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P O I N T SETS W I T H LOW L P -DISCREPANCY 

P E T E R K R I T Z E R * — F R I E D R I C H P l L L I C H S H A M M E R * * 

(Communicated by Stanislav Jakubec) 

A B S T R A C T . In this paper we s tudy the Lp-discrepancy of digitally shifted 
Hammersley point sets. While it is known t h a t t h e (unshifted) Hammersley point 
set (which is also known as R o t h net) with N points has Lp-discrepancy (p an 
integer) of order (log N)/N, we show t h a t there always exists a shift such t h a t 
the digitally shifted Hammers ley point set has Lp-discrepancy (p an even integer) 
of order Vlog N/N which is best possible b y a result of W. Schmidt. Further we 
concentrate on the case p = 2. We give very t ight lower and upper bounds for the 
L2-discrepancy of digitally shifted Hammers ley point sets which show t h a t the 
value of the L2-discrepancy of such a point set mostly depends on the number of 
zero coordinates of the shift and not so much on the position of these. 

1. Introduction 

For a point s e t x o , . . . , XJV-I of points in the 2-dimensional unit-interval [0, l ) 2 

the discrepancy function is defined as 

A(a, /3) : = AN ([0, a) x [0, /3)) - iVa/3 

for 0 < a,/3 < 1, where Ajv([0,a) x [0,/3)) denotes the number of n satisfying 
0 < n < N — 1 and x n G [0, a) x [0, /3). Now the Lp-discrepancy, for p > 0, of the 
point set is defined as the Lp-norm of the discrepancy function divided by the 
cardinality of the point set and is a measure for the irregularity of distribution 
of the point set over [0, l ) 2 (see for example [1], [4], [9], [11]). I.e., for 0 < p < oo 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 11K06, 11K38. 
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we set 

For p 

1 1 

Lp j J/v(xn,...,x iVt_i) := — / / \A(a,f3)\pda 

V o o 

dß 

oo, we get the usual star discrepancy 

1 
D ^ ( x 0 , . . . , x IV- sup |Д(cг,/3)| 

N 0<a,P<l 

of the point set. 

From S c h m i d t [16] we know that for any p > 1 there exists a constant 
cp > 0 such that for the Lp-discrepancy of any point set x 0 , . . . ,xIv_i in [0, l ) 2 

we have 

NLPtN>Cpy/logN. (1) 

(For p = 2 this result was proven by R o t h [15].) 

In this paper we consider the Lp-discrepancy of the digitally shifted Hammer-
sley point set in base 2 with IV = 2 m points. This is a generalization of the well 
known Hammersley point set in base 2 (which is also known as Roth net as it 
was first suggested by R o t h [15]) and it is constructed as follows. Let m E N, 
C\ the m x m identity matrix over Z 2 , and C 2 the m x m matrix given by 

/ 0 0 . . . 0 1 \ 
0 0 . . . 1 0 

Co 

0 
\ 1 

0 
0 

0 
0 J 

X. - (JЯ Further choose vectors ai ,o_ E Z m , Oj = (o\ 

For n = 0 , . . . , 2 m - l let n = n0 + n_2 + 
representation of n. Now for j = 1, 2 define 

ЛзУ 

1 um t 

+ Пn 

T, 1 < 3 < 2. 
,-12

m~1 be the base 2 

U) ._ _ _ _ _ . _ _ V ) 
«L<n + 22 + ••• + 

Än ) 

where 

ЫJ)(rг) ••,y^(n)) J Cj(n0,. . . ,ПГi _l) i +ffj E Z m . 

Then the point set x 0 , . . . ,x 2m_i with x n = (xn \xn ) is the digitally shifted 
Hammersley point set in base 2 with IV = 2 m points and shift vectors o\ and 
CT2. If we choose o\ = a 2 = ( 0 , . . . , 0 ) r , then we obtain the classical Hammersley 
point set in base 2. Further we remark that any digitally shifted Hammersley 
point set in base 2 with IY = 2 m points is a (0, ra, 2)-net in base 2 as defined in 
[12]; see also [13]. 
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As pointed out by K r i t z e r [7], it is sufficient to consider shifts only in the 
second coordinate, i.e., 8\ = ( 0 , . . . , 0 ) T , since for <7i, o2 E Z m the shifts 

fi = ( 0 , . . . , 0 ) T and f2 = C25x +a2el% , 

yield the same digitally shifted Hammersley point set. 
From now on we consider the digitally shifted Hammersley point set in base 2 

with N = 2 m points and with shift a = (<TI , . . . , a m ) T E Z m (in the second 
coordinate). We denote this point set by H(a). The classical Hammersley point 
set, i.e., <7 — ( 0 , . . . , 0 ) T , will be simply denoted by H. 

The star discrepancy of the Hammersley point set was studied in detail in [3], 
[5], [6], [10] and the star discrepancy of the shifted Hammersley point set was 
studied recently in [7], [8]. Here we deal with the Lp-discrepancy, 2 < p < co, 
p even, of the digitally shifted Hammersley point set. In [14] it is shown that 
for any p E N for the Lp-discrepancy of the classical Hammersley point set H 
we have 

(NLP,N(H))P = g + 0 ( ( l o g i V r 1 ) , 

where N = 2 m and where the constant in the O-notation only depends on p. 
(See also C h e n and S k r i g a n o v [2] for the special case p = 2.) 

For p = 2 we have the following more exact result due to V i l e n k i n [17], 
H a 11 o n and Z a r e m b a [6] and P i l l i c h s h a m m e r [14], 

/ , ,x2 _ m2 29m 3 m l 1 
[NL2tN(H)) - - - + - - - + - - Y~~r~ + ~T~~ ~ 72 . 22™ ' 

where N = 2 m . Further H a l t o n and Z a r e m b a [6] gave a digital shift GHZ 
such that the L2-discrepancy of the resulting point set H(GHZ) is given by 

(NL2,N(H(aHZ)))2 = - ^ + - - - g - + ------- + j ^ - j ^ - ^ , (2) 

where N = 2 m and where £m is zero if m is even and one if m is odd. The shift 
vector given by H a 11on and Z a r e m b a is 

J ( 1 , 0 , 1 , 0 , . . . , 1,0)T if m is even, 
<JHZ ~ | ( 1 , 0 , 1 , 0 , . . . , 1 , 0 , 1 ) T if m is odd. 

So the number of zero coordinates of GHZ is m /2 for even m and (m — l ) /2 for 
Odd 771. 

It is the aim of this paper to show that for any even integer p and m E N 
there exists a shift & E Z m such that the Lp-discrepancy of the point set H(G) 
is of best possible order with respect to the result of S c h m i d t (Theorem 1 
and Corollary 1). Further we prove very tight lower and upper bounds for the 
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L2-discrepancy of a digitally shifted Hammersley point set (Theorem 2 and The­
orem 3). We compare our results with the result from H a 11 o n and Z a r e m b a 
and draw some interesting consequences. The results are presented in the sub­
sequent Section 2. In Section 3 we collect some lemmas which will be needed 
in the proofs of our theorems. Finally the proofs of our theorems are given in 
Section 4 and Section 5. 

2. The Lp-discrepancy of digitally shifted 
Hammersley point sets 

First we have the following result which shows that on the average the Lp-dis-
crepancy of a digitally shifted Hammersley point set is of best possible order with 
respect to Schmidt's lower bound. 

THEOREM 1. Let p be an even positive integer and let m G N. Then we have 

-±- Y, (NLPMH(a))Y<2^lm^ + 0(m^), 

where N = 2m, the constant in the O-notation only depends on p, and S(p,p/2) 
is a Stirling number of the second kind. 

The proof of Theorem 1 is deferred to Section 4. From this theorem we obtain 
the following results. 

COROLLARY 1. Let p be an even integer and let m G N. Then there exists a shift 
vector a* G Z™ such that the Lp-discrepancy of the digitally shifted Hammersley 
point set iJ(<?*) is bounded by 

(NLp,N (H(ff.)))p < 2S{P
2

P'2) m^ + 0(m^), 

where N = 2 m , the constant in the O-notation only depends on p, and S(p,p/2) 
is a Stirling number of the second kind. 

Remark 1. The bound in Corollary 1 is best possible with respect to the lower 
bound from S c h m i d t (1). 

COROLLARY 2. Let p be an even integer. For any e > 0 and any c> 0 we have 

lim - ^ # io e Zm : 2mLp,2m (H(a)) < c m - + e ) = 1 . 
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P r o o f . With Theorem 1 it follows that 

~>„^ + 0 („^- ) 
^ ^ E (2*%.,*-W*)))' 

> 2 - c P m ( H - ) p # { ? € Z ? : 2mL p , 2 m (#(<?)) > c r n i + ' l 

= -^(?rn^+£)p(2m - # {* e ZJ* : 2mLp,2m (/ / (a)) < cm?+£}) . 

Prom this we obtain 

2 
^ # { a Є Z ^ : 2 m L p , 2 m ( Я ( a ) ) < ď m ^ j 

x 2S(p,p/2) 1 ^ Q ( 1 
22pcp m e p ^ m l + e p 

The result follows. D 

If p = 2, it is possible to obtain more precise results, which shall be outlined 
in the following. First we prove an upper bound for the F2-discrepancy of a 
digitally shifted Hammersley point set. 

THEOREM 2. Let a E Zm and let I denote the number of zero coordinates of a. 
Then we have 

<-->\\\2 
(NL2,N(H(a))У 

m2 19m lm l2 l 7 m l 3 

64 192 16 16 4 16 8 • 2™ 4 • 2™ 16 • 2™ 72 • 4™ ' 

where N = 2rn. 

We also have the following lower bound. 

THEOREM 3. Let a e Zm and let I denote the number of zero coordinates of a. 
Then we have 

(NL2,N(H(a)))2 

m 
2 19ra lm l2 l 5 ra / 5 1 

> тгт- - -ттг - т7г + тт + т + 7^ + : ^ т г - т-^тг + 
64 192 16 16 4 16 8 • 2™ 4 • 2™ 16 • 2™ 72 • 4™ ' 

ujftere N = 2m. 

The proofs of Theorem 2 and Theorem 3 will be given in Section 5. Observe 
that our upper and lower bound only differ by the almost negligible quantity 
| ( l - 2 — ) . 
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Remark 2. With the help of Theorem 2 and Theorem 3 we can improve The­
orem 1 in the case p = 2 to 

^^Eí^vW ra 5 5 
24 + 16 + 1 6 - 2 m " 72 • 4™ ~ 2 

ra 7 
< 777 + 777 + 24 16 16 • 2 m 72 • 4™ ' 

where jY = 2 m . 

Now we obtain the following result. 

COROLLARY 3. LetmeN and N = 2 m . 

(1) If m is even, let a G Z m with I = ra/2 zero coordinates. Then we have 

5 ^ 5 5 1 . r T / T T , . u 2 
192 + 16 + 16T2^ - 7274^ ^ ( ^ . ^ ( ^ ( a ) ) ) 

5m 7 3 1 
< ™ +77; + 192 16 16-2™ 72-4™ 

(2) I/ra is odd, let o G Z m with l = (ra — l ) / 2 . TVe í/ien gel; 

I Í + Í + 1 6 ^ - 7 2 ^ * (NL^(H^))2 

5m 21 5 1 
< ™ + 7 7 7 + 192 64 1 6 - 2 m 72-4™ 

Of course the F2-discrepancy (2) of the point set given by H a 11 o n and 
Z a r e m b a lies between the bounds given in Corollary 3. Theorem 2 and The­
orem 3 show that the value of the F2-discrepancy of a digitally shifted Ham-
mersley point set does mostly depend on the number of zero coordinates in the 
shift vector and not so much on the position of these. In fact, numerical results 
suggest that the value of the L2-discrepancy of a digitally shifted Hammersley 
point set is exactly the same for all shift vectors with the same number of zeros. 
We remark that this is not the case for the star discrepancy of digitally shifted 
Hammersley point sets, see [8]. 

It is remarkable that it is possible to obtain better results than H a 11 o n and 
Z a r e m b a by using the bounds outlined here. 
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COROLLARY 4. LetmeN and N = 2 m . 

(1) If m is even, let a G Z m with I = (m — 4) /2 zero coordinates. Then we 
have 

5m 1 13 1 , r r /„.,_»x\\2 

+ ̂  + T ^ T - - - - • * ( H W ^ ) ) ) 192 16 16-2™ 72-4™ 
5m 3 11 1 

< Г ^ + TT: + 192 16 1 6 - 2 m 72 • 4 m 

(2) Ifm is odd, let B G Z m uf^/i I = (m - 3)/2. JVe tten Oe* 

^ m 5 11 1 / A T r /rr/-»N\\2 

192 + 64 + 1 6 T 2 ^ - 7 2 - 4 ^ ^ ( " W ( " » ) 
5m 13 0 1 

192 64 1 6 - 2 m 72 • 4 m 

The upper bound given in Corollary 4 for even m > 4 is lower than the value 
(2) of H a 11 o n and Z a r e m b a . The same is true for the upper bound for odd 
m > 3. The special choice of / to obtain the latter bounds is motivated by the 
following observation. If we take, for fixed m, 

m 2 19m Im I2 I 7 m I 
9 ^ : 64 192 16 + 16 + 4 + 16 + 8 • 2 m 4 • 2 m + 16 • 2™ 72 • 4 m ' 

as a function of Z, we find that g has a minimum at 

m - 4 1 
1 = —r—+ 2 2 m _ 1 ' 

Finally we obtain the following interesting result. 

THEOREM 4. We have 

r / . 2mF2,2™(H(c?))\ r r 
lim mm —= = \ —— 

Jm I V 192 

P r o o f . It is easy to show that 

m 2 19m Im I2 I 5 5m 

64 ~ ~92~ ~ T 6 + l ^ + 4 + 1 6 - 1 9 2 ' 

for any I G {0,1, . . . , m } . Therefore it follows from Theorem 3 that for any 
m G N and any a G Z m it is 

(2mL22~(H(a)))2>^--^- + ^ - — . 
V -v V v ))) - 1 9 2 8 - 2 m 1 6 - 2 m 72 • 4 m 

Together with Corollary 3 (or equality (2)) the result follows. • 
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3. Auxiliary results 

In this section we collect some lemmas which will be used in the proofs of our 
results from the previous section. First we present a very useful formula for the 
discrepancy function of a digitally shifted Hammersley point set. Throughout 
the paper we use the following notation: for 

a i i i Q m A a Pi , , Pm 
a = — H h -— and p = — H h -— 

2 2 m 2 2 m 

with ai,Pi G {0,1} we say in the following a (resp. (3) is "m-bit". 

LEMMA 1. Let a and (3 be m-bit and let a = (~ i , . . . , O~m)T G Z m . Then for the 
discrepancy function of H(a) we have 

ra—1 

A(a,(3) = J2 PUP\\ (-l)ff"+1(am-u®«m+i-j(u)) , 
u=0 

where 0 denotes addition modulo 2, \\ • \\ is the distance to the nearest integer 
function, and where j(u), 0 < u < m — 1. is defined by 

.?(«) 

(0 ifu = 0, 

0 if am+i-j = Pj 0 aj 
for j = l , . . . , w , 

,max{j < u : a m + i _ j ^ (3j 0 O-j} efee. 

Further we set a m + i :-= 0. 

P r o o f . From [10, Theorem 1] this result follows for the (unshifted) Hammersley 
point set. It easily follows from the proof that the assertion is also true for the 
digitally shifted Hammersley point set. • 

Remark 3. Let a, (3 G [0,1] (not necessarily m-bit). Let again H(a) denote the 
Hammersley point set that is digitally shifted by an arbitrary vector a G Z m . 
Since all points of H(a) have m-bit coordinates, it follows that 

A(a,/3) -= A(a(m),(3(m)) + 27n(a(m)(3(m) - a/3) , (3) 

where a(m) and (3(m) are the smallest m-bit numbers larger than or equal to a 
and /?, respectively. If a is greater than 1 — 2 _ m , choose a(m) = 1. Similarly, 
choose (3(m) = 1 if (3 is greater than 1 — 2 _ m . 
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LEMMA 2. Let a and j(u) be defined as in Lemma 1. and choose an m-bit 
number (3. Let 1 < k < m — 1 be an integer and v±,... , L^ E {0,1, . . . ,m — 1} 
with Vi 7-= Vj for l<i^j<m — 1. Then we have 

2 m - l k 

J2 Yl{am-Vi © am+i-jiv,)) = 2m~k . 
2 m a = l i = l 

2 m - l 

(Here and in the following ~~ means summation over all a > 0 m-bit.) 
2 m a = l 

P r o o f . Observe that for given u E {0, . . . , r a — 1}, j(i_) depends only on 
a m + _ _ u , . . . , a m and not on a_, . . . , a m _ n . The rest of the proof follows ex­
actly the lines of the proof of [14, Lemma 2]. • 

LEMMA 3. Let a and j(u) be defined as in Lemma 1. Let a be m-bit and choose 
u E {0,..., m — 1} arbitrary. Then we have 

2 m - l 

2 2 m - 2 _ r - 2 _ r + « - 2 < J^ 2 m a ( a m _ u © a m + 1 _ j ( t t ) ) 

2 m a = l 

<- o 2 m - 2 cym—2 _•_ c\m+u—2 

P r o o f . We have 

2 m - l 

^ 2 m a ( a m _ u e a m + i _ i ( u ) ) 
2 m a = l 

771 1 

= ^ 2 m _ i ^ ^ ( a m _ n e a m + 1 _ j ( n ) ) 
i = l a i , . . . , a m = 0 

m—it —1 1 1 

= ] T 2 m _ i _T_ ( a m _ „ © a m + i _ J - ( u ) ) + 2U __] ( a m _ u © a m + 1 _ j ( u ) ) 
1 = 1 a_ ,...,cxm=0 „_ , . . . , a : m = 0 

« i ^ 0 a m - u # 0 

+ ___ 2 m * ___ ( a m - « e a m + 1 . j ( u ) ) 
i — Ш-\-l — u a_ , . . . ,o í m =0 

a_--0 
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m—u — l 1 / 1 1 v 

= E -"*-* E ( E E K-«©«m+i-i(«))) 
2=1 a m + i _ u , . . . ,Q ; m =0 ^ ai, . . . ,c_i_i=0 a i + i , . . . , a m _ u = 0 

1 1 

+ 2" E E (-® <wi-;(t.)) 
a i , - i Q m - u - i = 0 a.m+___,.. . ,a.m=0 

m l 1 / 1 \ 

+ E 2 r o _ J E E ( E ( °™-«®%H(«)) 
i ^ m + l —it a m + i _ u , . . . , a i - i = O a i + i , . . . , a m = 0 ^ a i , . . . , a m _ u = 0 ' 

= : Ei + E2 + E3. 

Since j(u) depends only on am+i-u,..., a.m and not on a±,..., am-u and since 
0 < j(u) < it, it follows that 

m—u — l 
m—u — 2c\u y- \ ^ r\m—Íc\m—U — 2c\ 

i=l 
m 

E3 = Y^ 27n-i2m-u-l2 

i=l 

^m — icfm — u — lcyu—l 

i=m+l — u 

Further we have 
0 < E2 < 2 n 2 m " 1 . 

This yields the result. D 

LEMMA 4. Choose an m-bit number (3. Let 1 < k < m — 1 be an integer and 
vi,..., Vk G { 0 , 1 , . . . , m — 1} with V{ 7- L>j /Or 1 < i 7- j < m - 1. Further let 
Ti,..., Tfc be positive integers. 

(a) VVe bave 

2 m —1 
ora z -1- or; 
--' _. X ^ 11 ^-.-JI . / n i T i . . - ._._ ^ v n r i . _. •--< Y2 p^ßp...\\2-ß\Г<—^ 4riH—hrfe — Z-/ " /^M " MU — 2 r H — h r / c 2 f c 

2 m /3=l 

Moreover, we have equality for the lower and for the upper bound if 
ri = ••• = rk = 1. 

(b) For 0 <u < m— 1 ufe bave 

2m 1 
- 1 o2m 1 o2i_ + l 

V II2-/3II2 = - — 
2™/?=l 

P r o o f . Part (b) and the upper bound in part (a) is [14, Lemma 3]. The proof 
of the lower bound in part (a) is similar to the proof of the upper bound. D 
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4. The proof of Theorem 1 

The following lemma is the first step in the proof of Theorem 1. 

LEMMA 5. Let p be a positive integer and denote by A the discrepancy function 
of a digitally shifted Hammersley point set H(a) with a = (<7i,..., crm) G Z£ 
Then we have 

1 2
m - 1 2 m - l / , v p 

1 Y ^ 1 Y ^ v ^ A I a i 
Om / ; o2ra / y / y I Om ' Ora / 

-?. 

2?n / v 9 ^ m v v \ 2 m ' 2 
<гi,...,cгm=0 a = l 6=1 

for odd p, and 

mP/2S(p,p/2) 1 l 1 2 m - 1 2 m - l / T \ p 

+ o(m^)<-l £ ^ £ £ A ( ^ , ~ ) 
ai , . . . ,crm=0 a = l 6=1 V 

22p+p/2 
0"l i 

^t^+QK^). 
2 2 p 

/o r even p, where the constant in the O-notation only depends onp and S(p,p/2) 
is a Stirling number of the second kind. 

P r o o f . We have 

1 л 2 m - 1 2 m - l 

Qm / J Q - m ' J ' J \ 2rn ' 2r> 

<7i,...,crm=0 a = l 6=1 

a b V 1 Y^ 1 ^ v^ A ( a b 
Ora / ^ o2ra / > X J \ o r a ' Ora 

- 1 .. 2 m - l 2 m - l 

™ £ ^ £ £ A ^ ) р -
2 r a Z__-/ 2 2 : 

ťгi,...,crm=0 2 m a = 1 2 m / 3 = l 

Applying Lemma 1, the term above equals 

1 .. 2 m - l 2 m - l p • ra-1 \ 

=г £ 2^ £ £ П £p-/?ii(-ir—к-^ ^ i ^ ) ) ; 
<гi,...,<тm=0 2 m a = l 2 m /3=l i = l ^ щ=0 

21 



, . . . ,г i p ) 

PETER KRITZER — FRIEDRICH PILLICHSHAMMER 

which, by Lemma 2, is equal to 

- m - l 1 p / 2 m - l p v 

^ E ^ E iV-^W E n^^iijx 
i t i , . . . , i t p = 0 o - i , . . . , c r m = 0 i = l ^ 2 m / 3 = l i = l ' 

/ 2 m - l p v 

X ( X IK^m-ti* © «m+l-i(f*i)) J 
^ 2 m a = l i = l ' 

- m - l 1 p , 2 m - l p v 

= ^ r E =r E I B - 1 ) " " * 1 ! E nii-U4/3ii)-m"fc(U1--* 
u i , . . . , w p = 0 c r i , . . . , c r m = 0 z = l ^ 2 m / 3 = l i = l ' 

l m - l 2 m - l p / 1 p \ 

= ^ T Z__, 2fc(w-'-'M->) ^ l l " 2 ^ " ! ^ Z__/ l l C - 1 ) ^ ^ 1 I » 
U l , . . . , U p = 0 2 m / 3 = l i = l \ CTi,. . . ,cr m =0 2 = 1 / 

where fc(wi,..., up) is the number of different i^s. Let now Lq,..., Vk be the 

different i^s (k = k(u\,..., wp)) such that q̂ appears r i times, . . . , ^ appears 

rk times (ri + • • • + r/~ = p). Observe that 

^ E nc--)'"*-1 = 2^2 m _ f c E EK- 1 )^ 
C r i , . . . ,<7 m =0 2 = 1 (Ji ,...,CTfc=0 2 = 1 

^lìÈмr 2k 
ѓ=l<7 = 0 

However, for each 1 < i < k, 

\S-iv^ = /2 ifr*~° m o d 2 ' 
h 1° else-

Thus, 

^r E n(-ir- + i = /(n,...,rfe), 
o - i , . . . , ( 7 m = 0 i = l 

where / ( r i , . . . , r*.) is one if r$ is even for all i E { 1 , . . . , k} and zero otherwise. 

Therefore we find that 

l 

Om Z_v 92m ż_^ ./_._-' ' ~— ' 2m x ^ 2 ^ m ^ v \ 2 m ' 2 m 

cгi, . . , ,ť7 m =0 a = l 6 = 1 ^ ' 

л m - 1 2 m - l p V^) 

= 2 ^ -^-/ 2 f c ( П l '--' u p) -^-/ 1 1 " ^ " * 
- - n 2 m / 3 = l ѓ = l ri ,... ,ri, even 
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However, if p is odd, it is impossible that all of the r^, 1 < i < k are even, 
since Ti + • • • -f- r^ = p . Thus, the result is shown for odd p . We can therefore 
concentrate on even p . By Lemma 4 the latter term is bounded above by 

_1_ ^ _ _ L 2m
 = 1 ^ 1 

2m Z_v 2 f c(n iv^p) 2P2k(Ul,'"'up} 1P -----' 22fc(ttl'---'np) 
u_i_ , . . . , r i p = 0 x i ! , . . . , U p = 0 

r l >• • • iTk e v e n r l >• • ->rfc e v e n 

Note that r\,..., r^ can only be even if fc < | . Let us denote the number of 
tuples ( u i , . . . , Up) E { 0 , . . . , ra—1}P such that fc different i^s occur by # ( p , fc, m). 
This is the number of mappings from { 1 , . . . , p} to { 0 , . . . , m — 1} such that the 
range has cardinality fc. It is well known from combinatorics that the # (p , fc, ra) 
are closely related to Stirling numbers of the second kind, S(p, fc), via 

#(p,k,m) = k\(^jS(p,k). 

This follows easily from the fact that the number of surjective mappings from 
{ 1 , . . . ,p} to { 1 , . . . , fc} is given by k\S(p, fc). Since fc < | , we have 

1 * 1 2 m - 1 2 m - 1 / a j, \P 1 p / 2 l 

2m L^i 2 ^ - ^ ^ V2™'2™) - _P 2 ^ 2 ^ ^ ^ ' , m ^ 
o- 1 , . . . ,crm=0 a = l b = l ^ ' k=0 

^ E M * ) 8 ^ 
fc=o x 7 

fc=0 

-- ^ m ( m - 1) • • • (m - p /2 + l)S(p,p/2) + 

+—m(m - 1) • • • (m - p/2 + 2)c(p) 

= ^ ^ + o(^-'), 

p / 2 - l 
where c(p) := _ ] 2^S(p,fc). 

fc=o 
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On the other hand, for even p, by Equation (4) and Lemma 4 we have 

1 2
m - 1 2 m - l , , v p 

l ^-> i ^ Y ^ A [ a & V 
Om _.__/ o2m ___./ / > l Om ' Om j 2m / - 2^rn ——/ v V 2 m ' 2 

0 " l v > ~ m = O - = 1 6 = 1 

1 m - 1 - 2 m - l V 

= _ V s V TTii2Ui/?n 
2m ___/ 2fc(ui»---'wp) —-- 1 1 

_!,...._p--o 2 m / 3 = l z = l 
r i > • •• >rfc e v e n 

m. 1 -. r>m >— y 
— O m / -• 

2m _ _ / 2fc(ui»---.wp) 4p 
" 1 ,...,up=0 

r l > • • • >rfc e v e n 

1 m _ 1 1 > — V — 
- 22P /-^ 2P/2 

ui ,... ,Up = 0 
r l = - ' = r f c = 2 

# ( p , p / 2 , m ) 
22p+p/2 

= 2^^2)!(p72)5(P'P/2) 

- ^ / 2 5 ( p , p / 2 ) o f p / 2 - n 

Now we can give the proof of Theorem 1. 

P r o o f . From equality (3) it follows that 

A(a(m) , (3(m)) < A(a, /?) < A(a (m) , /3(m)) + 2 . 

For even p, the function x i—+ xp is convex and hence it follows that 

A(a, /3)p < max(A(a(m), /3(m)) p , ( A ( a ( m ) , / 5 ( m ) ) + 2 ) P ) 

< A(a(m), /3(m)) p + ( A ( a ( m ) , / ? ( m ) ) + 2 ) p . 
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Now we have 
i i 

/ f A(a,(3)p da dp 

o o 
i i 

< f f[A(a(m),ß(m))p+(A(a(m),ß(m))+2)p] dad/3 
0 o 

1 1 p - 1 

1 j[2A{a(m),ß(m))p + J2 (^ A(a(m),ß(m))l2^1] dadß 
o o l=0 

=-?-f A(^ ±X+T ("V-1—f AT-. -. 
22m / -* y 2 m ' 2 m / ^ \ Z / 2 2 m ^ \ 2 m ' 2 m 

a,b=l V 7 Z=0 V 7 a ,b=l V 

Since for any shift a E Z m the point set H(a) is a (0,m, 2)-net in base 2 it 
follows that A (^r , ^ r ) = 0 whenever a = 2 m or b = 2 m . Now the result follows 
from Lemma 5. • 

5. The proofs of Theorem 2 and Theorem 3 

The following lemma will be the basic tool in the proofs of Theorem 2 and 
Theorem 3. 

LEMMA 6. Let a E Z-m and let A be the discrepancy function of the digitally 
shifted Hammersley point set H(a). Further let I denote the number of zero 
coordinates of a. Then we have 

«2m I o m 1 o 

- i - y y A ( ± - ± - ) = - ^ - ( 9 m 2 + 15m-36Zm + 36Z2 + 1 6 - 4 2 - m ) . 
22m ___/ Z_v \^2m 2 m y 576 

P r o o f . We have 

2
m - i 2 m - i , h \ 2 1 2 m _ 1 2 m _ 1 

22m" Z_v __-/ I 2 ^ ' 2 ^ J = 2 ^ ---' ---' ' a ' ' ' 
a=l 6=1 ^ ' 2 m a = 1 2 m / 3 = l 

The latter term equals 

2
m - l 2 m - l • m - 1 v 2 

2-- E E ( EH^IK- 1 )^ 1 ^—-® a «»+W(«) ) ) =-A + 2B + C, 
2 m a = l 2m t3=l ^ u=0 ' 
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where 

2
m - l 2 m - l , m - 1 v 2 

A=¥™~ ^ -C ( -C l|2u/3||(öm-„©am+1_i(u))) , 
2 m a = 1 2 m / 3 = l ^ u = ° ' 

CTu+l=° 

2
m - l 2 m - l , m - 1 v 

ß = " _ ^ E E E H2ttl/3|lK-Ul©am+i-iK))V 
2 m a = 1 2 m t f = l ^ -*i=o ' 

4 + 1 = ° 

771—1 v 

Y_ Pu2ß\\ (<*m-u2 © am+1_ i (u2)) ) 
u o = 0 / 

т u _ + l = 

m —1 

X 

ff?lr,-U1 = 1 7 U 2 + 1 

and 
2 m - l 2 m - l / m - 1 . z - i z - i / m - i \ z 

C=2^ E E E l |2"/? | | (a m _ u ©a m + 1 _ i ( u ) ) . 
2 m a = l 2 m / 3 = l ^ u=° ' 

CTu+l=l 

Making use of Lemma 2 and Lemma 4, we find that 

m - l m - 1 Q m .. m - 1 2 m , o 2 u + l 
A = — V V _ 2 m " 2 4- — V 2 7 7 1 - 1 

22m ____/ _____/ 2 4 2 2 m --—' 3 • 2 m + 2 

ui =0 U2=0 ~- n 

*% JLl+l=° CTU2 
+ 1=0 

uiт-wг 

1 
22m" 

m—1 

E 
ui=0 

^ u ^ + l ^ 0 a 

m —1 

E 
u 2 = 0 

•t*2+l = 

o m 

B = - ^ r > > ' ^ 2 ^ 

and 

i m ~ 1 m - 1 o m i m _ 1 o 2 m , o 2 u + l 

r =—— S^ V^ _ 2 m - 2 - + — - V 2 7 7 2 " 1 

2 2 m -------' -----' 2 4 2 2 m --—-/ 3 • 2 m + 2 

u _ = 0 U 2 = 0 u = 0 
C 7 u 1 + l = l CTu2 + l = l °"u + l = l 

U i ^ l Z 2 

Hence it follows that 

1 m _ 1 2 2 m -+ 2 2 u + 1 

^ + 2£ + C< = _ ^ E 3 ^ 2 2 m - 1 

w=0 
i o m 

+ _2^^T 2 r n _ 20 2 - ' - 2 (m -O l + ( « - 0 2 - ( m - 0 ) -

Straightforward computation yields the result. • 
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Remark 4. Setting I = m in Lemma 6 yields the third part of [14, Lemma 4]. 

Now we can prove Theorem 2. 

Proof . Observe that 

(NL2(H(a)))2 

1 1 

= J J(A(a,P))2dadf3 
0 0 

l _ 2 _ m l - 2 ~ m l - 2 ~ m 1 

= J J (A(a,(5)fdad(3 + J J (A(a,f3))2 d(3da 
0 0 0 l - 2 ~ m 

1 l - 2 " m 1 1 

+ / / (A(a,P))2d/3da+ J J (A(a,(3))2dad/? 
\ — 2-rn 0 1_2~™ 1 — 2 _ m 

=:/i + h + h + h • 

Using A(a, 1) = 0 for m-bit a and Remark 3, we find for h that 

l - 2 _ m 1 

h = J J (A(a,P))2d(3da 
0 l - 2 ~ m 

l - 2 ~ m 1 

f f ( A ( a ( m ) , l ) + 2 m ( a ( m ) - a / 3 ) ) 2 d / 3 d a 

0 l - 2 ~ m 

q n 

QTП -I ~~~ 1 

= 2 2 W E / / (^-^) 2d/?da 
a _ 1 %5ř 1 - 2 — 

25 5 25 2 1 
+ 36 • 2 m 9 • 4 m 36 • 4 m 3 • 8 m 9 • 16m ' 
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I3 has the same value as I2 and is calculated similarly. Calculating I4 is no prob­
lem by making use of Remark 3 again and employing the fact that A(l, 1) = 0. 

1 1 

h = J J (A(a,(3))2dadf3 
l_2-'~-l — 2 - m 

1 1 

= J J (A(l,l) + 2m(l-aP))2 
dad/3 

l_2~-i 1 —2_ m 

1 1 

22m f f (l-aßf 

1 —2_ m 1 —2_ m 

7 1 2 
+ 

dadß 

6 • 4m 9 • 16m 3 • 8m 

It remains to analyze Ii. 

l - 2 ~ m l - 2 - m 

h = f f (A(a,/3))2dad/3 
0 0 

l _ 2 - m l - 2 _ m 

= f f (A(a(m),/3(m)) + 2m(a(m)/3(m) - a/3))2 dad/3 

0 0 

l _ 2 _ m l - 2 _ m 

f f (A(a(m),/3(m)))2dad/3 

0 0 

l _ 2 ~ m l - 2 _ m 

+ 22m / / ((a(m)(3(m) - a/3))2 da d/3 
0 0 

1 _ 2 _ m 1 _ 2 - m 

+ 2 m + 1 f f A (a(m) ,(3(m)) (a(m)f3(m) - a{3) da d/3 

0 0 

2 m - 1 2 m - l / , v 2 

1 ^ y r / a b \ 
2m __-/ / v l 2m ' 2m / 22 
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a _____ 
<ym _-i eym -1 2rn 2 m 

+22™ Ľ//(_£-<*) ~4» 
a ~ -• b—1 g - 1 Ь-l 

"——" ——~ 
g b 

2 m _ 1 2

m . - l ~ 7 2 ^ 

+*»>±±//*(£.£) (£-00)*.*, 
a~ 1 b—1 g - 1 _ - l 

~—r 2rn-

=: Ei + E 2 + E3 . 

Prom Lemma 6 we find that 

Ex = - ! - ( 9 m 2 + 15m - 36/ra + 36/2 + 16 - 4 2 " m ) . 
576 

Analyzing E2 is a matter of straightforward computation and yields 

E 2 = (2m - 1)2(32 • 2 m - 25 • 4 m - 8 ) . 
72 • 16m 

So it remains to deal with E3 . Here, we find that 

c\m -1 cym -1 

1 ._ __ - — - A --—\ A / a b \ ab 1 

2m á ___/ ___/ \ 2 m ' 2 m 7 2 ^ m 2 ^ m 

a = l 6 = 1 

2 m —1 2 m —1 -2E E 4^)\^^-2{a + b) + l) 
a=l 6 = 1 V 7 

2
m - 1 2 m - l • 

Lj_ _> + Ь)д(-
a = l 6 = 1 V 

2 m - 1 2 m - l / , 

a b 

24m __-/ ___/ v ^ ' v < / —* \ 2171 ' 2 m 

" 6 = 1 

2

m - 1 2 m - l / , 
1 - - - . - - ^ / a 0 

24m-|-l __-/ / ^ I 2 7 7 1 ' 2 m 

a = l 6 = 1 V 

= : E 4 - E 5 . 

We start with E4. 

2 m — 1 2 m —1 / v ^ 2 m — 1 2 m —1 
— a b \ 1 ---, --^ / a b 

4 2 4 m ——-̂  ——-̂  v 2 m ' 2 m 7 2 4 m —-—' v V 2 m ' 2 m 

a = l 6 = 1 v ' a = l 6 = 1 v 

= Г 24^(E4,l + S4,2)-
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U s i n g L e m m a 1, we find t h a t 

m _ l 2
m - l 2 m - l 

^ = E E H2^ll E 2ma(am_,©am+1_ jW) 
u=o 2m/3=l 2 m a = l 

^u+l=° 

m - 1 2 m - l 2 m - l 

- E E II2"!3!! E 2ma(am_u0am+1_ j (u )). 
u=o 2m/3=l 2 m a = l 

T u+l = 1 

By Lemma 3 and Lemma 4, the latter term is bounded above by 

771 — 1 o m 771— 1 o r n 

V - " /o2m-2 _ o m - 2 , 9 m + n - 2 \ _ ~ ~ ' / o2m-2 _ 9771-2 _ 9 m + t t - 2 \ 

u = 0 u = 0 
CTu+l=0 CTu+l=1 

/ ™-1- " - - I \ 9 m 

= f (Z - (m - Z))22m"2 + ((m - I) - l)2m-2 + ^ 2™+̂ -2 + J " 2m+ -̂2 \ __ # 
\ u = 0 u = 0 / 

°"u + l = 0 CTu + l = 1 

It follows that 

1 _ 1 1 / I m m 
- r— E 4 i < — — — • h : h 
0 4 m ^t'J- — 1 £? Om. 1 £? Am. O Om. O / . m 24m ^ - 16 . 2 m 16 • 4 m 8 • 2 m 8 • 4 m 16 • 4 m 16 • 2 m 

On the other hand, using Lemma 1 and Lemma 2, we have 

m - l 2 m - l m - 1 2 m - l 

E4f2= _2 -2m_1 E £ i i -^n- E -2m_1 E £ ii-^ii • 
u=o 2m/3=l w = 0 2 m / 3 = l 

cru + l = ° CTu+l=1 

It was shown in the proof of [14, Theorem 2] that 

2m —1 
* L om 

_ . /3\\r/3\\ = T . 
2m/3=l 

It is now a matter of straightforward computation to show 

24m 4,2 2TO V8 16, 

Finally we analyze £5 by using Lemma 2 and Lemma 4. Here, we find that 

1 /l m\ 

¥™ \8 ~ 16/ ' £5 

Putting these results together, it is no problem to obtain 
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ra2 19ra lm l2 l 7 
h+h + h + h < ^ - ^ - T б + ï б + 4 + ïб 

ra l 3 
+ 7Г-^Г - - Г ^ Г + 

8 • 2 m 4 • 2 m 16 • 2 m 72 • 4 m 

This is the desired result. D 

We prove Theorem 3. 

P r o o f . The proof is similar to that of Theorem 2, with the only difference 
that one has to establish a lower bound on E ^ i , which is no problem due to 
Lemma 3. D 
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