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(Communicated by Igor Bock ) 

ABSTRACT. The neutral type difference equation 

A(xn-pxn_T) = gn max xs, n = 0 , 1 , 2 , . . . , 
s(z[n — <7,n\ 

where p G R , r is a positive integer, n is a nonnegative integer, { o n } ^ _ 0 *s a 

nonnegative real sequence is studied. The existence and asymptotic properties of 
nonoscillatory solutions are considered. Some oscillation results are also obtained. 

1. Introduc t ion 

In this paper we study the following neutral type difference equation 

A(Xn-PXn-r) = (in m a X Xs > Ti -= 0, 1, 2 , . . . , (1) 
sE[n — cr,nj 

where p G M, r is a positive integer, a is a nonnegative integer, {gn}n°_0 

is a nonnegative sequence and not identical wTith the zero sequence. Let JJL = 
max{r, cr}. By a solution of equation (1) we mean a real sequence {xn}n__ 
wThich satisfies (1) for all sufficiently large n and is not eventually identically 
zero. Such a solution is said to be nonoscillatory if it is eventually positive or 
eventually negative. Otherwise it is said to be oscillatory. 

It is easy to see that {xn}n
<)__ is an eventually positive solution of equation 

A(Xn ~ PXn-r) = ^nX n a' II = 0, 1, 2 , . . . , (2) 

if and only if {—xn}n
<)__ is its eventually negative solution. However, such 

a property is not valid for equation (1). Indeed, {—xn}n
<)

=_^ is an eventually 
negative solution of the equation 

A(Xn-PXn-r)=<ln r
m i n - Xs > 71 = 0 , 1 , 2 , . . . . (3) 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 39A10. 
K e y w o r d s : difference equation, maximum function, nonoscillation, oscillation, asymptotic 
property. 
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MALGORZATA MIGDA — GUANG ZHANG 

Thus, all solutions of (1) are oscillatory if and only if both (1) and (3) do not 
have any eventually positive solutions. 

Nonlinear functional equations involving the maximum function are impor­
tant since they are often met in the applications, for instance in the theory of 
automatic control, see e.q. [6]. Some of the qualitative theory of these equa­
tions has been developed recently, see for example [2] [4], [8], [9], In this paper 
we study the existence and asymptotic behavior of nonoscillatory solutions of 
equation (1). The difference between the asymptotic properties of eventually 
positive and eventually negative solutions is illustrated by some examples. Some 
oscillation results are also obtained. 

For the sake of convenience, all inequalities are assumed to hold for all suffi­
ciently large n. 

2. Existence of nonoscillatory solutions 

In this section, we establish the existence and growth conditions of nonoscil­
latory solutions of equation (1). We need the following well-known theorem of 
Stolz, which is a discrete analog of rHospital's rule (see [1; Theorem 1.8.9]). 

L E M M A 1 ( S T O L Z ' S T H E O R E M ) . Let { u ^ ^ and {vn}n

<)_1 be two real 

sequences such that vn > 0 and Avn > 0 for all large n. If lim vn = oc and 
lim 4 ^ = c, where c may be infinite, then lim ----• = c. °° 

??—»oo n'Vn n->oo Vn 

THEOREM 1. Let p > 0. Then the equation (1) always has an eventually 
positive solution. 

P r o o f . For every nonnegative sequence {gn}^L0 which is eventually not 
identical with the zero sequence one can find a positive sequence {/Ln}^L0 such 
that 

and 

Now, we define a sequence 

oo 

E« л = - oo 
i=0 

lim 
n —>-oo 

°n 
n-1 

E І 
i=0 

к 
: 0 . 

v„ = 

n-1 

2'=° 

5 - 1 

E ІІ lч 

(4) 
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It is easy to check that 

lim ^ = 0 . (5) 
n-+oo V n 

By the Stoltz theorem we have 

n - l 

lim — > q. max vQ = 0. (6) 
n->oo V --—' *%se[i-<r,i\ S 

71 2 = 0 L J 

Let l^ be the Banach space of all real bounded sequences y = {yn}n=n with 
the supremum norm and let 

S={yel0O: (Vn>ni)(0<yn<l)}. 

Clearly, S is a bounded, convex and closed subset of / ^ . Now, we define an 
operator T: S —> l^ by: 

i T , \ ^+PV-^t^- + tY<<li ™ax ,vsVs, n>N, 
(Ty)n = \ i=N *e[*-CT'1] (V 

[N.(Ty)N+(l-N-), n,<n<N, 
where n1 = N — /JL and N is chosen so large that 

v _ 1 n~1 1 
p-^1- + - V g . max v < ^ for n > N. 

Vn Vn £N lse[i-*,i] S~ 2 

We note that, in view of (5) and (6) such an integer N does exist. Thus TS C 5 . 
Let y\y2 <E 5 . Then 

n - l 

iczv )n - c?y )j < P^\yn_T - y2_-i + f E ^ P r x A k1 - tfl 

^ l l l ^ - y 2 ! ! , n > / V , 

and 

\\Tyl - Ty2\\ = sup |T2/n - Ty\\ = sup |Tyn - Ty2 | 
n > n i n>N 

which shows that T is a contraction on S. Hence, there exists y € S such that 
Ty = y. Then, we have 

, 2k+PV-^f^ + tn'S^ ^^,vsVs^ n>N, 
yn= \ i=N *€[I-<T,I] 

f (Ty)N + (1 - f ) , n ^ n f C A T . 
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Obviously yn > 0 for n > nx. Now we set xn = vnyn. Then 

n - l 

Xn ~ PXn-r = ^ + _ _ _ ?i ™X Xs > n > N ' (8) 

Therefore, {# n } n
< ^ n is a positive solution of equation (1). This completes the 

proof. • 

To prove the next theorem we need some preparatory results. 

LEMMA 2. (see [5]) Let x , z : N -> R be such that 

Zn=Xn~ PXn+k > n > max{0, - fc} , 

where p G R and k is an integer. Assume that {xn}n^= 0 is bounded and 
lim z = / G R exists. Then the following statements hold: 

n^foo 

(i) if p = 1, then 1 = 0; 
(ii) z/ |p| ^ 1, t/ien t/ie sequence {xn}n

<^0 zs convergent and lim x n = 7-3— . 

LEMMA 3. Assnrae £/ia£ p > 0. Let {xn}n^=_ be a positive solution of equa­
tion (1) and let xn —pxn_T > 0. Then {xn}n°__ is one of the following types 
of asymptotic behavior: 

a) lim ж = L ф 0; 
n—>oo 

b) lim x n = oo. 

P r o o f . Let {xn}^__ be a positive solution of (1). Set zn = xn — pxn_T . 
Then z n > 0 and Azn > 0, and the sequence {Azn}^_0 is eventually not 
identical with the zero sequence since {<1n}£_0 is eventually not identical with 
the zero sequence. Hence, since there exists an index ni such that Azn > 0, 
{zn}^L0 is eventually a nondecreasing sequence and we have 0 < lim zn = I 

< oo. 

Let / = oo. Since zn = xn — pxn_^ < xn, we get oo = lim zn < lim xn, 
11 n->oo n n-^oo " 

i.e. lim x = oo. 
n-^oo n 

If Z < oo and {xn}Z___l is bounded, then Lemma 2 implies that lim xn 
njn— \i n-^oo n 

exists when p ^ 1. But x > 2 and lim zn > 0, so lim xn = 0 is imposs-
n n n->oo n n-^oo n 

ible. When p = 1, from Lemma 2 we have I = 0, which is a contradiction. If 
/ < oo and {xn}??_ll is unbounded, then there exists a subsequence {xn } 

L n J Tl /x L II k J /{• (J 

of {x 1°° such that 
L n J n= — u 

xn = max xn and lim a: = oo. 
n k 0<n<nk

 n k^oo Uk 
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For p G (0,1) we have zn > xn (1 — p) —r oo as k —r oo, which contradicts the 
boundedness of {Z^^Q. 

For p = 1, we have x n > xn_T + _• > • • • > x n_ / e r + k_ -> oo as fc -» oo. 

For p > 1, we have x n > pxn_T > • • • > phxn_kr -» oo as fc -> oo. 

This implies that b) holds. The proof is complete. • 

From Theorem 1 and the proof of Lemma 3 we obtain following result. 

THEOREM 2. Let p > 0. Fften, frased on the range of p we have: 
(i) if p = 1. equation (1) ftas an unbounded positive solution {xn}n°__ with 

lim x = oo; 

(ii) «/ 0 < p < 1. ana7 

oo 

E^ = c '̂ ( 9 ) 
2 = 0 

lften equation (I) has a positive solution {x„}??__„ with lim x„ = oo; 
run— a n-+oo n 

(iii) z/ p > 1, equation (1) foas an unbounded positive solution \xn}n
c>__ 

which tends to infinity exponentially. 

P r o o f . From Theorem 1 there exists a positive solution {xn}
c
n__ of equa­

tion (1). By (8), it follows that 

xn — pxn _T > 0 for n > N. 

(i) and (iii) follow immediately from the proof of Lemma 3. The assertion (ii) 
follows from (8) and (9) directly. Indeed, by (8) we have 

n - l 

xn > xn - pxn_r >]>2qi max xs. 
i=N se[i-<,,i] 

Let us denote 

Zn =Xn~ PXn-r ' 

Then xn > zn and by (1), L\zn > 0. Hence, from the above inequality we get 

n—1 n—1 

xn > _] Ii ™ a x *, >- ZN _] % . " > N • 

Letting n —> c», by (9), we get lim a;n = oo. The proof is complete. • 
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oo 

THEOREM 3. Assume p > 0. p 7̂  1 and ^2 Q% < °° • Then, the equation (1) 
has a bounded positive solution. n=0 

P r o o f . Let l^ be the Banach space of all real bounded sequences x = 
{xn}n

<)
:=n with the supremum norm. We need to consider the following twro 

cases: 0 < p < 1 and p > 1. 
Case 1: 0 < p < 1. 
Let us choose a positive integer N sufficiently large such that N — n>nl, and 

£«,< 
n=N 

We define a subset S of 1 as 

i - p 

S = { s Є . r o : ( V r г > Л 0 ( ì < я n < l ) } , 

Clearly, 5 is a bounded, convex and closed subset of l^. Now, we define an 
operator T: S -» l^ by: 

{ oo 

1 — p + px„ - T rj • max xB, n > TV + r , 

( r x ) ^ ^ , nx < n < iV + r . 
For every x £ S, n > N we have 

( T x ) n < l - p + p = l , 

and 

( T x ) n > l - p + ± p - ± ( l - p ) = ± . 

Hence, TS C S. Let xx,x2 e S. Then 
OO 

IC lV), - (Tx2)n | < p\xn_T - x2
n_T\ + ~ > . max \x\ - x2

s\ 
*—* s£[i — cr,i\ 
i=n 

oo 

1 1 1 2 I I 1 1 1 2 I I \ . ^ 

< p\\x — x + \\x — x \\ > q, 
— * II II II II Z—/ ^ 

<IK-^2ll(p + 1 i £ ) l—p\ І + P Ц 1 2 | | ^ 
1 — ^ \\x — X , n > n 1 ' 

and 

ITæ1 - T ж 2 | | = sup K Г * 1 ^ - (Tx 2 ) n | < -Ц---I 
П > П i 

which shows that T is a contraction on S. Hence, there exists x e S such 
that Tx = x. It is easy to see that {xn}™=n is a positive bounded solution of 
equation (1). 
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Case 2: p > 1. 
Let JV be so large that N — n>nl and 

E *< p - i 

n=N 

Define a subset S of l^ and a mapping T on S as follows: 

5 = { x e / T O : ( V n > i V ) ( p < x „ < 2 p ) } 

and 

( oo 
P — 1 + -x„ , _ + - Y! a,- max x e , n > TV + r , 
-^ r> n + r r> —— ^^ _ r . .-, 5 ' — ' / i 1 \ 

V Pi=n+T * G [ I - < M ] ( l l ) 

(Tx)N+r , nx < n < N + r . 
It is easy to show that T 5 C S and ||7V-T*l<^||*l-:rl 

n n — 2p M M 

for xl ,-T2 G £\ Then there exists an element x G £ such that Tx = x. Clearly, 
{xn}n

<__n is a positive bounded solution of (1). D 

Remark 1. For eventually negative solutions of equation (3), we can also obtain 
similar results. They are omitted. 

3. Asymptotic behavior of nonoscillatory solutions 

In this section, we will obtain asymptotic properties of nonoscillatory solu­
tions of equation (1). 

THEOREM 4. Let p > 0 and xn — pxn_T > 0. Assume that (9) holds and 
{xn}n

<)__ is an eventually positive solution of equation (1). Then lim xn = oo. 

P r o o f . Let {xn}n
<__ be an eventually positive solution of (1). Set 

Zn=Xn~PXn-T- (12) 

Then zn > 0, Azn > 0 and {zn}^!_0 is eventually not identically zero. Therefore 
there exists a constant c > 0 such that xn> zn> c. Summing (1) from n0 to 
n — 1, with n0 sufficiently large, we get 

n—1 n—1 

Zn ~Zn0=Yl «i J?8* .,X» >C^2(li-
sEU — <7,l| . — 

^=no z = n o 

In view of (9) this implies that lim 2 = 0 0 . Hence, lim a. = 00. The proof 
n - » o o ™ n—>-oo n 

is complete. D 
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THEOREM 5. Assume that (9) holds and 0 < p < 1. If {xn}n
<__ is a 

nono s dilatory solution of equation (1). then either lim \x I = oo or lim x = 0 . 
n ^ - o o n—>oo 

P r o o f . Let {xn}n
<)

=_ be an eventually positive solution of (1) and let 
{zn}n°_0 be defined by (12). If z > 0, then by Theorem 4, lim xn = oo. Let 

n-^-oo 

zn < 0. Then p 7̂  0 and x n < pxn__. Hence, by iteration one can see that 

Xn+kr < P^n -> ° a S ^ ° ° ' 

Therefore, lim x = 0. If {xn}Z<__Ll is eventually negative, the proof is similar. 
n—>oo l^ 

This completes the proof. • 

The following result is an immediate consequence of Theorem 5. 

COROLLARY 1. Suppose that (9) holds and 0 < p < 1. If {xn}™=_ is a 
hounded nonosdilatory solution of equation (1), then lim x = 0. 

n—>oc 

THEOREM 6. Assume that (9) holds and p > 1. If {xn}™__ is a bounded 
nonoscillatory solution of equation (1). then lim x = 0. 

n—»oo 

P r o o f . Let {xn}
(£_._ be a bounded eventually positive solution of (1) and 

{zn}£L0 is defined by (12). Then {zn}™=0 must be negative. Indeed, if zn > 0, 
then by Theorem 4, lim x^ = 00, which is a contradiction to the boundedness 

n->oo 

of {x }°?=Q. Thus, wre have lim *, = / < 0 is finite. Summing equation (1) 
n—YOG 

from n to 00, we get 

l~zn = _l QІ ™ a x *, 
*—* sЄ[г —cг,гj 

Therefore, we have l iminfx n = 0. Note that —px < zn, so we ha\e 
n—>-oo 

lim zn = 0. Hence, by Lemma 2, lim xn = -r~- — 0. The ca e when {x\^ ,, 
r.-»oo n n->oo n l P n n V 

is eventually negative, is similarly proved. This completes the proof. • 

THEOREM 7. Assume that p > 1 and 0 < q < qn. If {xn}™=_ is an event­
ually positive solution of equation (I), then either lim x = 00 or lim x = 0 . 

n—->oo n—>oo 

P r o o f . Let z„ > 0. Then, as in the proof of Lemma 3, we get lim xn = oc. 
n n ^ o o n 

If xr„ < 0 holds, then lim £_ = l is finite. Assume, for the sake of contradic-
n n ^ o o n 

tion, that {xn}^__ does not tend to zero as n -> 00. Then, lim sup x n = a > 0. 
n—>-oc 

There exists a sequence {nk}^=0 such that nk+1 — nk > a and xnk > | for 
each k G N. Thus 

max x5 > -|- for n G [rt^, n^H-a] 
s G [ n - <r,n] — 
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and 
r i fc+cr- l 

E aqa 
q- max xD > . 

c C 1 — r r t /. 
sЄ[i—cг,ѓ] 2 

Summing (1) we get 

~ Q se[i-a,i} 

oo nfc+cr —1 

^^2 J2qi j?3* ,xs 
ferrrl Z = 72fc 

OO 

. v-^ag<x 

k = l 

which is a contradiction. This completes the proof. • 

The following corollary is a consequence of Theorem 7. 

COROLLARY 2. Suppose that p = 1 and 0 < q < qn. Then a bounded event­
ually positive solution of equation (1) satisfies lim x = 0. 

71 —>-00 

E X A M P L E 1. Consider the difference equation 

A(xn - pxn_T) = - L - ( 2 > - 1) max xg . (13) 
ZL ~* 5E[n —cr,nj 

When TjT < p < 1, equation (13) satisfies all conditions of Theorem 5. If p > 1, 
all conditions of Theorem 6 hold, and if p = 1, all conditions of Corollary 2 are 
satisfied. In fact, (13) has a positive solution {xn}n

<

=_ = {_7r}^__ • 

Note that for eventually negative solutions of equation (1), Theorem 7 and 
Corollary 2 may not be true. It is shown in the following examples. 

E X A M P L E 2. Consider the difference equation 

A ( x n - 4xn_2) = - ^ - - ^ x , , n = 1,2 . . . . 

All assumptions of Theorem 7 are satisfied, yet the above equation has an eventu­
ally negative solution { n̂}^°__2 = { - 2 n ( l + ( - l ) n ) - 2 - n } ^ L _ 2 , which satisfies 
lim sup xn = 0 and l iminfx n = —oc. 

n—>oo n—>-oo 

E X A M P L E 3. Consider the difference equation 
3 

A(x„ — a: o) = ; -— max xc , n = 1, 2 , . . . . 
V n n~2) 3 + ( - l ) n se[n-2,n] 5 ' 

All conditions of Corollary 2 are satisfied, but the above equation has a bounded 
eventually negative solution {xn}n

<

=_2 = | — [l -f (—l) n + 2 _ n ] } ., which is 
divergent. 
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4. Oscillation results 

Our aim in this section is to establish conditions for the oscillation of all 
bounded solutions of equation (1). We will need the following lemma, which can 
be found in [1], [7]. 

LEMMA 4. Assume { r / n } ^ 0 is a positive real sequence and I is a positive 
integer. If 

then 

(i) the difference inequality 

Axn ~ VnXn+l > ° 

has not any eventually positive solution; 
(ii) the difference inequality 

Axn ~ QnXn+l < ° 

has not any eventually negative solution. 

Due to Theorem 2, we know that equation (1) has an eventually positive 
solution when p > 0. Thus, we will first discuss its oscillation for p < 0. 

THEOREM 8. Suppose that p < 0. p ^ — 1 and the condition (9) holds. Then 
every bounded solution of equation (1) is oscillatory. 

P r o o f . Assume, for the sake of contradiction, that {xn}n=:_ is bounded 
eventually positive solution of (1). Let {zn}^L0 be defined by (12). Then zn > 0, 
Az > 0 for sufficiently large n, say n > n 0 , lim z = / E M, . For p / — 1, 

n—>-oo ' 

by Lemma 2, there exists lim x . Summing (1) from rz0 to oo we get 

n—>-oo 

oo 

1 - Zn0 = J2 «. i ? 1 ^ ,Xs < °° • 
—* sE[t — cr^l 

In view of (9), this implies that lim x — 0. Then, by Lemma 2, we obtain 
n—»oo 

/ = (1 — p) . 0 = 0. This contradicts / > 0. The proof for eventually negative 
solution is similar and will be omitted. • 

The following result is an immediate consequence of Theorem 5 and 
Theorem 6. 
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THEOREM 9. Assume that p > 0. p ^ 1 and condition (9) holds. Then every 

bounded solution of equation (1) is either oscillatory or tends to zero as n —> oo . 

The next theorem gives sufficient conditions for the oscillation of all bounded 
solutions of equation (1) when p > 0, p ^ 1. 

THEOREM 10. Assume that p > 0. p / 1 and (9) holds. Suppose further that 
the inequality 

Azn + \<lnZn+T > ° 

has not any eventually positive solution and the inequality 

&*n + fan+r < 0 

has no any eventually negative solution. Then every bounded solution of equa­
tion (1) is oscillatory. 

P r o o f . Assume, for the sake of contradiction, that {xn}n
c
=_ is a bounded 

eventually positive solution of (1). Then, by Theorem 4, { z n }^ = 0
 m u s ' t be nega­

tive. Note that by (12), xn > -\zn>. Then max x > -\z> . 
p sE[n—cr,n] p 

Substituting it to (1) we get 

^zn + ^qnzn+T>0, 

which is a contradiction. Similarly, for a bounded negative solution we have 
^ n > 0 , A z n < 0 a n d s n < - J s n + T . 

Therefore max xs > —-zn__T and we get 
sG[n-(j,n] P 

This contradiction completes the proof. • 

The following corollary is a consequence of Theorem 10 and Lemma 4. 

COROLLARY 3. Let p > 1. p ^ 1 and (9) holds. Furthermore, assume that 

n+r-l . . T + 1 

l iminf i Y q{> (-^rrS 
n-+oo p -"-—̂  l \ T + 1 / 

i=n 
Then every bounded solution of equation (1) is oscillatory. 
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THEOREM 1 1 . Assume that p = 1 and (9) holds. Suppose further that the 
inequality 

A 2y n > -qn+ryn+r 

has not any eventually positive solution and the inequality 

A v < —a , v , 
&n — ry ^n+T&n+T 

has not eventually negative solution. Then every bounded solution of equation (1) 
is oscillatory. 

P r o o f . Assume, for the sake of contradiction, that {xn}n^__ is a bounded 
eventually positive solution of (1). Set wn = xn_T — xn. Then, by (1), AHJn < 0, 
and by Theorem 4, wn > 0, eventually. Thus we have 

Xn ~ Xn+T + Wn+T 

n + 2 r - l n + 2 r - l 

^ X — r + 7 _ l w i = Xn+2r + Wn+2r + \ Yl W< 
i=n+T 

n + 3 r - l n + 2 r -

>Xn+2T + \ Y.W^ + h S 

bn+T -T- __j wi ~ «^n+2r ^ ^ n + 2 r T ~ 
i=n+T i=n+T 

n + 3 r - l ^ n + 2 r - l 

W-
T 

i=n+2T i=n+T 
n + 3 r - l 

> Xn+2r + \ _] Wí 

i—n+т 

n+kт—1 

> x„^ + - J2WІ 
І = П + T 

ün+kт + т Z_j 
oo 

^ E « v T 
ż = n + r 

1 °° 1 
Set yn = - £ w-. Hence, xn > yn and AHn = --wn+T. Therefore A2yn = 

1 i=n+T ' 
AHJn + r and by (1) we get 

A2£/n = -\ qn+r max x8>± qn+Tyn+T , 
' se[n+T — a,n+T\ ' 

which is a contradiction. 
If {xn}n

<L_ is a bounded eventually negative solution of (1), we have wn < 0 
and AHJn > 0 eventually. 

Thus, we have 
oo 

Xn = Xn+r + Wn+r < 7 _l Wi • 
2 = n + r 
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Let {yn}^L0 be defined as above. Then xn < yn and by (1), we get 

A 2 y n < -qn+Tyn+T , 

which is a contradiction. This completes the proof. • 
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