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CONVERGENCES ON LATTICE O R D E R E D G R O U P S 
W I T H A F I N I T E N U M B E R 
OF DISJOINT ELEMENTS 

J Á N JAKUBÍK 

(Communicated by Anatolij Dvurečenskij ] 

A B S T R A C T . For a lattice ordered group G we denote by C o n v G the system of 
all sequential convergences on G satisfying the Urysohn's axiom. Let T be the 
class of all lattice ordered groups with a finite number of disjoint elements. In 
this paper we prove t h a t if G £ J7, then Conv G is a finite Boolean algebra. 

Introduction 

In the papers [3]—[11] there has been investigated the system ConvG of all 
sequential convergences on a lattice ordered group G satisfying Urysohn's axiom. 
In some of these papers it was assumed that G is abelian. 

The case when Urysohn's axiom was omitted has been dealt with in [12], 
[13], [14]; the corresponding system was denoted by convG. In [12] and [13], the 
commutativity of the group operation was assumed. 

The system Conv G is partially ordered in a natural way. In general, Conv G 
fails to be a lattice. Namely, if a and /? are elements of ConvG, then a V (5 
need not exist in Conv G. 

The class of all lattice ordered groups with a finite number of disjoint elements 
will be denoted by T. Such lattice ordered groups have been studied in [1]. 

Some results concerning the system conv G for G belonging to JF have been 
proved in [12]. 

In the present paper we show that if G E T, then Conv G is a finite Boolean 
algebra. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 06F15, 22F60. 
K e y w o r d s : lattice ordered group, sequential convergence, disjoint elements. 
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In the particular case of abelian lattice ordered groups we prove the following 
stronger result: 

(A) Let G be an abelian lattice ordered group. Then the following conditions 
are equivalent: 

(i) Conv G is a generalized Boolean algebra. 

(ii) Conv G is a Boolean algebra. 

(iii) Conv G is a finite Boolean algebra. 

(iv) GeT. 

1. Preliminaries 

The group operation in a lattice ordered group will be denoted additively, 
though it is not assumed to be commutative. 

We start by recalling some definitions (cf. [12] and [14]). Let G be a lattice 
ordered group. Let g G G and (gn) G GN . If gn = g for each n G N, then we 
write (gn) = const g. For (hn) G (GN) we set (hn) ~ (gn) if there is m G N 
such that hn = gn for each n G N with n^m. 

Let a be a subset of the lattice ordered semigroup (GN) . Consider the 
following conditions for the set a: 

(I) If (gn) G a , then each subsequence of (gn) belongs to a. 
(II) Let (gn) G (GN) . If each subsequence of (gn) has a subsequence be­

longing to a , then (gn) belongs to a. 

(IF) Let (gn) G a and (hn) G ( G N ) + . If (hn) ~ (gn), then (hn) G a. 
(Ill) Let g G G. Then const g belongs to a if and only if g = 0. 

The set a is called G-normal if for each (#n) G cY and each g E G the 
relation ( - # + x n + g) G a is valid. (Cf. [6].) 

The system of all G-normal convex subsemigroups of the lattice ordered semi­
group (GN) which satisfy the conditions (I), (II) and (III) (or the conditions 
(I), (IF) and (III)) will be denoted by ConvG (or by convG, respectively). 

Both Conv G and conv G are partially ordered by the set-theoretical inclu­
sion. 

For (gn) G GN , g G G and a G ConvG we put gn ->Q g if and only if 
{\gn-g\)ta. 

Let a(d) be the set of all (gn) G (GN )+ such that (gn) ~ const 0. Then a(d) 
is the least element of both Conv G and conv G. 
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Further, let a(o) be the set of all (gn) G (GN) having the property that 

there exists (hn) G (GN) such that 

(i) /^n+1 ^ hn is valid for each n G N, 
(ii) A l*„ = 0, 

nGN 
(iii) there is m G N such that hn ^ gn for each n G N with n^m. 

The set a(o) will be called the o-convergence in G. We have cY(o) G convG; 
but, in general, a(o) need not belong to ConvG. If G is linearly ordered, then 
a(o) G ConvG. 

2. The case G e J7 

A lattice ordered group G is said to be a lexico extension of its i?-subgroup 
H if, whenever 0 < g G G \ H, then g > /i for each h e H. 

It is well known that if G belongs to T', then it can be built up from 
a finite number of linearly ordered groups by forming direct products and 
lexico extensions. Moreover, by each step applying the construction of lexico­
graphic extension, the corresponding ^-subgroup H fails to be linearly ordered. 
(Cf. [1], [2].) 

For a lattice ordered group G we denote by C(G) the system of all convex 
^-subgroups X of G such that 

(i) X is linearly ordered and X ^ {0}; 
(ii) whenever Y is a convex linearly ordered subgroup of G with X C Y, 

then X = Y. 

2 . 1 . LEMMA. (Cf. [15].) Let X^X2 e C(G), X1 ^X2. Then Xx n X2 = {0}. 

From the definition of C(G) we immediately obtain: 

2.2. LEMMA. Let X G C(G) and g G G. Then -g + X + ge C(G). 

2.3 . LEMMA. (Cf. [6].) Let G be a linearly ordered group and a G ConvG. 
Then either a = a(d) or a — a(o). 

The following assertion is an easy consequence of the definition of Conv G. 

2.4. LEMMA. Let H be a convex £ -subgroup of G and let a G ConvG. Let (3 
be the set of all (hn) G (HN) such that there exists (gn) G a with (hn) ~ (gn). 
Then [3 G Conv H. 

Now suppose that G belongs to T. Then from the structure of G men­
tioned at the beginning of the present section we conclude that the set C(G) is 
nonempty and finite; namely, C(G) is the system of all linearly ordered groups 
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by means of which G is constructed in the above described way. Thus we can 
put 

C(G) = {X1,X2,...,Xm}. 

For Xi G C(G) we denote by a{(d) the least element of ConvJQ and by 
a{(o) the corresponding o-convergence on Xi. We put 

£0(G) = {XieC(G): a.(d) ? ai(o)} . 

Of course, it may happen that C0(G) is an empty set. 
We denote by B(G) the Boolean algebra of all subsets of C0(G). Further, 

let B0(G) be the collection of all S G B(G) such that 

(i) sa 0 (G ) , 
(ii) if Xi G S and g G G, then -g + Xi + g G S. 

Then we clearly have: 

2.5. LEMMA. B0(G) is a subalgebra of the Boolean algebra B(G). 

Our aim is to show that the partially ordered set Conv G is isomorphic to 
B0(G). We need some auxiliary results. 

Let a G Conv(7 and Xi G C0(G). Hence Xi is a convex ^-subgroup of G. 
Thus we can apply 2.4 with Xi instead of H. We write ai instead of /?, where 
(3 is as in 2.4. We put 

f1(a) = {Xi€C0(G): a-(o) C a} . 

2.6. LEMMA. For each a G ConvG. / x ( a ) belongs to B0(G). 

P r o o f . This is the consequence of the fact that a is a normal subset 
o f ( G N ) + . • 

Next, let S be an element of B0(G). If S = 0, then we put f2(S) = a(d). 
Further, assume that S is nonempty; for fixing the notation let us set 

S = {X1,X2,... ,Xk}. 

We denote by S1 the set of all elements x G G + which can be represented in 
the form 

X = X-^ + X2 + • * * + Xk 

with xi G X • (i = 1,2, . . . , k ) . 
In view of 2.1, whenever i(l) and i(2) are distinct elements of the set 

{ 1 , 2 , . . . , k}, then x ^ A x^2x = 0; therefore 

Thus we have 
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This easily yields that if y is another element of S1 with 

y = yi + y2 + '" + yk 

(under analogous notation as above), then 

x + y = (x1+y1) + (x2 + y2) + '-' + (xk + yk), 

x o y = (x1 o yx) + (x2 o y2) + • •. + (xk o yk) for o G {A, V} . 

Moreover, if £ G 5 1 , O ^ G G , and g ^ x, then g C S1. Hence we have: 

2.7. LEMMA. S4 is a subsemigroup of the semigroup G+. Further, S1 is a 
sublattice of the lattice G + . 

In view of 2.2 and of the definition of the set 5 , the relation 

-g + S'+g^S1 (1) 

is valid for each g G G. 

We define f20(S) to be the set of all (gn) G (Gn)+ such that 
(i) gn G S1 for each n G N (hence, under analogous notation as above, gn 

has a representation 

9n = 9nl + 9n2 + ' ' ' + 9nk 5 

(ii) if i G {1, 2 , . . . , k}, then (ffn.) G a^(o). 

Further, let f2(S) be the set of all (hn) G (GN) such that there exists 
G/J€/20(S) wi th( / i J~( 5 J . 

In view of 2.7 and (1) we conclude that / 2 ( ^ ) is a ^ -normal convex sub-
semigroup of the lattice ordered group (GN) satisfying the conditions (I), (II) 
and (III). In other words, we have: 

2.8. L E M M A . f2(S) e ConvG. 

The definition of f2(S) immediately yields: 

2.9. LEMMA. Let S and S' be elements of BQ(G) such that S C S'. Then 
f2(S)Cf2(S'). 

2.10. LEMMA. Let S and S' be elements of BQ(G) such that S C S'. Then 
f2(S)cf2(S'). 

P r o o f . There exists Xi G S' \ S. Further, there exists (gn) G (Xff such 
that (gn) G cY-(o) and (gn) <£ a{(d). Then we have 

(9n)ef2(S')> (9n)tf2(S). 

Thus in view of 2.9, the relation f2(S) C f2(S') holds. • 
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2.11. LEMMA. Let a G ConvG and let S = / x ( a ) . Then f2(S) C a . 

P r o o f . Let (hn) G f2(S). Then there exists (gn) G ^ ( ^ such that 
(gn) ~ (hn). For elements gn we apply the same notation as above. For each 
i G {1, 2 , . . . , k} we have (gn i) G a ^ o ) . Thus in view of the definition of f1(a) 
we get (gni) G a . Since a is a subsemigroup of (G?N) we infer that (gn) belongs 
to a. Therefore (hn) belongs to (a) as well. D 

2.12. LEMMA. Let 0 — g G G, i G {1,2, . . . , m } and suppose that g does 
not exceed all elements of Xi. Then the set {t G Xi : t _ g} has the greatest 
element. 

P r o o f . Cf. [15; p. 56]. D 

Under the assumptions as in 2.12, the greatest element of the set under 
consideration will be denoted by gl. 

2.13. LEMMA. Let 0 ^ g G G and suppose that for each i G {1,2, . . . , m } 
there exists xl G Xi such that x1 ^ g. Then 

g = g1 + g2 + -- + gm-

P r o o f . In view of 2.1 we conclude that the set {g1, g2,..., gm} is disjoint, 
whence 

g1 + g2 + • • • + gm = g1 V g2 V • • • V gm . 

Denote g1 V g2 V • • • V gm = g'. Clearly g' = g. 
By way of contradiction, assume that gf < g. Hence there is 0 < h G G with 

g' + h = g. 
From the structure of G we conclude that {.T1,^2,... ,xm} is a maximal 

disjoint subset of G. Hence there is i G {1, 2 , . . . , m} such that h A xl > 0. We 
get hAx'eX^ thus g1' + (h A xl) G Xi and 

gl <gl + (hhxl) = g l + h = g; 

in view of the definition of gl we arrived at a contradiction. D 

Again, let a G ConvG and let (gn) G a. Let C(G) be as above and let 
i G {1,2, . . . , m } . There exists x% G Xi with x2 > 0. If xl

 = gn for infinitely 
many n, then in view of (I) and according to the convexity of a we would have 
constat G a , which is a contradiction. Therefore there exists (gn) G a such that 
(a 1 ) ~ (gn) and no a1 exceeds xl. If we choose xl > 0 for each i G {1, 2 , . . . , m } , 
then by induction we conclude that there exists (g2) G a with (gn) ~ (gn) such 
that for each n G N and each i G {1, 2 , . . . , m} we have 

ł • 
^n 

294 



CONVERGENCES ON LATTICE ORDERED GROUPS 

Hence in view of 2.13, each gn can be represented in the form 

9l=92nX+92n2 + '>- + 9lm 

with O^gl1 E X - for i G {1, 2 , . . . , m } . 
As above, put fi(ot) — S. 

2.14. LEMMA. Suppose that i is an element of the set {1, 2 , . . . , m} such that 
X{ does not belong to S. Then the set 

Nx = {n € N : £ ± 0} 
is finite. 

P r o o f . By way of contradiction, assume that the set Nx is infinite. Hence 
there exists a subsequence (gn) of (gn) such that, under an analogous notation 
as above, we have 

9n > ° for each n G N . 

Since (gn) G a and 0 < gn ^ gn for each n G N, we infer that (g^j) G a. 
Consider the element (3 of Conv Xi which is constructed by means of a and 

by applying 2.4 with Xi instead of FT. Then 

G # ) G / ? , (g'jia^d), 
therefore f3 / ot{(d), hence in view of 2.3 we obtain (3 = a^o). Thus a{(o) C a , 
yielding that Xi G S, which is a contradiction. • 

By applying 2.14 and the induction we conclude: 

2.15. LEMMA. There exists (gn) G (G N ) + such that 

0) (gp~(9n), 
(ii) gn

l = 0 whenever X{ £ S. 

Therefore for each n G N, g4 has a representation 

a4 = O41 + O42 + • • • + g4m . 
^n ^n ' i'n ' ' &n 

Hence (g4) G / 2 ( S ) . Since (gn) - (g4) , we have also (gn) G / 2 (S). Summarizing, 
we obtain a C / 2 ( 5 ) . 

Thus according to 2.11 we get: 

2.16. LEMMA. Let a G ConvG, /-_(«) = 5 . Tften / 2 ( 5 ) = a . 

From the definition of f2 we easily obtain: 

2.17. LEMMA. Let S G B0(G), f2(S) = a. Then fx(a) = S. 

It is obvious that the mapping fx is monotone. Hence from 2.9, 2.16 and 2.17 
we conclude: 

2.18. THEOREM. The mapping fx is an isomorphism of the Boolean algebra 
B0(G) onto the partially ordered set ConvG; further, f2 = f^1. 
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3. Proof of (A) 

In the present section we assume that G is an abelian lattice ordered group. 
A lattice L is said to be a generalized Boolean algebra if it has the least 

element and if each interval of L is a Boolean algebra. 

A subset M of (GN) is called regular if there is a G Conv G such that 
M C a. 

Each interval of the partially ordered set Conv G is a complete distributive 
lattice (cf. [3]). Hence if M is regular, then there exists /3 G ConvG such that 

(i) M C / 3 \ 
(ii) whenever /?-_ G ConvG, M C /?-_, then (3 C /?-_. 

We say that the convergence (5 is generated by the set M. 

Let (xn) G (GN) such that xn > 0 for each n G N and xn^ A x n ( 2 ) = 0 

whenever n(l) and rz(2) are distinct elements of N. 

The following lemma is a consequence of [4; Theorem 7.3]. 

3 .1 . LEMMA. The one-element set {(xn)} is regular. 

Let us denote by a the convergence on G which is generated by the set 

For each n G N we put yn = nxn. Then Hn(1) A Hn(2) = 0 if n ( l ) and n(2) 
are distinct elements of N. Thus in view of 3.1, the set {(yn)} is regular. The 
convergence generated by this set will be denoted by (3. 

3.2. LEMMA. Let M be a regular subset of (GN)+ and let (zn) G ( G N ) + . Let 
7 be convergence generated by the set M. Then the following conditions are 
equivalent: 

0) CO €7-
(ii) For each subsequence (zn) of (zn) there exist a subsequence (zn) of (z'n), 

positive integers k and m, sequences (al
n) G M and subsequences (bn) 

of (an) (i = 1, 2 , . . . , m) such that for each n G N the relation 

<-**(£ + £ + •••+&») 

is valid. 

P r o o f . This is a consequence of [5; Theorem 2.2]. • 
From 3.2 we immediately obtain: 

3.3. LEMMA. We have a = (3. 
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3.4. LEMMA. (yn) does not belong to a. 

P r o o f . By way of contradiction, assume that (yn) belongs to a. Thus in 
view of 3.2 there exists a subsequence (yn) of (yn) and there are positive integers 
k and m, and subsequences (bn) of (x{) (i = 1, 2 , . . . , m) such that the relation 

y'nSk(bl + bl + --- + b™) (i) 

is valid for each n G N. 
Then for each n G N we have 
(i) there is a positive integer t(n) = n such that yn = t(n)xt,,; 

(ii) there are positive integers s(n,i) such that 

bn = xs(n,i) ( i = l , 2 , . . . , m ) . 

If t(n) ^ s(n, z), then yn A kbn = 0; thus such elements bn can be omitted in 
(1). Hence in view of (1) we have 

V'n = ^n)Xt{n) _ kmXt(n) (2) 

for each n G N. There exists n G N such that t(n) > km and then the relation 
(2) cannot hold. • 

From 3.3 and 3.4 we conclude: 

3.5. COROLLARY. We have a < (3. 

It is obvious that a(d) < a. 

3.6. LEMMA. The element a has no relative complement in the interval 
[a(d),p]. 

P r o o f . By way of contradiction, assume that 7 is a complement of a in 
the interval [a(d),/?] . Thus 

a A 7 = a(d), (3a) 

aV-f = p. (3b) 

In view of (3b) and 3.5 we have a(d) < 7 . Hence there exists (zn) G 7 such 
that the relation (zn) ~ const 0 fails to be valid. Then there is a subsequence 
(zn) of (zn) such that zn> 0 for each n G N. 

Since (zn) G 7 C /3, in view of 3.2 there exist a subsequence (zn) of (zn), 
positive integers fc, m and sequences (bn) (i = 1, 2 , . . . , m) such that each (bn) 
is a subsequence of (yn) and 

< _ f c ( 6 n + ^ + - " + 0 for each n G N. 
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For each i G {1,2, ...,m} there is a subsequence (t(n, i)) of the sequence 
(n) such that 

bn = yt(n,i) =t^i)xt(niy 

Denote 
Vn = k{Xt(n,l) + Xt(n,2) ^ ^ Xt(n,m)) ' ( 4) 

Then 0 < L>n ^ ^ for each n G N. Hence (vn) £ a(d). Further, (z'n) £ 7 and 
thus (vn) G 7 . But, at the same time, (in view of (4)) we have (vn) G a. This 
yields that the relation (3a) fails to be valid and we arrived at a contradiction. 

• 
Summarizing the above results of the present section we obtain: 

3.7. LEMMA. Let G be an abelian lattice ordered group which does not belong 
to the class T'. Then ConvC? fails to be a generalized Boolean algebra. 

Let (A) be as in Introduction. 

P r o o f of (A) . Let (i)-(iv) be the conditions in the assertion (A). Then 
we have (iii) => (ii) => (i). In view of 3.7, (i) => (iv). Further, according 
to 2.18, (iv) ==> (iii). • 

REFERENCES 

[1] CONRAD, P . : The structure of a lattice-ordered group with a finite number of disjoint 
elements, Michigan Math. J. 7 (1960), 171-180. 

[2] FUCHS, L. : Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963. 
[3] HARMINC, M. : Sequential convergence on abelian lattice-ordered groups. In: Conver-

gence Structures, 1984. Math. Res. 24, Akademie Verlag, Berlin, 1985, pp. 153-158. 
[4] HARMINC, M. : The cardinality of the system of all convergences on an abelian lattice 

ordered group, Czechoslovak Math. J. 37 (1987), 533-546. 
[5] HARMINC, M. : Sequential convergences on lattice ordered groups, Czechoslovak Math. J. 

39 (1989), 232-238. 
[6] HARMINC, M. : Convergences on Lattices Ordered Groups. Dissertation, Math. Inst. 

Slovak Acad. Sci., 1986. (Slovak) 
[7] HARMINC, M.—JAKUBÍK, J . : Maximal convergences and minimal proper convergences 

in i-groups, Czechoslovak Math. J. 39 (1989), 631-640. 
[8] JAKUBÍK, J . : Convergences and complete distributivity of lattice ordered groups, Math . 

Slovaca 38 (1988), 269-272. 
[9] JAKUBÍK, J . : On some types of kernels of a convergence í-group, Czechoslovak Math . J. 

39 (1989), 239-247. 
[10] JAKUBÍK, J . : Lattice ordered groups having a largest convergence, Czechoslovak Math. J. 

39 (1989), 717-729. 
[11] JAKUBÍK, J . : Convergences and higher degrees of distributivity of lattice ordered groups 

and of Boolean algebras, Czechoslovak Math. J. 40 (1990), 453-458. 

298 



CONVERGENCES ON LATTICE ORDERED GROUPS 

[12] JAKUBIK, J . : Sequential convergences in £-groups without Urysohn's axiom, Czechoslo­
vak Math. J. 42 (1992), 101-116. 

[13] JAKUBIK, J . : Nearly disjoint sequences in convergence £-groups, Math . Bohem. 125 
(2000), 139-144. 

[14] JAKUBIK, J . : On iterated limits of subsets of a convergence l-groups. Math . Bohem. 
126 (2001), 53-61. 

[15] JAKUBIK, J . : Konvexe Ketten in i-Gruppen, Casopis Pest . Mat . 8 4 (1959), 53-63. 

Received February 9, 2004 Matematicky ustav SAV 
Gresdkova 6 
SK-040 01 Kosice 
SLOVAKIA 

E-mail: kstefan@saske.sk 

299 


		webmaster@dml.cz
	2012-08-01T18:56:08+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




