 1, a\ = ak\ sk = Sk for every fc ^ me - 2 , ae

ne_1 = a m - 1; se
7le_1 — 1 

and am e = 1; s m e = 0. Similarly, if m is odd, the even continued fraction of ^ 
will be the same with the original and the odd continued fraction of - will be given by [ a 0 , a i , . . . , a m -
fc ^ m° — 2, a iLoi = ari 

1,1] SUCh that 777° =771+1, 
— 1- s° 1 and a°0 = 1; 

ak] s°k = sk for every 
, = 0 . 

We now introduce the Euclidean Table. For ease of notation, we will occa­
sionally omit the superscripts as in the following definition, if it does not cause 
any confusion. 

k Xk Уk Sk CLk 

-2 X-2 У-2 n -

-1 X _ i У-l a 
0 X 0 Уo SQ a 0 

1 „ 1 2/i Sl ai 
2 X2 2/2 S2 CL2 

m 
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D E F I N I T I O N 2.7. Let [ a 0 , a i , . . . , a m ] be the odd continued fraction of % and 
{xk}, {yk}] {sk} the corresponding sequences defined as in Definition 2.5. The 
table formed above is called the Euclidean Table for n and a. 

We proceed to show that the irreducible blocks in SSa{n) can be easily ob­
tained from this table. 

THEOREM 2.8. Let [ag, a ° , . . . , a^ 0 ] be the odd continued fraction of ^ and let 
{sk}, {x°k} and {yk}, for k = - 2 , - 1 , . . . , ra° be the corresponding sequences 
described as in Definition 2.5. Then B = luav G 38a(ri) is irreducible for exactly 
the following values of u. 

u = 
tk • sk+1, 0 ^ tk < ak+2, —2^k^m° — 2 with k even. 

For each of these u, the corresponding v and r for which T -n = av-\-u are given 
by 

V = У°k + tk • Уk+l, 

т = xk +tk • xk+ï, 

-2 ^ k ^ m° — 2 with k even or v = y^o'i 

-2 ^ k ^ m° — 2 with k even or r = x°a. 

Example 2.9. We again consider the block monoid ^ 8 ( 1 9 ) . The odd continued 
fraction of -^ is [2; 2,1,1,1]. The Euclidean Table for 19 and 8 is given below 

k Xk Уk Sk a-k 

-2 1 0 19 -
-1 0 1 8 -
0 1 2 3 2 
1 2 5 2 2 
2 3 7 1 1 
3 5 12 1 1 
4 8 19 0 1 

and ^ s (19) has the irreducible blocks, 

k = -2 U = l9-St for 0 ^ t < 2 -> TlЭgO.Jllgl 

k = 0 u = 3-2t for 0 ^ t < 1 -> J3g2 

k = 2 u=l-t for 0 ^ t < 1 -> P 8 7 

k = 4 u = 0 —> ï°819. 

The rest of the section will be devoted to the proof of Theorem 2.8. As we 
are translating G e r o l d i n g e r ' s result in terms of the continued fraction of ^ , 
we first recognize the relation between the continued fraction of - and that of 
- , where q is the value described at the beginning of Section 2 in Method I. The 
following lemma is an elementary exercise in continued fractions (see [13, p.26, 
Exercise 7]). 

421 



SOOAH CHANG — SCOTT T. CHAPMAN — WILLIAM W. SMITH 

LEMMA 2.10. ([13]) If [ an ,a i , . . . , a m ] is the continued fraction of ^ . then 
[am, a m _ i , . . . , an] is the continued fraction of 

a) - . where q is the least positive integer with aq -f- 1 = 0 (mod n), when m 
is odd, and 

b) ^ . where b is the least positive integer with ab — 1 = 0 (mod n), when m 
is even. 

LEMMA 2.11. Let [ ao ,a i , . . . , a m ] be the even continued fraction of ^ and {sk} 
be the corresponding sequence of the remainders. Let -̂ - denote the convergents 
for the continued fraction [am, a m _ i , . . . , ao] of - with p _ 2 = 0; p-\ — 1. Then 
for each j = - 2 , - 1 , 0 , . . . , m. p3 = sm_^_2 . 

P r o o f . By assumption, p-2 = 0 = sm = sm_(_2)_2 and p_i — 1 = sm_i — 
5m_(_i)_2 . Suppose that the result holds up to j — 1. Then 

Pj = Pj—2 H~ am—j • pj—i = sm—j +• am—j • sm—j—\ 
= Sm—j — 2 ^m—j ' Sm—j — 1 i &m—j ' ^m—j — 1 Sm—j—2-

a 

We also need the following result. 

PROPOS ITION 2.12. ([8, Proposition 9]) 

3 3 

a) If N = J^ QO; u>i£7i 0 ^ 2/c ^ j < m aria7 c2fc > 0. £ben [TV • - ] = J^ c ^ -
i=2k q i=2k 

3 
b) If N = ^ c ^ Hji6/i 0 ^ 2 k - f - l ^ ; j < m and c2/c+i > 0. then 

i=2k+l 
3 

__ C i P i - 1 . 
i=2k+l 

P r o o f of T h e o r e m 2.8. Note that our theorem requires an odd continued 
fraction of ^ , while Proposition 2.1 does not require any condition on the length 
of the continued fraction of - . We will begin with the even continued fraction 
of ^ with which we can rewrite G e r o l d i n g e r ' s result using the previous two 
lemmas. We then will convert the result in terms of the odd continued fraction. 
Let [ag,af,. . . , a m e ] be the even continued fraction of ^ and let bj = a m e _ r 

Then by Lemma 2.10, [bo, bi, • • •, bm] gives the continued fraction of - . We 
know that an irreducible block ^ l n or an in £3a(n) is of the form B(mjsi), 
where m^ = v\(B(m^)) by Proposition 2.1. In order to prove the theorem, we 
will first show that the list of m^ provided in Proposition 2.1, with 1 and n 
added, is identical to that of it in Theorem 2.8. Using Proposition 2.1 and 2.12, 
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m;v with 1 and n excluded, is described as follows. 

+ 1 лr П 

mjү = N • — 

iPj-i + Cj • p j , if 0 < Cj < bj+i, 0 ^ j < me with j even 

Pj, if j = — 1 or 0 ^ j < me with j odd. 

We rewrite (1) in terms of ak and sk using Lemma 2.11 and obtain 

5 m e - j - l + Cj ' S m e - j -2> if 0 < Cj < ame_j_1, 

mN = < 0 ^ j < me with j even (2) 

< 5 e
n e _ j _ 2 , if j = - 1 or 0 ^ j < m e with j odd. 

Note that if j is even, m e — j — 1 is even and if j is odd, m e — j - 2 is even also, 
since m e is odd. Thus (2) can be simplified to 

{ si + Ck • 4 _ i , if 0 < Ck < at: 0 ^ k < m e - 1 with fc even 

s6., if 0 ^ k ^ m e — 1 with k even 

= 5^ — Ck • se
k_l, if 0 ^ Ck < a6,; 0 ^ k ^ m e — 1 with fc even 

= s%_2 — a% • se
k_1 + Ck • sjt_i, if 0 ^ Cfc < a6,; 0 ^ k ^ m e — 1 with k even 

= se
k_2 - tk • S/c-i, if 0 < tk = a% - Ck ̂  a | , 0 ^ k ^ m e - 1 with fc even 

= s% — tk • 8fc+i, if 0 < tfc ^ ^ + 2 , —2 ^ k ^ m e - 3 with /c even. (3) 

To rewrite (3) in terms of the odd continued fraction of ^ , we divide into cases 
according to the length of the original continued fraction of ^ . Suppose first 
that it is even. Then the even continued fraction is the same as the original 
and the odd continued fraction is given by [ag, af, • • •, ame — 1,1]. That is, with 
m° = me + 1, a°k = ak for k ^ m° — 2, a^ 0 _i = ame — 1 and am 0 = 1. And 
accordingly, s°k = s6, for k <, m° — 2. Thus (3) becomes 

mN = $1 — tk • 8£+i, 0 < tfc < al+2i —2 ^ k ^ m° — 4 with k even. (4) 

Recall that this list misses n = s°_2 and 0 == smo each of which corresponds to 
the block l n a ° and l ° a n respectively. To include s_2 to the list, we modify the 
inequality 0 < tk ^ a£ + 2 to 0 ^ tk < a°k+2 (excluding a£ + 2 to avoid repetition). 
Doing so, we lose smo_2 . Allowing k to be m° — 2 will take care of the problem, 
since a? o_2)+2 = am 0 = 1 and hence t m o_ 2 with 0 < trno_2 < 1 can only be 0 
whose corresponding value of myv is smo_2- Finally, by adding sm 0 to (4), we 
obtain the complete list of the multiplicities of 1 for the irreducible blocks in 
@a(n): 

{ Su—tk- s2 . i, 0 ^ tk < a°k , o, - 2 ^ k ^ m° - 2 with k even , N * «,-i-i «,-r-. (5) 

5 m ° 
and this gives exactly the same set of values of u in Theorem 2.8. 
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Now we suppose that the continued fraction of ^ is in odd length. Then the 
odd continued fraction is the same as the original and, hence the even continued 
fraction is of the form [ag, a j , . . . , am0 — 1,1]. Thus with m e = m° + 1 ak = a°k 

for k ^ m e — 2, ame_\ = am0 — 1 and ame = 1 and accordingly, sk = sk for 
k ^ m e — 2. Then (3) becomes 

( Sk —tk ' S%+V 0 < tfc ^ 0°k+2-> 

for — 2 ^ k ^ m e — 5 = m° — 4 with k even 
5m°-2 - *m°-2 • sm°-i> 0 < tfc ^ a°mo - 1, for A; = m e - 3 = m° - 2. 

(6) 
Allowing tmo_2 = amo to the second line of (6) yields 

mN — 5
m ° - 2 ~~ tm°-2 ' smo_ii 0 < tmo_2 ^ am0 

by which 0 has been added to the list. This is because smQ_2 = amo and 
smo_i = 1 by (3) in Definition 2.5 and hence with tmo_2 = am0, mN = sm0_2 — 
am° * sm°-i = am° ~ a°m° = 0- Now (6) becomes 

mjv = s°k— tk'Sk+i, 0 < tfc ^ dk+2-> f° r —2 ^ fc ^ m° — 2 with k even. (7) 
It remains to add n = s°_2 to the list. This can be done, as in the first case, by 
modifying the inequality 0 < tk ^ ak+2 m (7) to 0 ^ ^ < ak+2. As a result, we 
obtain 

tk ' sfc+i5 0 ^ tk < a>k+2i —2 ^ fc ^ m° — 2 with k even mN {í 
which is identical to (5). This proves the part of the theorem that describes 
values of u. 

To prove the statements on the values of v and r , we divide the argument 
into cases. For ease of description, we let [an, a i , . . . , am] be the odd continued 
fraction of ^ . We know that when k = —2, the corresponding value of u is given 
by s_2 — t • s-i = n — at, for 0 ^ t < a0. Note that y-2 + t • H_i = t. For each 
0 ^ t < an, we have n = at+(n —at) = a- (y_2 + t-y-\) + u. Since t < a0 = [^], 
we have a ^ u. Thus, by Proposition 2.3, each t yields the Type 2 irreducible 
l^a^ with u = S-2 — t • s-i and v = y-2 +1 • y-\. The corresponding value of 
T is 1 which is equal to x_2 + 1 • ~_i as desired. Now consider the case where 
0 ^ k ^ m — 2 with k even. By 5 in Remarks 2.6, we have 

xk • n = a • yk + sk (8) 

xk+i-n = a-yfc+i-Sfc+i. (9) 

Multiplying (9) by tk and adding it to (8) yields 

(xk + tk • xk+i)n = a(yk + tk • yk+i) + (sk ~ tk • Sfc+i), 0 ^ tk < ak+2. (10) 

Notice that (10) yields the block l^a^ with u = Sk — tk • Sk+i, which has been 
shown to be irreducible. The corresponding v and r are given respectively as 
v = yk + tk - 2/fc+i and r = Xk + tk • Xk+i as desired. Lastly, when k = m, (8) 
becomes n • a = a • n + 0 which corresponds to the irreducible block l ° a n with 
v = n = ym and r = a = xm. This completes the proof. • 
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The value of the description of the irreducibles given in Theorem 2.8 is related 
to simplicity and the well-known computational efficiency of the basic Euclidean 
Algorithm. Obviously, the basic calculation can be done quickly by machines 
for very large values of n. Also, we will see in the next two sections how this 
description of the irreducibles using the Euclidean Table provides us additional 
efficient algorithms for determining the elasticity of the block monoid 3Ba(n). 

3. T h e elast ic i ty of 3Ba(n) 

In this section, some of the previous results regarding the general relation 
between the elasticity and the cross number will be reviewed. We will then 
show that the elasticity of the block monoid SSa(n) can be easily obtained using 
the Euclidean Table for n and a. The results of [6] have shown that there is a 
strong connection between the elasticity and the cross number. The following 
proposition describes a lower and upper bound for the elasticity in terms of the 
cross numbers. 

PROPOSITION 3 .1 . ([6, Corollary 1.7]) Given a block monoid 38(G,S), set 

M(S8(G, S)) = max{k(J3) : B is an irreducible block in 3&(G, S)}, 

m(3§(G,S)) = min{fc(B) : B is an irreducible block in 3B(G,S)\. 

Then 

max{M(/^(G, S)),m(3B(G, S))'1} < p(SS(G, S)) < M(SS(G, S))m(3B(G, S))~x. 

We immediately have the following. 

COROLLARY 3 . 2 . 

(i) lfM(9B(G,S)) = \, thenp(@(G,S)) = m(@(G,S))-1. 

(ii) Ifm(SS(G,S)) = l, then p(3S(G,S)) = M(S8(G,S)). 

The elasticity of the block monoid SSa (n) has been studied in [7] where the 
following result can be found. 

PROPOSITION 3.3. ([7, Theorem 3.2]) For each irreducible block B of 3Ba(n), 
k(B) ^ 1. Thus Ma(n) = 1 and p(SSa(n)) = raa(n)_1. where Ma(n) and ma(n) 
denotes M(£3a(n)) andm(SSa(n)) respectively. 

Therefore, to determine the elasticity of 8&a(n), it suffices to compute the 
minimum cross number of the irreducibles. We now describe how to determine 
this minimum value and state a result for the special case where gcd(a,n) = 1. 
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THEOREM 3.4. Given n and 1 < a < n with gcd(a,n) = 1. let I be the first 
integer ^ 0 for which y\ ^ s\ in the Euclidean Table for n and a. Then 

ma(n) = 

and hence 

p(@a(n)) __ ) yi+si 

. yi-г+si-г 

if I is even 

if I is odd 

if I is even 

if I is odd. 

We only need to prove the first part of the theorem for ma(n). Notice that 
for a block B = l^a^ in _^ a (n), the cross number k(B) is given by y ^ , since 
gcd(a,n) = 1. Thus to find the minimum cross number, it is enough to find the 
minimum value of the numerator. This leads us to the following definitions. 

D E F I N I T I O N 3.5. Given a block B in «^(Z n ,5), set 

K2(a,n) :=min{ |_5 | : Be@a(n)}. 

The reader should note under the hypothesis above that \B\ = n • k(B). The 
next Corollary now follows easily from Definition 3.5 and Proposition 3.3. 

COROLLARY 3.6. For n and a as in Theorem 3.4. we have ma(n) = 2y*'— 

and hence p(SSa(n)) = K^a,n)-

P r o o f of T h e o r e m 3.4. Theorem 2.8 provides the description of the irre-

ducibles blocks in 3§a(n). 

Let Bk,tk denote the irreducible block lsk-tksk+i^yk+tkyk+l ^ for Q^tk < ak+2 

and —2^k^m with k even, where [a0, a i , . . . , a m ] is the odd continued fraction 

of - . For each k and tk: we consider 

Kk,tk '•= \Bk,tk\ 

= yk + Sk + tk(yk+i-sk+i), 0 ^tk < ah+2-

Note that Kk,o = yk + Sk- We need to show that iv_(a, n) = IO,o, if ' is e v e n or 
K2(a,n) = -f-z_i,o, if / is odd. Notice that yk is increasing and Sk is decreasing 
and hence yk — Sk is increasing as k increases. By the assumption, it follows 
that yk — Sk < 0, if k < I and yk — Sk ^ 0, if k ^ I. With this in mind, we will 
prove the theorem by dividing it into cases. Suppose first that I is even. For k 
even with k < I — 2, 

Kk,tk = Vk + Sk+ tk(yk+i ~ Sk+i) 

> yk + sk+ ak+2(yk+i - sk+i) (since tk < &k+2] yk+i ~ sk+i < 0) 

= yk+2 + Sk+2 > yk+2 + Sk+2 + tk+2(yk+3 - Sk+3) 

= Kk+2,tk + 2, 

(11) 
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since tk+2 > 0 and yk+3 - sk+3 < 0. Thus Kk,tk is decreasing as k increases up 
to / - 2. For k = / - 2, 

K1-2M-2 = Vi-2 + Sl~2 + U-2(yi-i - si-i) 

> yi-i + si-2 + at(yi-i - si-i) (since t/_i < at; yi-i - s/_i < 0) 

= yi + «z 

which is less than or equal to KiM = yi + si + U(yi+i - sj+i), since U ^ 0; 
yi+i - si+i > 0. For k even with k ^ /, we have 

-Kfc,o = 2/fc + Sife ^ Vk + sk + tk(yk+i - sk+i) (since tk ^ 0; yk+i - sk+i > 0) 

<yk + sk + ak+2(yk+i - sk+i) (since tk < ak+2\ yk+i - sk+i > 0) 

= yk+2 + sk+2 

< yk+2 + Sk+2 + tk+2(yk+3 - Sk+3), (since tk+2 ^ 0; yk+3 - sk+3 > 0) 

= Kk+2,tk+2i 
(12) 

which shows that Kk,tk is increasing as k increases from /. Hence i\~2(a,n) = 
K^Q = yi + si. Suppose now that / is odd. A similar argument shows that (11) 
holds for every k even with k < I — 1 and (12) holds for k even with k > / + 1. 
Thus Kk,tk is decreasing as k increases up to / — 1 and is increasing as k increases 
f romZ+' l . When k = I - 1, 

Ki-1,0 = yi-i + si-i < yi-i + si-i + *z-i(2/z - si) (since ^_ x > 0; yx - 5/ ^ 0) 

< yi-i + si-x + al+1(yi - st) (since t/_i < aj+u 2/z - «z ^ 0) 

= H/+i + Si+i 

< yi+i + si+i + ti+i(yi+2 - S1+2) (since ti+1 ^ 0; yl+2 - st+2 > 0) 

= Kt+1M+1. 

Thus K2(a,n) = ivT/_i?0 = yi-i + sz-i- • 

For an atomic monoid H which contains a nonunit and some k G N, we set 

pk(H) = s u p { s u p L : L e JSf(-ff), minL < k} G NU{oo}. 

Using p/c, here is a further interpretation of the invariant K2(a,n) which may 
be of interest. 

LEMMA 3.7. Let n e N>2, a e [ l ,n - 1] with gcd(a,n) = 1 and K2(a,n) = 
min{ |£ | : B <G 3$a(n)}- Then 

Pk(&a(n)) < kp(38a(n)) < kn 

K2{a,n) 
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for every k G N. Moreover, there is some N G N such that 

knN 
pkN(^a(n)) 

K2(a,n) 

for every k G N. 

P r o o f . The first inequality follows from [10, Theorem 3.4.10.4] (with H 
S8a(n)). Since 3Ba(n) is finitely generated, it has accepted elasticity, and hence 
1he second assertion follows from [10, Proposition 1.4.2.3] and Corollary 3.6. • 

Our next example illustrates an application of our results. 

Example 3.8. Consider ^?605(2116). There are more than 100 irreducibles in this 
monoid. However, the elasticity —n

7^- = ^ ^ is obtained immediately by using 
Theorem 3.4 and the Euclidean Table below. 

k Xk Уk Sk öfc 
-2 1 0 2116 
-1 0 1 605 
0 1 3 301 3 
1 2 7 3 2 
2 201 703 1 100 
3 404 1413 1 2 
4 605 2116 0 1 

Next, we will consider the case where a and n are not necessarily relativeh 
prime. As briefly mentioned at the beginning of Section 2, the study of the block 
monoids of the form ^?(Zn , {a, b}) can be reduced to the case where b — 1 and 
gcd(a, n) = 1. This is due to the following theorem by G e r o l d i n g e r . 

PROPOSITION 3.9. ([8, Proposition 5.1]) Given n ^ 3 and 1 a,b <n, I t 

i n - gcd(a, b, n) 

gcd(a,n) -gcd(b,n)' 

Then there exists 1 < a' < n' with gcd(a',n') = 1 such that &(Zn,{a,b}) ^ 
33a.(ri). 

The explicit description of the value a' is given in the proof of the theorem 
(see the proof for details). Applying Theorem 3.8 to the case where b — 1 yields 
a' ~ cd'ta n)' Thus we have the following. 

COROLLARY 3.10. Given n and 1 < a < n, let a' = d? , and n' = d
n

a T . 

Then SSa(n) <=3Ba,(n!). 

Note that gcd(a / ,n /) = 1. Thus the elasticity of £8a>(n') and hence the 
elasticity of 3Ba(n) can be easily obtained by using the Euclidean Table for n' 
and a! by Theorem 3.4. Our goal is to describe the result in terms of n and a, 
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not of n' and a'. Let [an, a i , . . . , am] and [ag, a ' l 5 . . . , a'm] be the odd continued 

fraction of £ a n d si respectively. And let {sfc}, {xfc}; {yk} and {s ' J , {x ' J ; {y 'J 

respectively denote the corresponding sequences for ^ and for ^y. The key is to 

notice that --- = --7 and hence both of the fractions have the same odd continued 
a a' 

fraction. That is, a^ = a'k for every 0 < fc < m. Recall that x'_2 = 1 = x_2 ; 
x'_1 = 0 = x-i and y'_2 = 0 = y_2; y^i = 1 = y~\. Thus, by the recursive 
definition given in Definition 2.5, we must have Xk = x'k and yk = yk for every 
k ^ — 2. Then the Euclidean Table for n and a is the same as the Euclidean 
Table for n' and a! possibly except for the column with the remainders. To see 
how {sfc} and {sf

k} are related, consider the division 
Sk-2 = Sfc-1 ' dk + Sk. 

Let d = gcd(a,n). Since d\(n = s_2) and d\(a = s_i) , d divides so. Then, by 
induction, we know that d divides Sk for every 0 ^ k ^ m. Dividing each side 
of the above division by d, we obtain, 

Sk-2 S f e -1 , Sk , 1 Q x 

— = — -ak + -d- ( 1 3 ) 

Note that Sk < Sfc-i implies -**• < ^ - and hence (13) yields the Euclidean 
division. Since s'_2 = n' = § = ^ and s'_i = a' = § = ^ , we must have 
s'0 = -&, Once again, by induction, s'fc = ^- for every 0 ^ fc < m. We now apply 
Theorem 3.4 to the block monoid &a'(n') and obtain 

K2{a>,n') = \yl + Sf, i f / ;
i S 7 ; (14) 

{Vl-l + Sl-1 l f ^ 1S °dd> 

where / is the first integer such that y[ ^ s\. Note that p(&a(n)) = p(&a>(n')) 

by Corollary 3.9, where each is given respectively by K?an\ and K2^a,n,y Thus 
n 

we have jrf^ = K^a^nt) = y a ( £ , w 0 which implies 

K 2 (a ,n ) = d - K 2 ( a ' , n ' ) . (15) 

With the relation between the sequences described above, we may rephrase (14) 
as follows. 

7̂  / x \dyi + si HI is even 
IV2(a,n) = < 

ydyi-i + sj_i if / is odd, 
where Z is the first integer such that y\ ^ -̂ -. Summarizing, we obtain the 
following. 
COROLLARY 3 .11 . Given n and \ < a < n, let d = gcd(a,n) and let I be the 
first integer ^ 0 for which y\ ^ ^ in the Euclidean Table for n and a. Then 

_\d^Tl if I is even 

U . - . + . . - X гflгsodd. 
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Example 3.12. Let n = 2 9 = 512 and a = 326. Consider the block monoid 
^ 3 2 6 ( 5 1 2 ) . Note that d = gcd(326,512) = 4. The Euclidean Table given below 
shows that yk first exceeds ^ at fc == 1. Thus, the elasticity of 
given by 

?32б(512) is 

512 
4î70+S 0 

512 
8+40 

32 
3 

k Xк Ук Sк ßfc 

-2 1 0 512 
-1 0 1 326 
0 1 2 40 2 
1 5 11 36 5 
2 6 13 4 1 
3 53 115 4 8 
4 59 126 0 1 

4. The complete set of elasticities 

In this section, we will fix a prime p and consider the set of the elasticities of 
&a{p) for 1 < a < p. In general, let T2{JLn) denote the set of the elasticities of 
2$a{n) for 1 < a < n. We know that the elasticity of &a{n) is given by K ? n 

by Theorem 3.4. Hence 

T - (Z«):={ssfej : Ka<n). 
Since n is fixed, T2{%n) is basically determined by the values of K2{a,n) for 
] < a < n. With this in mind, given n, let 

T 2 (Z n ) := {K2{a,n) : 1 < a < n}. 

For ease of notation, we write T 2 (Z n ) = T2{n). 

Throughout this section, we will focus on the case where n = p is a prime. 
Using the algorithm based on Theorem 3.4, T2{p) can be computed fairly fast 
(even for large primes) when run by a machine. Appendix A shows the list of 
T2(p) 'sfor b<:p^97. 

The structure of T2{p) has been studied by C h a p m a n and S m i t h in 
[7] (Min(p) is their notation). They observed that each row of Table 1 begins 
with a string of consecutive numbers followed by a series of 'gaps'. Both of the 
observations, the length of the string and the top values which determine the 
gaps, become of interest. The following are two previous results on each part, 
described in our notation. 

PROPOSITION 4 . 1 . 

(1) ([7, Theorem 4.5]) {2, 3 , . . . , s} CT2{p) for all prime p > s2 - s. 
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(2) ([7, Theorem 4.7]) Letp be a prime and let a be an integer with 3 ^ a < p—1 
anda^-\(p+l). Then K2(a,p) ^ \(p + 4). 

It is observed that 2±± = K2(2,p) = K2(2~x,p) and [&-] = K2(3,p) are 
always in T2(p). [7, Theorem 4.7] verifies that - ^ is given only by a = 2 and 
a = 2 _ 1 = £±I and that for any other a, K2(a,p) ^ [E^-]- Prom this, it follows 
that: 

P R O P O S I T I O N 4 .2 . ([7, Theorem 4.8]) The maximum value in T2(p) is ^ and 

the second largest value is [-^-], forp > 5. 

Before we move on, we provide an alternate proof to Proposition 4.1(1) using 
the Euclidean Table. 

A l t e r n a t e P r o o f of P r o p o s i t i o n 4.1(1). Let t = s — 1 and a = p — t. 
The assumption p > s2 — s is then equivalent to p > t2 +1. This implies that 
f > t + 1 and hence [--=*] = [f - 1] ^ t. Note that t2 ^ t holds for every t > 1 
which, when combined with p > t2 + t, yields p — t > t. Thus, the Euclidean 
Table for p and p — t is given as below 

k Xk Уk S/c Яk 

-2 1 0 P -
-1 0 1 p - í -
0 1 1 í 1 
1 Vт] [?] r [ ^ ] 

and we have yi = [|] > [f — l] ^ £ > r = s i . Hence K2(a,p) = yo + s0 = 
* + l = S. D 

In the rest of this section, we will be investigating further the largest values 
in T2(p). We first consider the case where K2(a,p) = a which is observed in 
K2(-^-,p) = -T£- and for other large values as well. The following proposition 
provides a necessary condition for this to be the case. 

P R O P O S I T I O N 4 .3 . Let a prime p and 1 < a < p be given. If K2(a,p) = a. then 
q + r = a, where p = aq + r is the Euclidean Division. 

P r o o f . We will prove the theorem by showing that K2 (a, p) is given by yo+s0 = 
q + r. The result will then immediately follow. Suppose that K2(a,p) = yi + si, 
for some I ^ 2. Then, in particular, we must have y\ = q[^] +1 < a — r[~] = si 
which implies that (g + r)[^] < a — 1. This is a contradiction, since q + r > 
iv"2(a,p) = a a n d [%]>!. * • 
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Considering Proposition 4.3, we note that combining the division p = aq + / 
and q + r = a yields that a = ~rr[. We will show that every a in this for 1 
yields K2(a,p) = a for certain consecutive values of q under a special conditioi 
on p. Given an integer t ^ 2, set mf = lcm{l, 2 , . . . , t}. Consider the case where 
p = 1 (mod mt). 

LEMMA 4.4. Suppose that p 
(s + l)\(p + s). 

1 (mod ra£). Then for every s < t — 1 

P r o o f . Write p = mtq + 1. Then p + s = mtq + s + 1. Assuming s ^ f - l o i 
equivalently s + 1 ^ t, yields (s + l)\mt and the result follows. • 

PROPOS ITION 4.5. Letp be such that p = 1 (mod mt). Let as - f^-, for e 

1 ^s < t - l . Then K2(as,p) = as. 
ver 

P r o o f . Solving as = fjf forP-> w e obtainp ass + (as-s). Clearly Os-s < Os. 

Note that for t > 4, p ^ mt > t(t - 1) • 2 ^ (s + l )s • 2 = 2s2 + 2s. This implies 

that as — 2s = p+s —2s= p~sli~
& > 0 a n d hence as — s > s. Thus the Euclidean 

Table for p and as is given by 

k xk Уk Sfr ak 

-2 1 0 P 
-1 0 1 as 

0 1 s as - s s 
1 1 5 + 1 s 1 

which shows that K2(as,p) = s + (a s - s) = as. When t = 2, the smallest 
prime p with p = 1 (mod ra2) is p = 3 and the only possible s is 1. This gives 
QS = 2 ± 1 = 2 and we have a s - s ^ s. Forp ^ 5 withp = 1 (mod ra2), as-s > s 
always follows. The Euclidean table for p and as is then in the same form as 
the above and hence K2(as,p) = as. Let t — 3. Then s ^ 2. For p ^ 13 with 
p = 1 (mod 7713), Os — s ^ s always for any s ^ 2 and hence the result follows. 
Now let p = 7. If s = 1, then the corresponding as = Oi — J J J = 4 and so 
Os — s > s holds. Again the Euclidean table for p and as is the same as the 
above and hence the result follows. If s = 2, then as = 3. From the Euclidean 
Table for 7 and 3, we easily obtain K2(as,p) = as. • 

We provide an example which illustrates results in Proposition 4.1 and Propo­
sition 4.5. 
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Example 4.6. Let p = 421. Below is the full set of T2(421). 

T2(421) = {2, 3,4,5, 6, 7, 8, 9,10,11,12,13,14,15,16,17, 18,19, 20, 21, 

22, 23, 24, 25, 26, 27, 28, 29, 30,31,32,33, 34, 35,36, 37, 38, 39, 

40,41,43,44,47,49, 53, 57, 61, 63, 71, 85, 86 ,106,141, 211} . 

Note that 421 = 1 (mod 420) and 420 = ra7. Thus by Proposition 4.5, for 
every 1 ^ s ^ 6, as = ^±£ yields K2(as,p) (those values in bold-face) with 
K2(as,p) = as. These are not the 6 largest values, but do give 6 of the top 
8 values in T2(421). On the other hand, note that every s ^ 21 satisfies the 
condition p > s2 — s. Thus the string of the first twenty values in T2(421) (those 
in italic) are obtained by Proposition 4.1. 

We return to the problem of determining the top values in T2(p). We first 
observe the following, summarizing what gives the two largest values. 

Remark 4 .7. 

(i) For every prime p,p = l (mod 2) and ^y^ + l = [§] + 1 gives the maximum 

value 2±i i n T 2 ( p ) . 

(ii) Given a prime p, either p = 1 (mod 3) or p = 2 (mod 3). In each case, 
£=--- + 1 = [f ] + 1 and ^ + 2 = [f ] + 2 respectively gives the second 

largest value [^^] in T2(p). 

Thus it seems that the first and the second largest values in T2(p) are deter­
mined respectively by what p is congruent to modulo 2 and modulo 3. We will 
write Mod[p, t] to denote the least positive residue of p modulo t. Through the 
next two propositions, we will see that for each t ^ 2, Mod[p, t] yields at least 
one value in T2(p) of the form [|] + r, for some r ^ Mod[p, i\. 

PROPOS ITION 4.8. Given a prime p and an integer t ^ 2 with p ^ t2, 

+ j and + i (iб) 

are always in T2(p) where j = Mod[p, i\. Each is given respectively by a = t and 
_ (f i ) p + j 

u t 

P r o o f . Let p = j (mod t). Since p ^ t2 and t > j , it follows that y0 = ^- ^ 

t 1 ^ j = so in the Euclidean Table for p and t and hence K2(t,p) = ^ j 2 + j , 

as desired. Let a - itzllE±i =p_2=i. T r i e n a - 2=i = -^±1 > 0 due to 

the assumption t ^ 2. Thus the Euclidean Table for p and a is given by 
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k Xk Уk Sk dk 

-2 1 0 P -

-1 0 1 (t - І ) P + J 
t -

0 1 1 t 1 
1 1 t 3 í - 1 

which shows that K2(a,p) - = - + i . D 

In particular, the first part of Proposition 4.8 tells us immediately what 
K2(a,p) is, for every a with a < •yjp. 

COROLLARY 4.9. Given a prime p and a ^ ^/p, K2(a,p) = [2] +Mod[p, a]. 

Example 4.10. Let p = 79. Below is the list of the values in T 2 (79) obtained by 
using Proposition 4.8, for 2 ^ t ^ 6 < [V79]. 

í = 2 79 = 1 (mod 2) 

í = 3 79 = 1 (mod 3) 

í = 4 79 = 3 (mod 4) 

í = 5 79 = 4 (mod 5) 

ŕ = 6 79 = 1 (mod 6) 

79 

T 
79 

3 

+ 1 = 40 

+ 1 = 27 

[ f ] + 3 = 22 
[ f ] + l = 20 

[ f ] + 4 = 19 
[ f ] + l = 16 

7 9 1 + 1 = 14. 

Consider the special case where p = t — 1 (mod t). Then by Proposition 4.8, 
we obtain two values (unless t — 2), [|] + (t — 1) and [^] + 1. Our next 
proposition shows that we may obtain values other than these two. 

PROPOSITION 4.11 . Suppose that p = t — l (mod t). Then for any s\ (t — 1). 

+ 
í - i 

eï 2 W (17) 

and is given by a = ^L—I m 

P r o o f . Note that p + 1 = 0 (mod t) implies t\ (p + 1). For each s| (t — 1), let 

as = g^p^" ^. Then from the Euclidean Table for p and as given below, 
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k %k Уk Sk &k 

-2 1 0 P -

-1 0 1 s ( p + l ) 
t 

-

0 1 t - i p - ( t - l ) t - 1 0 1 
s t s 

1 s t ts J. 
s — Z 

5 

we have Hi ^ s\ and hence K2 (as,p) = 2/o + so — ^ ^ — + ^ as in the 
statement. • 

For instance, in Example 4.10, 79 = 4 (mod 5) yields one more value in 
T 2(79) other than 19 and 16, namely, [^] +--=--- = 17 by Proposition 4.11. 

Thus, for each t, Mod [p, t] yields the values described as in (16) and (17). 
The following list shows these values for 2 ^ t ^ 4. 

List 1 

ť = 2 

í = 3 

ť = 4 

p = 1 (mod 2) 

p = 1 (mod 3) 

p = 2 (mod 3) 

p = 1 (mod 4) 

p = 3 (mod 4) 

+ 1 + 1 

¥ + - = [ § ] + -
1 ^ + 2 = [§] +2 

l E í r + - = [ § ] + -
2Ť 1 + - = [S]+-
í ^ + 3 = [ f ] + 3 
i 2 - 3 + 1 - - [ f ] + 1 . 

Note that considering Mod [p, 12] automatically gives Mod [p, 2], Mod [p, 3] 
and Mod [p, 4]. When we divide the cases according to Mod [p, 12], List 1 can be 
rephrased as follows. 

List 2 

p = 1 (mod 12) 

p = 5 (mod 12) 

p = 1 (mod 2) — [§] + 1 

p = 1 (mod 3) -• [§] + 1 

[p=l (mod 4) - [ | ] + 1 

\p = l (mod 2) -> 

p = 2 (mod 3) -> 

Lp = 1 (mod 4) —*• 
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p = 7 (mod 12) 

p=ll (mod 12) 

rp = 1 (mod 2) 

p.= 1 (mod 3) 

p = 3 (mod 4) 

'p = 1 (mod 2) 

p = 2 (mod 3) 

p = 3 (mod 4) 

Our computation suggests that these are the 3 r d , 4th and 5th largest values in 
T 2 (p). Another aspect suggested by the computation is that for a fixed t with 
2 ^ t ^ 4, [f ] + Mod [p, t] gives the maximum and [f] + 1 gives the minimum 
among the values described in (16) and (17). In other words, the next largest 
value to [f ] + 1 in T 2 (p) seems to be given by [--£--] +Mod [p, t + 1] for t = 2, 3. 
Notice that for t = 2, this has already been verified to hold by C h a p m a n -
S m i t h , since the second largest value [ p p ] in T 2 (p), as mentioned in Re­
mark 4.7(h), is equal to [|] + Mod [p, 3]. A case by case proof establishes that 
it also holds for t = 3 (see Section 5 for the proof). We state the result below. 

P R O P O S I T I O N 4.12. Given a prime p ^ 29 and 1 < a < p, we have either 
K2 (a,p) ^ [§] + Mod \p,4] or K2 (a,p) > [§] + 1. 

The result does not extend to t = 5. Note that p = 1 (mod 60) implies 
p = 1 (mod 12) which yields three largest values as described in List 1. It also 
implies p = 1 (mod 5) which yields 2±-- = [|] + 1 by Proposition 4.8 and this 
is expected to be the next largest value. However, computation shows that 

X e T 2 (P) (1 8) 

and gives the 4th largest value in T 2 (p). It turns out that this is a particular 
example of the following general fact. 

PROPOSITION 4 .13 . Given an odd integer t ^ 5. let p be a prime such that 
p = 1 (mod t) with p > t2. Then 

+ 
t єT 2 (p) (19) 

and is given by a = (^r 1 ) ( ^ T - ) + 1. 

P r o o f . Write p = tq + 1 and let a = (--±1) q + 1. For t > 5, ( - ^ ) q > q + 1 

2 and clearly t > ^ p . Thus the Euclidean Table for p and a is given by 
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k Xk Уk 5/c ûfc 

-2 1 0 P -
-1 0 1 m«+i -
0 1 1 

m«+i 
1 

1 1 2 9 + 1 1 
2 ŕ - l 

2 t - 2 - - ( ¥ ) + i í - 3 
2 

3 í+1 
2 t t - 1 

2 
1 

and I<2 (a,p) = y 2 + s2 = í - 2 + g - ( ^ 1 ) + 1 > - i I t - i 
t "•" 2 

We note that --±-- in (18) is equal to --=--• + --=---, in the form of (19) with £ = 5. 

5. Proof of Proposition 4.12 

The proof will be a case by case analysis with the first two major cases being 
the residue of p modulo 4. 
Case 1 p = 4fc + 1: 
We will assume fc ̂  25 with the finite number of cases fc < 25 easily verified by 
direct calculations (such as in the table in Appendix A). 

There are three subcases required to show that the desired inequalities hold 
for K2 (

a,P) for integers j where a = j (mod fc): 
Subcase 1A 0 ̂  j ^ 5; 

Subcase IB 6^j^ [§]; 

Subcase 1C [§] < j < f c - l . 

Subcase 1A 0 ^ j ^ 5: Each case here is verified by considering the ap­
propriate Euclidean Table. Since the calculations are routine, we only illustrate 
this with one example j = 3. If a = 3 (mod fc), then 

a = 3, fc + 3, 2fc + 3, or 3fc + 3, 

since 2 ̂  a ^ fc — 1. 

(i) It has already been established K2 (3,p) = [|] + Mod [p, 3]. 

For the other values, we get the relevant values from the Euclidean tables as 
follows: 

(ii) For a = fc + 3, y0 = 3; s0 = k - 8, so K2 (a,p) ^ fc — 5 < fc + 1. 

(ІІІ) For а = 2k + 3, y2 ^ 2 (^=1) + 1; s2 < 4, so K2 (а,p) < 4fc+21 ^fc + 1. 
(iv) For a = 3fc + 3, y0 = 1; s0 = k - 2, so K2 (a,p) ^ fc - 1 < fc + 1. 
In all cases, since fc + 1 ^ [4] + Mod [p, 4], we have the desired inequality. 

The other values of j where 0 ̂  j ^ 5 are verified in the same way. 
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Subcase IB 6 ^ j < [§]: 
(i) a = j : Since a = j ^ 6 and Mod [p, a] < a, it follows that K2 (a.p) 

+ Modþ,jK[§] + [f] < 4fc+l x k ^ 6fc+l / JL i i 
6 + ^ ~~6~~ < K + *•• K2(hP)^ 

(ii) a = k + j : K2(a,p) ^ yo +so = k — 3j + 4 ^ k + 1 by the Euclidean Table 

below. 

k Xk Уk •Sfc öfc 

-2 1 0 4fc + l 
-1 0 1 fc+j 
0 1 3 fc - Зj + 1 3 

(hi) a = 2k + j : Note that 6 ^ j ^ [§] implies 6 < j ^ 
Euclidean Table is given by the below. 

2/1+2 
3 ' Then the 

k Xk Уk Sfc ~k 

-2 1 0 4/c + l 
-1 0 1 2 k + j 
0 1 1 2k - j + 1 1 
1 1 2 2 j - l 1 

For 2fc+4 
7 < . < [_], 

2/c-j + l 
2 j - l 

< 

= 2 and Mod [2k - j + 1, 2j -

2/c - 5j + 3. Thus K2 (a,p) ^ y2 + s2 = 5 + 2k - 5j + 3 = 2k - 5j -\ 

2k - 5 ( l i y- 1 ) + 8 = ^ ± ^ and this is less than or equal to k + 1. 

* Consider the case 6 ^ j ^ % r ^ . Note that K2(a,p) ^ y2 + s2 < 

2 (2k

2~^1)+l+2j-2. Since 2k

2~
jji

l attains maximum at j = 6 and 2 j - 2 attains 

maximum at j = ^ , K2 (a J) ^ 2 (&=*) + 1 + 2 ( ^ ) - 2 = 7-^ ^ k + 1. 
(iv) a = 3k + j : K2 (a,p) ^ y0 + so = k — j < k + 1, by the Euclidean Table 

below. 

k xk 2/fc Sk ak 

-2 1 0 4k + l 
-1 0 1 Зk+j -
0 1 1 k-j + 1 1 

Subcase 1C [§] < j ^ fc - 1: 

(i) a = j : Note that [§] ^ 4 , since [£] >- 4*__l k-1 Ҷf̂ Г > 5, for fc ÍC 6 

which is not the case. Also [£] < 11. To see this, we divide into cases. 
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* When k = 3m, p = 12m + 1 and [|] = m and hence [ |] ^ -fcf = 

12m_tl = 1 L 

m+1 

* Similarly when k = 3m + 1, p = 12m + 5 and [ |] = m and hence [ |] ^ 
P 12m+5 i i 

[ S + i тn+1 

Let q = [I]. Note that K2 (a,p) ^ O + Mod [p, a] = O + (4k + 1 - Oj) with 

4k + 1 - qj < j which implies j > 4£±1. Then a + 4k + 1 - qj ^ (q + 1) + 

4fc - 9 ( ^ r ) • Suppose that (q + 1) + 4k - q (^fj ^ k + V Then (q + l ) 2 -

q ( ^ r ) ^ (~3k + 1) (O + 1) which implies q2 - Ok + 3k ^ 0. This will hold for 
k ^ - 1 2 / e ^ q ^ fc+Vfc^-12/c a n d i t i n c m d e s 4 ^ a ^ H . 

(ii) a = k + j : We divide into cases. 

• If k = 3m, then p = 12m + 1 and m + 1 ^ j ^ 3m — 1. 

* When j m • 1, K2 (O,p) = 4 m + 1 - 2=1 + 1. 

к Xk Уk Sfc ßfc 

-2 1 0 1 2 m + l 
-1 0 1 4 m + 1 
0 1 2 4m - 1 2 
1 1 3 2 1 

* When j = m + 2,K2 (a,p) ^y2 + s2^3 {^f2) + 2 + 4 = i ^ M a n d t M s 

will be less than or equal to 3m + 1 = k + 1. 

к Æfc ;Уfc Sk ûfc 

-2 1 0 1 2 m + l -
-1 0 1 4m + 2 
0 1 2 4 m - 3 2 
1 1 3 5 1 

* Suppose that m + 3 ^ j $C 12m+3 

к £fc Уk Sfc ûfc 

-2 1 0 12m + l 
-1 0 1 Зm + j 
0 1 2 бm — 2j + 1 2 
1 1 3 Зj - Зm - 1 1 
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We have K2 (a,p) %y2+s2^3 6 m - 2 j + l 
З j — З m — 1 + 2 + 3 j - 3 m - 2 . Note that 6 m - 2 j + l 

З j - З m - 1 
attains maximum when j = m + 3 and 3j — 3m — 2 attains maximum when 

12m+3 
f ^ . Then K2 (a,p) < 3 (-**=--) + -2f-- = ^f^ < 3m + 1 = k + 1. 

* Suppose that 1 2 r " + 3 < j ^ 3m - 1. 

k f̂c Уfc Sfc Яfc 

-2 1 0 1 2 m + l -
-1 0 1 Зm + j -

0 1 2 6m - 2j + 1 2 
1 1 3 Зj — Зm — 1 1 
2 2 5 9m - 5j + 2 1 

From the Euclidean Table above, we have K2 (a,p) ^ y2 + s2 = 5 + 9 m - 5 f + 2 ^ 

9m-5 (^f^) + 7 = 1 2 m

8

+ 4 1 and this is less than or equal to 3m + 1 = k + 1. 

• If k = 3m + 1 (p = 12m + 5), then m + K j ^ 3 m . 

* When j = m + 1, iv"2 (a,p) = 4m + 3 > 4m + 2 = [|] + 1. 

k Xk 2/fc Sfc 0>k 

-2 1 0 12m + 5 -
-1 0 1 4m + 2 -
0 1 2 4m + l 2 
1 1 3 1 1 

* When j = m + 2, K2 (a,p) ^ y2 + s2 = 3m + 2 = k + 1. 

k Xk Уk S/c &k 

-2 1 0 12m + 5 -
-1 0 1 4m + 3 -

0 1 2 4m - 1 2 
1 1 3 4 1 
2 m Зm — 1 3 m — 1 

* When j = m + 3,K2 (a,p) ^ y2 + s2 < 3 (--^--) + 2 + 6 - i ^ 1 1 by the 
Euclidean Table below and this is less than or equal to 3m + 2 = k + 1. 
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k Xk Ук Sk ciк 

-2 1 0 12m + 5 
-1 0 1 4m + 4 
0 1 2 4 m - 3 2 
1 1 3 7 1 

* When j = m + 4, K2 (a,p) < 2/2 + *2 < 3 ( ^ ) + 2 + 9 = 
is less than or equal to 3m + 2 = k + 1. 

= 1222^95 w h i c h 

k Xk Уk Sk Clk 

-2 1 0 12m + 5 -
-1 0 1 4m + 5 -
0 1 2 4m — 5 2 
1 1 3 10 1 

* When m + 5 ^ j ^ 1 2 7 7 l + 1 5 , the Euclidean Table is given by 

k Xk Ук sk Clк 

-2 1 0 12m + 5 -
-1 0 1 Зm + j -

0 1 2 6m — 2 j + 5 2 
1 1 3 Зj — Зm — 5 1 

and K2 (a,p) ^ 2/2 + ^2 ^ 3 6m-2j + 5 
[3 j-3m-5 

attains maximum when j — m + 5 and 3j 

+ 2 + 3j - 3m - 6. Note that 6 m - 2 j + 5 
Зj— Зm — 5 

3m — 6 attains maximum when 
j = ±2-2Lti5. Then K2 (a,p) ^ 3 ( ^ ) + 2 + 3 ( i ^ f i s ) 

which is always less than or equal to 3m + 2 = k + 1. 

* When 1 2 m

8

+ 1 5 < j ^ 3m, the Euclidean Table is given by 

Зm - 6 = 7 6 " ^ + 1 5 

k #fc Уk Sk ÖA, 

-2 1 0 12m + 5 -
-1 0 1 Зm + j -
0 1 2 6m - 2 j + 5 2 
1 1 3 Зj — Зm — 5 1 
2 2 5 9m - Ъj + 10 1 
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H 12m+15 ) + 1 5 12m+45 and K2 (a,p) ^ y2 + s2 = 5 + 9m — 5j + 10 ^ 9m 
which is less than or equal to 3m + 2 = k + 1. 

(hi) a = 2k + j : We divide into cases. 

© Consider the case where [ |] < j ^ ^ ± ^ . Then the Euclidean Table is given 
by the below. 

k Xk Уk Sk a/c 

-2 1 0 Ak + 1 -
-1 0 1 2k + j -
0 1 1 2k-j + l 1 
1 1 2 2 j - l 1 
2 1 2q + l r 

* For j > - ^ , q = 1 and r = 2k - 3j + 2. Then K2 (a,p) ^ 2g + 1 + r = 

3 + 2k - 3j + 2 < 5 + 2k - 3 ( ^ ^ ) = ^ f ^ and this is less than or equal to 

k + 1. 
* Suppose that [§] ^ j ^ ^ . This implies 2*d_4 ^ j ^ 2/^3 ? s i n c e 

^^ ^ [ | ] . Then q = 2 and r = 2k - 5j + 3 and hence i\T2 (a,p) ^ 2a + 1 + r = 

2k - 5j + 8 ^ 2k - 5 (2*±4) + 8 = ^ ± ^ which is less than or equal to k + 1. 

• Consider the case where 2k£2 ^ j ^ k — 1. 

a) Suppose that 6fc+3 < j ^ k — 1. The Euclidean Table is given by 

к Xk 2/fc Sfc öfc 

-2 1 0 4fc + l -
-1 0 1 2k + j -
0 1 1 2k-j + l 1 
1 2 3 Зj - 2/c - 1 2 
2 3 4 4fc - Aj + 2 1 

and K2 (a,p) ^ H2 + 52 = 4 + 4k - 4j + 2 ^ 4k - 4 (-^±3) + 6 = ^±30 which is 
less than or equal to k + 1. 

b) Suppose now that ^ = ^ < j ^ ^ ± ^ . We divide into cases. 

* If k = 3m, then p = 12m + 1 and 2m + 1 ^ j ^ 1 ^ ± 3 . 

** When j = 2m + 1, K2 (a, p) = 4m + 1 = [§] + 1 by the Euclidean Table 
below. 
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k -Гfc Уk Sk Q>k 

-2 1 0 12m + l -
-1 0 1 8 m + l -
0 1 1 4m 1 
1 2 3 1 2 

** When j = 2m + 2, iv"2 (a,p) = 3m + 1 = k + 1 by the Euclidean Table 

below. 

k Яfc Ук Sк Q>k 

-2 1 0 1 2 m + 1 -
-1 0 1 8m + 2 -
0 1 1 4m - 1 1 
1 2 3 4 2 
2 2 m - 1 З m - 2 3 m — 1 

** When j = 2m + 3, # 2 (a,p) < y2 + s2 < 3 ( ^ P 2 - ) + 1 + 6 
which is less than or equal to 3m + 1. 

12m+43 

k Xк Уfc Sfe «fc 
-2 1 0 1 2 m + l 
-1 0 1 8m + 3 -

0 1 1 4 m - 2 1 
1 2 3 7 2 

When 2m + 4 ^ j < 1 8 r ^ + 3 , the Euclidean Table is given by 

k £fc 2/fc Sк a/c 

-2 1 0 12m + l -
-1 0 1 6m + j -
0 1 1 6m — j + 1 1 
1 2 3 Зj — 6m — 2 2 

and K2 (a,p) < y2 + s 2 < 3 ( 3 ^ ^ ) + 1 + 3j - 6m - 3. Note that 3 ^ = ^ 

attains maximum at j = 2 m + 4 and 3j — 6m — 3 attains maximum at j — 1 8 r ^ + 3 . 

Thus K2 (a,p) < 3 ( - % 2 ) + 1 + 3 (i--S±3) - 6m 
always less than or equal to 3m + 1. 

3 < 2 0 4 ^ - 1 1 3 and this is 
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* If k = 3ra + 1, then p = 12m + 5 and 2ra + 2 ^ j ^ 

** When j = 2ra + 2, Then K2 (a,p) = 4m + 2 = [§] + 1 

18m+9 
7 

k f̂c 2/fc Sfc ßfc 

-2 1 0 12ra + 5 -
-1 0 1 8ra + 4 -
0 1 1 4 r a + 1 1 
1 2 3 2 2 

** When j = 2m + 3, K2{a,p) ^y2 + s2 ^ 3 ( ^ f ) + l + 4 = 1 2 m + 2 5 which 
than n r p n n c i l tr. 3rr> -U 9 rrrr &* -J- 1 is less than or equal to 3ra + 2 = k + 1. 

k £fc Уfc Sk flfe 

-2 1 0 12ra + 5 -
-1 0 1 8ra + 5 -
0 1 1 4ra 1 
1 2 3 5 2 

** When j = 2m + 4, # 2 (o,p) < j / 2 + s2 < 3 ( ^ ^ ) + 1 + 7 
which is less than or equal to 3m + 2 = k + 1. 

12m+61 

k Xk Уfe Sk afc 
-2 1 0 12m + 5 -
-1 0 1 8m + 6 -
0 1 1 4 m - 1 1 
1 2 3 8 2 

** When 2ra + 5 ^ j < 1 8 r ^ + 9 , the Euclidean Table is given by 

k Z/c 2/fc Sk dk 

-2 1 0 12ra + 5 -
-1 0 1 бra + j + 2 -
0 1 1 бra - j + 3 1 
1 2 3 3j - бra - 4 2 

and K2 (a,p) ^ y2 + s2 < 3 ( | ? ^ ± | ) + 1 + 3j - 6m - 5. Note that 3 ^ + _ 3

4 

attains maximum at j = 2m + 5 and j < 1 8 m + 9 . Thus /£T2 (a,p) < 3 ( i 2yf 2) + 
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1 + 3 (^-±-2) - 6ra - 5 ^ 2 1 6 y 7 ~ 2 4 and this is always less than or equal to 
3ra + 2 = k + 1. 

(iv) a = 3/c + j : By the Euclidean Table below, K2(a,p) <,k — j < k + 1. 

k Xk Уk Sfc a.k 
-2 1 0 4fc + l -
-1 0 1 3/c+ j -
0 1 1 fc - j + 1 1 

Case 2 p = 4fc + 3: 
Again we assume k ^ 25 and the argument is then given along the same lines 
as the previous cases showing the desired inequality for the three subcases de­
termined by j where a = j (mod k): 

Subcase 2A 0 ^ j ^ 5; 
Subcase 2B 6 ^ j ^ [§]; 

Subcase 2C [§] < j ^ k - 1. 

Subcase 2A 0 ^ j ^ 5: This case (with the six possible values of j) is 
handled in exactly the same manner as was illustrated in the case p = 1 (mod 4). 
We will not repeat the argument for this case. 

Subcase 2B 6^j^ [§]: 
(i) a = j : Since a = j ^ 6 and Mod [p, a] < a, it follows that K2 (a,p) ^ 

+ M o d [ p , J K [§] + [§] < - ^ - + | = - ^ < f c + 3 = [ f ] + M o d [ p , 4 ] . 

(ri) a = fc+j: By the Euclidean Table below, K<i (a,p) ^ yo + so = k — 3j + 6 < 

fc + 3 

k £/c Уk Sk ßfc 

-2 1 0 4fc + 3 -
-1 0 1 fc+j -
0 1 3 fc - Зj + 3 3 

(iii) a — 2k + j : The Euclidean Table is given by the below. 

k Xfr Уk S/c Яfc 

-2 1 0 4/c + З -
-1 0 1 2/c + j -
0 1 1 2fc - j + 3 1 
1 1 2 2 j - 3 1 
2 9 + 1 2f7+l r q 
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We divide into cases. 
* For -^±12 < j <- [ | j ? w e have g = 2 and r = 2fc - hj + 9. Then K2 (a, p) < 

2g + 1 + r = 5 + 2fc - 5j + 9 = 2fc - 5j + 14 ^ 2fc - 5 ( ^ ^ ) + 14 = ^ ± ^ and 
this is less than or equal to fc + 3. 

* For 6 ^ j ^ 2 f c | 1 2 , 2 ^ 3 3 attains maximum at j — 6 and 2j - 4 attains 

maximum at j = -^±-^. Thus K2 (a,p) ^ y2 + s2 ^ 2 ( 2 ^ + 3 ) + 1 + 2j - 4 
<2fc 3 ) + l + 2 ^2fc+12^ -4 = 6lfc-15 which is always less than or equal to fc + 3. 9 ) ' A ' ~ V 7 7 " 63 

Subcase 2C [|] < j ^ fc - 1: 

(i) a = j : We have [£] = - ^ ^ 4. Also [*] ^ 11. To see this, we divide 
1 he cases. 

* When fc = 3m + 1, p = 12m + 7 and [|] + 1 = m + 1 and hence 
P _ 12m+7 _ -Q 

< 

Ш+i m + 1 

* When fc = 3m + 2, _p = 12m + 11 and [|] + 1 = m + 1 and hence 
P _ 12m+ll __ -Q 

ra+1 

< 

[51 + 1 

Let q = [2]. Note that iY2 (a,p) ^ g + Mod [p, a] = g + (4fc + 3 - qj) witl 

Ifc + 3 - gj < j which implies j > ^f. Then g + 4fc + 3 qj < (g + 3) + 

4fc - g ^ r - Suppose that (g + 3) + 4fc - g ^ ^ fc + 3. Then (q + 3) 2 

q±h±2. <c (_3k + 3) (g + 1). Then g2 - (fc + 2) g + 3fc ^ 0 and this will hold for 

fc+__Z|_E___ <c g <c fc+2+Vfca _+4 w h i c h i n c l u d e s 4 ^ g ^ 11. 
(ii) a = k + j : We divide the cases. 

<> if fc = 3772 -j- f5 then p = 12m + 7 and m + 1 ^ j ^ 3m. 
* When j = m + 1, K2 (a,p) = 4 ^ fc + 3 by the Euclidean Table below. 

k f̂c Уk Sfc ßfc 

-2 1 0 12m + 7 
-1 0 1 4m + 2 
0 1 3 1 3 

When j = m + 2, i\"2 (a,p) = T/O + so = 4m + 3 which is equal to [§] + 1. 

k Xk Уk Sfc afc 
-2 1 0 12m + 7 
-1 0 1 4m + 3 
0 1 2 4 m + 1 2 
1 1 3 2 1 
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* When j = m + 3, K2 (a, p) < y2 + s2 = 3 [ ^ f ± ] + 2 + 4 ^ 3 ( ^ z i ) + 6 = 
1 2 m + 2 7 which is less than or equal to 3m + 4 = k + 3. 

k Xk Уk Sk <ïfc 

-2 1 0 12m + 7 -
-1 0 1 4m + 4 -
0 1 2 4m— 1 2 
1 1 3 5 1 

* When m + 4 < j < 1 2 m
s

+ 1 3 , the Euclidean Table is given as follows. 

k Жfe Уk Sfe ßfc 

-2 1 0 12m + 7 -
-1 0 1 Зm + j + 1 -
0 1 2 бm - 2j + 5 2 
1 1 3 Зj - Зm - 4 1 
2 í + 1 3<? + 2 r <? 

Then K2 (a,p) < y2 + 52 = 3g + 2 + r ^ 3 

6m-2j+5 
3 j -3m-4 

6m-2j+5 
З j-Зm-4 

+ 2 + 3j - 3m - 5. Note that 

attains maximum when j = m + 4 and 3j — 3m-5 attains maximum 

w h e n j = I 2 - ^ 1 3 . Theniv" 2 (a,p) < 3 ( ^ f - ) + 2 + 3 ( ^ ^ ) - 3 m - 5 

which is always less than or equal to 3m + 4 = k + 3. 

* When 1 2 m + 1 3 < j ^ 3m, the Euclidean Table is given by 

_ 24m+6 
~~ 8 

k Жfe Уk Sfc ûfc 

-2 1 0 12m + 7 
-1 0 1 Зm + j + 1 
0 1 2 6m - 2j + 5 2 
1 1 3 Зj - Зm - 4 1 
2 2 5 9m - 5j + 9 1 

and K2 (a,p) ^ 5 + 9m - 5j + 9 ^ 9m - 5 (---*---) + 14 = ^ ^ a n d t h i s i s 

less than or equal to 3m + 4 = k + 3. 
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• If k = 3ra + 2, then p = 12ra + 11 and ra + 1 ^ j ^ 3ra + 1. 

* When j = m + 1, K2 (a,p) -= 5 ^ k + 3 by the Euclidean Table below. 

k Xk Уk Sfc ßfc 

-2 1 0 1 2 r a + l l -
-1 0 1 4ra + 3 -
0 1 3 2 3 

= When j = m + 2, K2 (a,p) = Am + 5 > [ § ] + ! . 

k Xk Уk Sfc «fc 
-2 1 0 1 2 r a + l l -
-1 0 1 4ra + 4 -
0 1 2 4ra + 3 2 
1 1 3 1 1 

* When j = m + 3, K2 (a,p) = 3ra + 3 < 3ra + 5 = k + 3. 

k Жfc Уk Sfc Ofc 

-2 1 0 1 2 m + l l -
-1 0 1 4m + 5 -
0 1 2 4 m + 1 2 
1 1 3 4 1 
2 2 Зm + 2 1 m 

* When j = m + 4, tf2 (a,p) < Vo + s0 < 3 ( i 2 ^ i ) + 2 + 6 - 7 

Euclidean Table given below and this is less than or equal to 3m + 5 

12m+53 b у t h e 

fc + 3. 

k Xk Уk Sk ctk 
-2 1 0 1 2 r a + l l -
-1 0 1 4ra + 6 -
0 1 2 4ra - 1 2 
1 1 3 7 1 

* When ra + 5 ^ j ^ 12m±ll^ the Euclidean Table is given by the below. 
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k xk Уk Sk ßfe 

-2 1 0 12m + l l -
-1 0 1 Зm + j + 2 -
0 1 2 бm - 2j + 7 2 
1 1 3 Зj — Зm — 5 1 

Note that 6 m - 2 j + 7 
З j - З m - 5 attains maximum when j = in + 5 and 3j — 3m — 6 attains 

maximum when j = 1 2 m + 1 7 . Thus K 2 (a, p) ^ y2 + s 2 ^ 3 f j z ^ £ r | + 2 + 3j -

3m - 6 ^ 3 ( ^ T Q ^ ) + 2 + 3 ( 1 2 m + 1 7 ) - 3m - 6 = 1 0 8 ^ + 5 9 which is always less 
than or equal to 3m + 5 = k + 3. 

* When 12m+17 < j ^ 3m + 1, the Euclidean Table is given by 

k xk 2/fe Sk a/c 
-2 1 0 1 2 m + l l -
-1 0 1 Зm + j + 2 -
0 1 2 бm - 2j + 7 2 
1 1 3 Зj — Зm — 5 1 
2 2 5 9m - Ъj + 12 1 

and JY2 (a,p) ^ y2 + s 2 = 5 + 9m - 5j + 12 ^ 9m - 5 ( ^ f ^ ) + 17 = 1 2 m

8

+ 5 1 

which is less than or equal to 3m + 5 for every m. 

(iii) a = 2k + j : Consider the following cases. 

• For | ] ^ j ^ ^ - ^ , the Euclidean Table is given by 

k £fe Ук Sfe f̂e 
-2 1 0 4k + 3 -
-1 0 1 2fc + j -
0 1 1 2fc - j + 3 1 
1 1 2 2 j - 3 1 
2 9 + 1 2ç + l r 

We divide into cases. 

* For j > ^ + ^ , q = 1 and r = 2k - 3 j + 6. Then i\T2 (a,p) ^ y2 + s2 = 
2g + l + r = 3 + 2 / c - 3 j + 6 < 9 + 2 k - 3 ( 2 ^ t £ ) = — ^ which is less than or 
equal to fc + 3. 
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* F o r [ |] < j < ^ , a ; = 2 a n d r = 2 k - 5 j + 9. Then K2 (a,p) ^ 2 a + l + r = 

5 + 2k - 5j + 9 = 2k - 5j + 14 < 2k - 5 (^±H) + 14 = ^ ^ and this is less 

than or equal to k + 3. 

«> Consider the case where -^--^ < j ^ k — 1. 

a) For 6 f c | 1 5 < j ^ k - 1, the Euclidean Table is given by 

к Xk Уk Sfc ctfe 

-2 1 0 4fc + 3 -
-1 0 1 2fc + j -
0 1 1 2k - j + 3 1 
1 2 3 Зj - 2Ä - 6 2 
2 3 4 4A; - 4j + 9 1 

and K2 (a,p) ^ ?/2 + s2 = 4 + 4k - 4j + 9 ^ 4k - 4 ( ^ P ) + 13 = ^±31 which 

is less than or equal to k + 3 for every k ^ 3. 

b) For ---^- < j ^ 6 f c | 1 5 , we divide the cases: 

* If k = 3m + 1, then p = 12m + 7 and 2m + 2 ^ j ^ 1 8 m
7

+ 2 1 . 

** When j = 2m + 2, Then i\~2 (a,p) = 5 < k + 3 by the Euclidean Table 
below. 

к Xk Уfc Sfe ûfe 

-2 1 0 12m + 7 -
-1 0 1 8m + 4 -
0 1 1 4m + 3 1 
1 1 2 4m+ 1 1 
2 2 3 2 1 

below. 
^* When j = 2m + 3, iv~2 (a,p) = 4m + 3 = [f ] + 1 by the Euclidean Table 

к Xk Уk Sk ctk 

-2 1 0 12m + 7 -
-1 0 1 8m + 5 -
0 1 1 4m + 2 1 
1 2 3 1 2 

** When j = 2m + 4, iv"2 (a,p) ^ y2 + s 2 = 3m + 2 < 3m + 4 = k + 3. 
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k Xk Уk Sk ak 

-2 1 0 12m + 7 -
-1 0 1 8m + 6 -
0 1 1 4m + 1 1 
1 2 3 4 2 
2 2m + l Зm + 1 1 m 

* * W h e n j = 2m + 5, K2(a,p) < y2 + s 2 < 3 ( * f ) + 1 + 6 = 1 2 m + 4 9 which 
is less than or equal to 3m + 4 = A: + 3. 

k Xk Уk Sk ak 
-2 1 0 12m + 7 -
-1 0 1 8m + 7 -
0 1 1 4m 1 
1 2 3 7 2 

** When 2m + 6 ^ j < 1 8 m + 2 1 , the Euclidean Table is given by 

k Xk Ук Sк a/c 

-2 1 0 12m + 7 -
-1 0 1 бm + j + 2 -
0 1 1 6m — j + 5 1 
1 2 3 Зj — бm — 8 2 

and K2 (a,p) < j / 2 + s2 < 3 ( | ^ ± | ) + 1 + 3j - 6m - 9. Note that g ^ £ | 

attains maximum at j = 2 m + 6 and 3j — 6m — 9 attains maximum at j = 1 8 m + 2 1 . 

Thus K2 (a,p) < 3 (^ jo^) + 1 + 3 ( 1 8 m + 2 1 ) - 6 m - 9 < 2 0 4 m + 4 9 and this is always 
less than or equal to 3m + 4. 

* If k = 3m + 2, then p = 12m + 11 and 2m + 3 ^ j ^ 1 8 m + 2 7 . 
** When j = 2m + 3, then K2 (a,p) = 4 < k + 3 . 

k Xk У/c Sfc Ofc 

-2 1 0 1 2 m + l l -
-1 0 1 8m + 7 -
0 1 1 4m + 4 1 
1 1 2 4m + 3 1 
2 2 3 1 1 
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** When j = 2m + 4, K2 (a,p) = 4m + 4 = [§] + 1. 

k Xk Ук Sk ak 
-2 1 0 1 2 m + l l -
-1 0 1 8m + 8 -

0 1 1 4m + 3 1 
1 2 3 2 2 

** When j = 2m + 5, K2 (a,p) ^ y2 + s 2 

which is less than or equal to 3m + 5 = k + 3. 

< 3(i»Lt2) + 1 + 4 = 
12m+31 

k Xк Уk Sk <*>k 

-2 1 0 1 2 m + l l 
-1 0 1 8m + 9 -

0 1 1 4m + 2 1 
1 2 3 5 2 

** When j = 2m + 6, K2 (a,p) < y2 + s 2 < 3 l 1 ^ ) + 1 + 7 
which is less than or equal to 3m + 5 = k + 3. 

12m + 67 

k Яfc Уfc Sk aк 
_2 1 0 1 2 m + l l 
-1 0 1 8m + 10 
0 1 1 4 m + 1 1 
1 2 3 8 2 

When 2m + 7 ^ j < ±^±±21^ the Euclidean Table is given by 

k xк 2/fc Sk ak 
-2 1 0 1 2 m + l l 
-1 0 1 6m + j + 4 
0 1 1 6m — j + 7 1 
1 2 3 Зj - 6m - 10 2 

and iv2 (a,p) < y2 + s2 ^ 3 f 6m-j+7 A , -, 
\ 3 j - 6 m - 1 0 y * 

attains maximum at j — 2m -f 7 a n c [ 7' 

-3j —6m —11. Note that 6m—j+7 
3j-6m 10 

^ 18rrd_27 T h u s R2 (a,p) ^ 3 (-*-*) + 
, i o t !8m+27\ fi_ 11 / oiR M 0 1

 7 V 1 1 / ' 
L + 6 y 7 J - Om - 11 ^ 2l6m+121 a n d t h i g j g a l w a y s l e s g t h a n Q r e u a l t o 

3m + 5 = k + 3. 7 7 
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(iv) a = 3k + j: K2 (a,p) ^ y0 + s0 = fc - j + 2 < fc + 3. 

k xk Уk Sfc «/c 

-2 1 0 4/c + З -
-1 0 1 З f c + j -
0 1 1 k - j + 3 1 

This completes the proof. • 

A p p e n d i x A. C o m p u t a t i o n of T 2 (p) for 5 < p < 97 

p 

5 

7 

11 

13 

17 

19 

23 

29 

31 

37 

41 

43 

47 

53 

59 

61 

67 

71 

73 

79 

83 

89 

97 

T
2
(P) 

{2,3} 

{2,3,4} 

{2,3,4,5,6} 

{2,3,4,5,7} 

{2,3,4,5,6,7,9} 

{2,3,4,5,7,10} 

{2,3,4,5,6,7,8,9,12} 

{2,3,4,5,6,7,8,9,10,11,15} 

{2,3,4,5,6,7,8,10,11,16} 

{2,3,4,5,6,7,8,9,10,13,19} 

{2, 3, 4, 5, 6, 7, 8, 9,10,11,14,15, 21} 

{2,3,4,5,6,7,8,9,11,13,15,22} 

{2, 3, 4, 5, 6, 7, 8, 9,10,11,12,14,16,17, 24} 

{2, 3, 4, 5, 6, 7, 8, 9,10,11,13,14,18,19, 27} 

{2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,17, 20, 21, 30} 

{2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,16, 21, 31} 

{2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,17,19, 23, 34} 

{2, 3, 4, 5, 6, 7,8, 9,10,11,12,13,15,16,18, 20, 24, 25, 36} 

{2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,17,19, 25, 37} 

{2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,19, 20, 22, 27, 40} 

{2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,17,18,19, 21, 23, 28, 29, 42} 

{2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,17,18,19, 21, 23, 30, 31, 45} 

{2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,19, 20, 21, 25, 33, 49} 
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