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DIFFERENT KINDS OF SUFFICIENCY 
IN THE GENERAL GAUSS-MARKOV MODEL 

A N D R Z E J KORNACKI 

{Communicated by Gejza Wimmer) 

A B S T R A C T . Sufficiency is one of the fundamental notions in mathematica l sta­
tistics . In connection with the general linear Gauss-Markov model G M 
(y, X/3, o~2V), there are some modifications of this notion such as linear sufficiency 
(Baksalary and Kala, Drygas) invariant linearly sufficiency (Oktaba, Kornacki, 
Wawrzosek) and quadratic sufficiency (Mueller) . All these variants denote such 
transformations of the model G M tha t preserve properties essential in statistical 
inference. In the present paper we give mutua l relations between above three 
classes of statistics. 
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Introduction 

Sufficiency is one of the fundamental notions in mathematical statistics. In 
connection with the general linear Gauss-Markov model G M (H, Xfi, cr2V), there 
are some modifications of this notion such as linear sufficiency ( B a k s a l a r y 
and K a l a [2], D r y g a s [3]), invariant linearly sufficiency ( O k t a b a , 
K o r n a c k i , W a w r z o s e k [5]) and quadratic sufficiency ( M u e l l e r [4]). 
All these variants denote such transformations of the model G M that preserve 
properties essential in statistical inference. B a k s a l a r y and K a l a consid­
ered transformations of the model G M which preserve information needed for 
linear estimation. D r y g a s [3] called them linearly sufficient statistics (LS). 
M u e l l e r [4] and B a k s a l a r y and D r y g a s [1] have taken into consideration 
transformations of the model G M which do not lose information necessary for 
quadratic estimation of parameter. They were called quadratic sufficient statis­
tics (QS). O k t a b a , K o r n a c k i and W a w r z o s e k [5] considered transfor-
mations of the model G M preserving all informations needed both for estimation 
and testing. They came into the literature under the name of invariant linearly 
sufficient statistics (ILS). In the present paper we give mutual relations between 
above three classes of statistics.The main result is formulated in Theorem 4.1. 
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1. Notation 

The transpose of matrix A, rank of matrix A and column space of matrix A 
are denoted by A'', r(A) and R(A) respectively. The symbol A~ is reserved for 
the g-inverse of matrix A satisfying condition: 

AA~A = A. (1) 

A general, linear Gauss-Markov model is given by the triplet: 

(y,Xp,a2V) (2) 

where a random vector y of n observations has the expected value Xf3 and 
dispersion matrix a2V. The matrix X is known nx p matrix of arbitrary rank, 
P is vector of p unknown parameters, a2 is unknown skalar and V is known and 
nonnegative definite matrix. Then after linear transformation u = Py model (2) 
obtained the form of the model: 

(Py,PX(3,a2PVP') (3) 

where P is a matrix kxn,k > n. The symbol BQUE denotes the best, quadratic, 
unbiased estimator of skalar a2 and BLUE means the best, linear, unbiased 
estimator of linear function of parameters. 

2. Assumptions and lemmas 

For the G M model (2) we introduce, following R a o [6], the matrix T of the 
form: 

T = V + XUX' (4) 
where U is any symmetric and nonnegative matrix such that; 

R(T) = R(X\V) (5) 

Condition (5) is equivalent to the following two conditions: 

R(X) c R(T) and R(V) c R(T) (6) 

The model G M (2) is called consistent ( R a o , [6, p. 378]) when 

y e R{X\V) (7) 

The following lemma on decomposition will be used in further part of this 
paper: 

LEMMA 2.1. ( R a o [7, Lemma 2.1]) 

R(X\V) =R(V)(BR(VZ) (8) 

where Z denotes any matrix of maximal rank such that Z'X 0 and symbol 
denotes direct sum of vector spaces. 
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3. Different kinds of sufficiency 

We give now the different kinds of sufficiency that exist in literature in con­
nection with general linear model G M (2). 

DEF IN ITION 3 .1 . ( D r y g a s [3]) Statistic u = Py is said to be linearly sufficient 
(LS) if there is a linear transformation Gu = Gpy which is BLUE for X in model 
G M (2). 

LEMMA 3 .1 . ( B a k a s a l a r y and K a l a [1]) Statistic u = Py is linearly suf­
ficient if and only if: 

R(X) C R(TPf) (9) 

DEF IN ITION 3.2. ( M u e l l e r [4]) Statistic u = Py is said to be quadratic suf­
ficient (QS) if there is a symmetric matrix A, k x k, such that (Py);A(Py) is 
BQUE for a2 . 

LEMMA 3.2. ( B a k s a l a r y and D r y g a s [1]) Statistic u = Py is quadratic 
sufficient if and only if; 

R(VZ) C R(TP') (10) 

or equivalently 
R(VZ) = R(VP'(PX)) (11) 

LEMMA 3.3. ( B a k s a l a r y and D r y g a s [l]) Statistic u = Py is quadratic 
sufficient if and only if BQUE for a2 in GM model (2) coincide with BQUE for 
in PGM model (3). 

DEF IN ITION 3.3. ( O k t a b a , K o r n a c k i and W a w r z o s e k [5]) Statistic 
u = Py is said to be invariant linearly sufficient (ILS) if 

1. Py is linearly sufficient (LS); 

2. Parametric function A/3 is estimable in model G M if and only if it is 
estimable in model P G M ; 

3. BQUE for a2 in models G M and P G M are the same; 

4. Null hypothesis: Lj3 = 0n is consistent in model G M if and only if it is 
consistent in model P G M ; 

5. Under normality assumptions statistics for testing null hypothesis Lf3 = 0o 
are the same in both models G M and P G M . 

LEMMA 3.4. ( O k t a b a , K o r n a c k i and W a w r z o s e k [5]) If any one of 
the conditions 

R(T) = R(TP') (12) 

r(T) = r(TPf) (13) 

R(T) C R(P') (14) 
is satisfied then the statistic u = Py is ILS. 

Let us note that conditions (12) and (13) are equivalent while (14) im.ply (12). 
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4. Main result 

We give now mutual relations between considered classes of statistics: LS, QS 
and ILS. 

T H E O R E M 4 . 1 . Statistic u = Py is ILS in model GM if and only if it is simul­
taneously LS and QS statistic. 

P r o o f . 
=> Let statistic u = Py be ILS. Then from Def. 3.3 (conditions (1) and (3 ) 

u is LS and BQUE for a2 in models G M and P G M are the same. In virtue of 
Lemma 3.3 it means that u Py is QS. 

<= Let us consider that u = Py is simultaneously LS and QS statistic. 

Because the model G M is consistent so from (7) we get y £ R(T) R X'.V). 
Using Lemma 2.1 on decomposition we have: 

y e R(X) © R(VZ) (15) 

Because of assumption u is LS and QS simultaneously so from (9) and (10) we 
have R(X) C R(TPf) and R(VZ) C R(TP') thus from (15) we get: 

y e R(TP') (16) 

Finally we have R(T) C R(TP'). Because is always i t (TP ' ) C R(T) so we 
get R(T) = R(TP') that is condition (12) from Lemma 3.4 which guaranties 
that statistics u = Py is ILS. • 
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