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ABSTRACT. The neutral type difference equation

Az, —pz,_ . )=gq, max <z n=0,1,2,..

s€[n—o,n] 82 »

where p € R, 7 is a positive integer, o is a nonnegative integer, {q,}32 is a
nonnegative real sequence is studied. The existence and asymptotic properties of
nonoscillatory solutions are considered. Some oscillation results are also obtained.

1. Introduction

In this paper we study the following neutral type difference equation

Az, —pz, )= qnsgﬁlz}z{n}xs, n=20,1,2,..., (1)
where p € R, 7 is a positive integer, o is a nonnegative integer, {q,}>° ,
is a nonnegative sequence and not identical with the zero sequence. Let pu =
max{7,0}. By a solution of equation (1) we mean a real sequence {z,}>°
which satisfies (1) for all sufficiently large n and is not eventually identically
zero. Such a solution is said to be nonoscillatory if it is eventually positive or

eventually negative. Otherwise it is said to be oscillatory.
It is easy to see that {z, }3° _ ., 1s an eventually positive solution of equation

Alx, —px,_.)=q,z, ., n=20,1,2,..., (2)
if and only if {-=z,}52_, is its eventually negative solution. However, such
a property is not valid for equation (1). Indeed, {—z,}72 _, is an eventually
negative solution of the equation

Az, —pz,_,)=gq, min =z
s€[n—o,n]

., n=0,1,2.... (3)
2000 Mathematics Subject Classification: Primary 39A10.
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Thus, all solutions of (1) are oscillatory if and only if both (1) and (3) do not
have any eventually positive solutions.

Nonlinear functional equations involving the maximum function are impor-
tant since they are often met in the applications, for instance in the theory of
automatic control, see e.q. [6]. Some of the qualitative theory of these equa-
tions has been developed recently, see for example [2] [4], [8], [9]. In this paper
we study the existence and asymptotic behavior of nonoscillatory solutions of
equation (1). The difference between the asymptotic properties of eventually
positive and eventually negative solutions is illustrated by some examples. Some
oscillation results are also obtained.

For the sake of convenience, all inequalities are assumed to hold for all suffi-
ciently large n.

2. Existence of nonoscillatory solutions

In this section, we establish the existence and growth conditions of nonoscil-
latory solutions of equation (1). We need the following well-known theorem of
Stolz, which is a discrete analog of I'Hospital’s rule (see [1; Theorem 1.8.9]).

LEMMA 1 (STOLZ’S THEOREM). Let {u, }>°, and {v,}5°, be two real
sequences such that v, > 0 and Av, > 0 for all large n. If hm v, = oo and
lim f\#s = ¢, where ¢ may be mﬁmte then hm = o=c.

n—00 n n

THEOREM 1. Let p > 0. Then the equation (1) always has an eventually
positive solution.

Proof. For every nonnegative sequence {q,}°° , which is eventually not
identical with the zero sequence one can find a positive sequence {h, }°°  such
that

o0
Z q;h;, = 00
i=0

and
lim qin =0.
n—oo N1
Z g;h;
Now, we define a sequence
j—1
no1 2 aih;
ST 2i=0
v,, = 29=° (4)
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It is easy to check that

v
lim —2=T =0. (5)
n—oo ’Un

By the Stoltz theorem we have

Let [, be the Banach space of all real bounded sequences y = {y,}7>, with
the supremum norm and let

S={yely,: (Yn>n)(0<y, <1)}.

Clearly, S is a bounded, convex and closed subset of [ . Now, we define an
operator T: S — [ by:

+p=riner 4 max v n>N,
(Ty), = 5om TP Z 0 Jax vy, >
%(Ty)N—i-(l——ﬁ), n, <n <N,

where n;, = N — p and N is chosen so large that

n T 1
+ Z q; serrzlazc 1]v 5 for n>N.

We note that, in view of (5) and (6) such an integer N does exist. Thus T'S C S.
Let y',4% € S. Then

(Tyh), — (Ty?),| < p2= len Y T|+—§qls€rrzla§lv vi —v?|
_§|Iy -v*l, n>N,
and
ITy" = Tw?|| = sup [Ty, ~Ty;| = sup Ty, — Tv;|
<3l =l

which shows that T is a contraction on S. Hence, there exists y € S such that
Ty =y. Then, we have

-1

_ 2’(} +pM Zqz max ’Usys) nZN)
Yo = " s€[i—a,i]

%@wN+u—%y n, <n<N.
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Obviously ¥,, > 0 for n > n,. Now we set =, = v,y, . Then

n—1
1
T —pT == E . ma; , >N. 8
! g o 2 ! i=N qlserg_??i]xs "= ( )

Therefore, {z,

nen, is a positive solution of equation (1). This completes the
proof.

a

To prove the next theorem we need some preparatory results.
LEMMA 2. (see [5]) Let z,z: N — R be such that

Zy =T, = DLy n > max{0, -k},
where p € R and k is an integer. Assume that {x,}>°

~o 18 bounded and
lim z, =l € R exists. Then the following statements hold

n—oo
(i) ifp=1, thenl=0;
(ii) if [p| # 1, then the sequence {x,}5°  is convergent and lim z, =L

n—oo 1-p
LEMMA 3. Assume that p > 0. Let {z,,
tion (1) and let x,, —px, > 0. Then {z,,
of asymptotic behavior:
a) lim z,=L#0;

b) 11m T, = 00.
n—oo

n-—u be a positive solution‘of equa-
ne_, 1s one of the following types

Proof. Let {z, ., be a positive solution of (1). Set z,
Then 2, > 0 and Az > 0, and the sequence {Az }>° , is eventually not
identical with the zero sequence since {q,}>° , is eventually not identical with
the 7ero sequence. Hence, since there exists an index n, such that Az, >0,

—PT,

{2}, is eventually a nondecreasing sequence and We have 0 < 11m z =1
n— oo

< 00.

Let | = co0. Since z, =, —px,__ < x,, we get 0o = nll)ngozn < nll)n;o:E
ie. lim z = oo.

n—oo

If | < oo and {z,};>_, is bounded, then Lemma 2 implies that lim z,

17,—)00
exists when p # 1. But z, > z, and lim 2z > 0, so hm z, = 0 is imposs-
n—oo

ible. When p = 1 from Lemma 2 we have [ = 0, Wthh 1s a contradiction. If

I < oo and {z,}ne_ u 18 unbounded, then there exists a subsequence {3:

nk}]\‘ 0
of {z,}72_, such that

T, = max T, and lim z, = oo.
k 0<n<ng k— oo
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For p € (0,1) we have Z,, 2, (1=p) = 0o as k — oo, which contradicts the
boundedness of {z,}5° .

For p =1, we have z, Za:n_r—}—%z '--Zmn_k7+k% — o0 as k — oo.
For p>1, wehave z, > pz, __>--- Zpkmn_kT — 00 as k — 00.
This implies that b) holds. The proof is complete. a

From Theorem 1 and the proof of Lemma 3 we obtain following result.

THEOREM 2. Let p > 0. Then, based on the range of p we have:

(i) if p =1, equation (1) has an unbounded positive solution {x }5° _  with
lim z, = oo,
n—o0

(ii) f 0<p< 1, and

o0
Z q;, = 0, (9)
i=0

then equation (1) has a positive solution {z,}2 _ with ]im 0T, =00,

(iii) of p > 1, equation (1) has an unbounded positive solution {z, n,_”
which tends to infinity exponentially.
Proof. From Theorem 1 there exists a positive solution {z,
tion (1). By (8), it follows that

e of equa-

z,—pzr,_, >0 for n>N.

(i) and (iii) follow immediately from the proof of Lemma 3. The assertion (ii)
follows from (8) and (9) directly. Indeed, by (8) we have

z,>T, — an_E q; maxx

s€li—o,1]

Let us denote
“p =Tp = PTy_r-

Then z, > z, and by (1), Az, > 0. Hence, from the above inequality we get

n
nZZq maxz>zNZqz, n>N.
i=N

'seli—o,i]

Letting n — oo, by (9), we get lim z, = oo. The proof is complete. O
n— oo
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THEOREM 3. Assume p >0, p# 1 and Z q; < 0o. Then, the equation (1)
has a bounded positive solution.

Proof. Let I be the Banach space of all real bounded sequences z =
{z, }nL,, with the supremum norm. We need to consider the following two
cases: 0 <p<1landp>1.

Case1: 0 <p< 1.
Let us choose a positive integer IV sufficiently large such that N — u > n,, and

o0 1 _
doa<—
n=N

We define a subset S of [ as

S={zel,: (\n>N)(3<z,<1)}.

1
2
Clearly, S is a bounded, convex and closed subset of /. Now, we define an
operator T: § — [ by:

1—-p+pz,_ g, max z,, n>N+T,
(T;L')n: Zz;z tseli—o,i] (10)

(Tz)n 47 s ny<n<N+T.
For every z € S, n > N we have
(Tz), <1l-p+p=1,
and
1

1 _1
(Tav)n21—p+§p—§(l—p)_2.

Hence, TS C S. Let 2!, 22 € S. Then

|(Tm1) T:c2) |<p|IL‘n ST T|+Zqz max :c —x?’
=n

s€li—o,i]

<ol a7+ et - a7 Y,

i=n

1-p 1+
Hm1—$2||(p+—):TpHxl—m2l|, nz>ng,

IN

and
1
7ot T2 = sup (), — (T2, | < L2t - 2],

n>ni
which shows that T is a contraction on S. Hence, there exists x € S such
that Tx = x. It is easy to see that {z, is a positive bounded solution of
equation (1).

nn
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Case 2: p> 1.
Let N be so large that N — p > n, and

Z g < pb—1
n=N
Define a subset S of [ and a mapping T" on S as follows:
S={zel : (Yn>N)(p<z,<2p)}
and

p—1+1iz I q; max z,, n>N+T,
(Tz), = prnt z%:+T’se[z o] * (11)

(TT) N yr s ny<n<N+T.
It is easy to show that T'S C S and

1+
|72t 722 < <3|t ~ 27|

for ', 22 € S. Then there exists an element z € S such that Tz = 2. Clearly,
{z, }oL,, is a positive bounded solution of (1). O

Remark 1. For eventually negative solutions of equation (3), we can also obtain
similar results. They are omitted.

3. Asymptotic behavior of nonoscillatory solutions

In this section, we will obtain asymptotic properties of nonoscillatory solu-
tions of equation (1).

THEOREM 4. Let p > 0 and z, —pzx,__ > 0. Assume that (9) holds and

x, }oo _ , 15 an eventually positive solution of equation (1). Then lim z, = co.
n K n—oc

Proof. Let {z, be an eventually positive solution of (1). Set

ne—p
zn=x —pT, .. (12)
Then z, >0, Az, > 0 and {z,}52 , is eventually not identically zero. Therefore

there ex1sts a constant c>0 such that z, > z, > c. Summing (1) from n, to
n — 1, with n, sufficiently large, we get

Zqz max :c >chl

s€[i—o,i]
= no
In view of (9) this implies that hm z, . Hence, lim z, = co. The proof
n— oo n—oo
is complete. O
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THEOREM 5. Assume that (9) holds and 0 < p < 1. If {z }}°_, is a
nonoscillatory solution of equation (1), then either lim |z, |=o00 or lim x, =0.
n—o0 n—o0

Proof. Let {z,};2_, be an eventually positive solution of (1) and let
{2,122, be defined by (12). If z, > 0, then by Theorem 4, lim x, = co. Let

n—oo

2, <0.Then p #0 and z, < pr,__. Hence, by iteration one can see that

£n+kr<pk‘arn—>() as k— o0.
Therefore. hm z, =0.1f {z,};2 _ is eventually negative, the proof is similar.
n—
This completcs the proof. O

The following result is an immediate consequence of Theorem 5.

COROLLARY 1. Suppose that (9) holds and 0 < p < 1. If {z };2_ isa
bounded nonoscillatory solution of equation (1), then lim z =0.
n—oc

THEOREM 6. Assume that (9) holds and p > 1. If {z,}7° _ is a bounded
nonoscillatory solution of equation (1), then le z, =0.
n o0

Proof. Let {z,};° , beabounded eventually positive solution of (1 ) and
{z,}°°, is defined by (12). Then {z,}°° , must be negative. Indeed. if z
then by Theorem 4, lim z, = oo, which is a contradiction to the boundedness

n—oo
of {z,}°°,. Thus, we have lim ., = [ < 0 is finite. Summing equation (1)
n—0
from n to oo, we get
o
l—2z = max .r
" qusﬁ[z o,1] s
T n
Therefore, we have liminfz, = 0. Note that —px,6 _ < z,, so we have
n—oo
nll?olc z, = 0. Hence, by Lemma 2, lim z, = ﬁ = 0. The ca e when {z }>*
is eventually negative, is similarly proved. This completes the proof. O

THEOREM 7. Assume that p> 1 and 0 < ¢ <gq,. If {z };2_ is an event-

ually positive solution of equation (1), then either lim r, = oo or lim z, =0.
n—oo n—oo

Proof. Let z, > 0. Then, as in the proof of Lemma 3, we get lim z, = oc.

n— oo
If z, <0 holds, then lim z, =1 is finite. Assume, for the sake of contradic-

R—y00

tion, that {r n——u does not tend to zero as n — oo. Then, limsupz, =a > 0.
n—oc

There exists a sequence {n,}° such that n, , —n, > ¢ and z, > 5 for

each k € N. Thus

max I, > for n € [ng,n,+o]
s€ln—om] ° 2
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and

Summing (1) we get

k=1 1i=n
> aqo
k=1
which is a contradiction. This completes the proof. O

The following corollary is a consequence of Theorem 7.
COROLLARY 2. Suppose that p =1 and 0 < g < q,,. Then a bounded event-
ually positive solution of equation (1) satisfies lim z, = 0.
n—oo

ExAMPLE 1. Consider the difference equation

1
Az, —pz,_.) = 571 (27p—1) max (13)

s€ln—om] ¢

When 57 < p <1, equation (13) satisfies all conditions of Theorem 5. If p > 1,
all cond1t10ns of Theorem 6 hold, and if p =1, all Condltlons of Corollary 2 are
satisfied. In fact, (13) has a positive solution {x ey = {2%}":_#.

Note that for eventually negative solutions of equation (1), Theorem 7 and
Corollary 2 may not be true. It is shown in the following examples.

EXAMPLE 2. Consider the difference equation
15
Alx, —4zx = ———— max
( " n—2) 3+ (—1)"’ s€[n—2,n]
All assumptions of Theorem 7 are satisfied, yet the above equation has an eventu-
ally negative solution {z,}®® _, = {- 2"(1+( 1)) —27" 1 which satisfies

n=12....

Z,,

limsupz, = 0 and liminfz, = —oo.
n—o00 n—00
ExamPLE 3. Consider the difference equation
3
Alz, —x =———— max z,, n=12....
( " n—2) 3+ (—1)” s€n—2,n] °

All conditions of Corollary 2 are satisfied, but the above equation o}éas a bounded
eventually negative solution {z,}% _, = { [1+(-1)" +2_"]} ,» Which is
ne=—

divergent.
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4. Oscillation results

Our aim in this section is to establish conditions for the oscillation of all
bounded solutions of equation (1). We will need the following lemma, which can

be found in [1], [7].

LEMMA 4. Assume {q,}°, is a positive real sequence and | is a positive

integer. If
n+l—1

L l )H—l
fmint 3 0> (1)
then
(i) the difference inequality
A‘Tn T4y Ty 20
has not any eventually positive solution;
(ii) the difference inequality
Az, —q,7,,,; <0

has not any eventually negative solution.

Due to Theorem 2, we know that equation (1) has an eventually positive
solution when p > 0. Thus, we will first discuss its oscillation for p < 0.

THEOREM 8. Suppose that p < 0, p # —1 and the condition (9) holds. Then
every bounded solution of equation (1) is oscillatory.

Proof. Assume, for the sake of contradiction, that {z, n__ﬂ is bounded
eventually positive solutlon of (1). Let {z,}>°, be deﬁned by (12). Then z, > 0,
Az, > 0 for sufficiently large n, say n > ny, lim z, =1 € R, . For p # -1,

n—oo

by Lemma 2, there exists lim z, . Summing (1) from n, to co we get

n—o00
l— 2
Z qlsenza?z]x < 0o
= no
In view of (9), this implies that lim z, = 0. Then, by Lemma 2, we obtain

n—oo

l =(1—-p)-0=0. This contradicts ! > 0. The proof for eventually negative
solution is similar and will be omitted. O

The following result is an immediate consequence of Theorem 5 and
Theorem 6.
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THEOREM 9. Assume that p > 0, p # 1 and condition (9) holds. Then every
bounded solution of equation (1) is either oscillatory or tends to zero as n — 0.

The next theorem gives sufficient conditions for the oscillation of all bounded
solutions of equation (1) when p >0, p # 1.

THEOREM 10. Assume that p >0, p # 1 and (9) holds. Suppose further that
the inequality

AZn + %qnzn—kr 2 0
has not any eventually positive solution and the inequality
Az, + %qnznw <0

has no any eventually negative solution. Then every bounded solution of equa-
tion (1) is oscillatory.

Proof. Assume, for the sake of contradiction, that {z,}2° _  isa bounded
eventually positive solution of (1). Then, by Theorem 4, {2,}°° , must be nega-

n=0
- i 1
tive. Note that by (12), z,, > =72, ,. Then sefhax T, > =y,

Substituting it to (1) we get
Az + —1 z >0
n P qn n+rt =—

which is a contradiction. Similarly, for a bounded negative solution we have

2, >0, Az, <0and z, < —%zm_r.
Therefore max z, > —1z and we get
s€ln—om] * T P ntT 8

1
A‘zn + Eqnznﬂ-‘r <0.
This contradiction completes the proof. O

The following corollary is a consequence of Theorem 10 and Lemma 4.

COROLLARY 3. Let p> 1, p#1 and (9) holds. Furthermore, assume that

n+71-1
. . l ( T >T+1
iminty 2oa> (57)
i=n

Then every bounded solution of equation (1) is oscillatory.
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THEOREM 11. Assume that p = 1 and (9) holds. Suppose further that the
inequality
1

2
A Yn > ?qn-i-‘ryn—i—r

has not any eventually positive solution and the inequality
2 1
A Yn < ?qn+7yn+r

has not eventually negative solution. Then every bounded solution of equation (1)
1s oscillatory.

Proof. Assume, for the sake of contradiction, that {z,,}°° _ isa bounded
eventually positive solution of (1). Set w,, = z,,__ —x,_. Then, by (1), Aw, <0,
and by Theorem 4, w, > 0, eventually. Thus we have

‘rn = In—l»'r + wn+r

1 n+27—1 1 n+27—1
an+r+? Zwi:wn+2‘r+wn+2r+; zwi
i=n+T1 i=n-+T1
1 n+3r—1 1 n+27—1
Zmn+2r+; Zwi+; Zwi
i=n+2T i=n+T1
1 n+3r—1
2 Tpyor Tt p Z w;
1=n+T
n+kr—1
> xn+k‘r + Z w;
00 t=n-+T
> 1 Z w; .
=7 i
t=n+T1
Set y = L % w,. Hence, z_ >y and Ay = —Lu Therefore A%y =
b yn‘T. 7" ) n—yn yn— T ntT yn_
1=n+T1
—-—i—Aw,H_T and by (1) we get
1 1
A%y == max T, > = 1
yn T qn+TS€[TL+T—O’,n+T] s = T qn+'rJn+T7

which is a contradiction.

If {z,}52 _, is abounded eventually negative solution of (1), we have w, <0
and Aw,, > 0 eventually.

Thus, we have

1 o
xnzxn+T+wn+T§F g w; .

1=n+T
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Let {y, }22, be defined as above. Then z,, <y, and by (1), we get

1

2
A yn S ?qn+7-yn+7-7

which is a contradiction. This completes the proof. O
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