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ZEROS OF CONTINUOUS FUNCTIONS
AND THE COMPACT-OPEN TOPOLOGY

PETER VADOVIC

(Communicated by Lubica Hold)

ABSTRACT. We consider the space of all continuous real-valued functions
equipped with the compact-open topology. The principal aim of this paper is
the generalization of Theorem 2.1 from the paper [BALAZ, V.—SALAT, T.:
Zeros of continuous functions and the structure of two function spaces, Math.
Slovaca 52 (2002), 397-408].

DEFINITIONS AND NOTATION. Let X be a Tychonoff (completely regu-
lar T;) space, C(X,R) or simply C(X) be the set of all continuous functions
on X to the set of all real numbers R, let 7., be the compact-open topology
on C(X). We define Co(X) = {f € C(X): f~1({0}) # 0} and investigate the
sets

H={feC(X): f'({0}) is perfect and nowhere dense},
A={feC(X): f~'({0}) is not nowhere dense},
D={feC(X): f'({0}) is not perfect}.

If moreover X is second countable and B = {I,, : n € N} is a countable base
for the topology for X, then for each n € N weput A, = {f € C(X): I, C

f‘l({O})} and D, = {f € C(X): Az, €I,)(f(z,) = 0)}

The definitions of all other terms are taken from Kelley [4] and Engel-
king [3].

Note 1.
oo e8]
(a) Observe that A= |J A, and D= |J D, if X is a second countable
Tychonoff space. n=1 n=1
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(b) If f € A; (the complement of A ), then there is z € I, such that
f(z) # 0, which implies that f € W({z},R\{0}) C A¢, where W(K,U) =
{geC(X): gK]C U} for some K C X compact and U C R open. Hence
AS is 7.,-open. Moreover the set W ({z}, R\{0}) is the preimage P, [R\{0}]
of the open set R\ {0} in the projection on the xth coordinate and so A¢ is
even open in the topology 7, of pointwise convergence. Consequently each A
is 7,-closed and also 7, -closed.

THEOREM 1. If X is a second countable Tychonoff space, then A is of first
category in (C(X),7,,) -

’ 'co

Proof. By Note 1(a) and 1(b) it is sufficient to show that the interior of
each A is void. We show an equivalent statement that A¢ is dense in C(X).
Let B be a 7., -basicset and let f € B.If f ¢ A _,then f € BNAS # (0 and we
are done. So suppose that f € A, . We know that on C(X) the compact-open
topology is the topology of uniform convergence on compacta ([4; Theorem 7.11])
and hence there is € > 0 and a compact set K C X such that W(f,K,e) C B,
where W(f,K,e) = {g € C(X) : (Vz € K)(|f(z) — g(z)| < €)}. Define a
function g on X by:

g9(z) = f(z)+e/2 foreach z€ X.

Clearly g € C(X,R) and |g(z) — f(z)| = ¢/2 for each z € X, which implies
g € W(f,K,e) C B. On the other hand f € A, and so for each x € I, we have
g(z) = 0+¢/2 = ¢/2, which means that g ¢ A, . Consequently BN AS, # 0 and
hence A¢ is dense. O

Note 2.

(a) The construction of g used in the proof of Theorem 1 doesn’t even need
the space X to be Tychonoff, however, the complete regularity of X is required
to obtain a “reasonable” class of continuous functions.

(b) From the construction of g we do not know whether g has a zero point
at all, however, if f € A, , then we may choose two distinct points z, # z, in I,
(this can be done if X is without isolated points). Since X is a Tychonoff space,
there is h € C(X,[0,1]) such that h(z,) =1 and h(z,) = 0. Let g(z) = f(z)+
€/2- h(z) for each z € X, i.e. clearly g € C(X). Moreover 0 < h(z) <1, that
is |g(z) — f(z)| =€/2-h(z) < €/2 for each z € X and so g € W(f,K,e) C B.
We also see that g(z;) = 0+¢/2 =¢/2,and so g ¢ A,. On the other hand
g(z,) =040 =0, and so g € Cy(X). Thus g € C;(X)NBNAS,. Such a function
will be used in the later course of the paper.

Before investigating the situation for the set D we state two auxiliary facts.
PROPOSITION 1. In a second countable locally connected space each open set

has countably many components.
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Proof. Let B ={I,: n €N} be a countable base for the topology, U be
an open set and let {C, : a € M} be the family of all components of U. We
know (see [4; Exercise 1.S]) that in a locally connected space every component
of an open set is open. Therefore each C, is open and hence for each a € M
we have C, =J{I,: n € N_}, where N, is a nonempty subset of N. Observe
that if n € N, NNy, then I, C C, N Cp, which implies that the set C, UCy is
a connected set in U containing both C, and Cg. Thus N, NN, = 0 whenever
a # B, i.e. the family {N,: o € M} is a decomposition of N into |M|-many
pairwise disjoint nonempty subsets. Since N is countable it is clear that M
cannot be uncountable. Consequently U has countably many components. O

COROLLARY 2. If X is a locally compact, locally connected separable metric
space, then there is a countable base for the topology consisting of connected sets
with compact closures.

Proof. Every separable metric space is a second countable Tychonoff space
and vice versa (see [4; Theorem 4.17]). Using Proposition 1 we construct a count-
able base consisting of connected sets. Finally, with local compactness at hand it
is not hard to show that the subfamily consisting of connected sets with compact
closures is still a countable base and we are done. O

THEOREM 2. Let X be a locally compact, locally connected separable metric
space without isolated points. Then D is of first category in (C(X ),'rco) .

Proof. By the preceding corollary, let B = {I_ : n € N} be a countable
base where each I, is connected and I is compact. By Note 1(a) it is sufficient
to show that each D,, is nowhere dense in (C(X),7,,). Thus let n € N be
fixed, let B be an arbitrary 7. -basic set and consider f € B. If the function
f has no zero point in I, then f[I ] C R\ {0} and hence the nonempty
open set BN W(I ,R\{0}) is contained in B\ D,_, which means that D, is
nowhere dense. So we can suppose that f has a zero point z, € 7; Again,
on C(X) the compact-open topology is the topology of uniform convergence on
compacta ([4; Theorem 7.11]), so there is € > 0 and a compact K such that
W(f,K,e) C B. The continuity of f at z, implies that there is § > 0 such
that |f(z)| < e/4 whenever z € B(z,,d) (the open ball with the center z, and
the radius ). From z, € I it follows that V = B(z,,d) NI, is a nonempty
open set and so we may choose z, € V and z, € V with z, # x, (this can
be done because X is without isolated points). In the Tychonoff space X there
are two disjoint sets I,, and I in B such that z; € I,, C V for i = 1,2.
Finally choose z;, z, such that z; € I, , z3 #z;,and 2, € I,,, T, # T,. Let
A = {z,,2,,25,z,}. If we consider A with the discrete topology (which is the
relative topology from X since A consists of isolated points), then the function
h': A — [~1,1] defined by A'(z,) = h'(z,) =1 and h'(z;) = h'(z,) = -1 is
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continuous on A. By the Tietze extension theorem there is an extension h €
C(X,[-1,1]) of the function h'. Now define the function g on X by:

9(z) = f(z) +¢/2- h(z) foreach ze€ X,

thus g € C(X,R). Put K' = KUT_, then K' is compact. We want to show that
W(g,K',e/4) is the desired open set. Let s € W(g,K’,e/4). From K C K’
we have |s(z) — g(z)| < €/4 and |g(z) — f(z)| = €/2 - |h(z)| < €/2 for each
r € K and hence s € W(f,K,e) C B. On the other hand A C B(z,9), so

for each i =1,...,4 we have —¢/4 < f(x;) < /4. Moreover h restricted to A
equals h’, which implies that for i = 1,2

g(z)) = ¢/2- hiz)) + f(&,) > /2~ c/4 = /4
and for ¢ = 3,4

g(z;) = f(z;,) +€/2-h(z;) <e/d—€e/2=—€/4.

Since A C I, C K', the value of every s € W(g,K',e/4) is positive at z,
and r, and negative at z; and z,. But z; and z, are elements of a connected
set I, and s is continuous, i.e. the image s[I,, | is connected, so with s(z,)
and s(z,) it must contain zero. Thus s has a zero point in I and similarly
it has a zero point in I, , which are two disjoint subsets of I,,. We conclude
that s has at least two zero points in I, that is s ¢ D, . This shows that
W(g,K',e/4) C B\ D, and hence D, is nowhere dense. a

THEOREM 3. Let X be a locally compact, locally connected second count-

able Tychonoff space without isolated points. Then the set H is residual in
(C(X),7,) -

Proof. We know that a second countable locally compact Tychonoff space
is a hemicompact k-space (see [3; Exercise 3.4.E]). Thus [5; Corollary 5.2.2)
implies that (C(X),7,,) is completely metrizable and hence it is a Baire space.
Therefore it suffices to show that the complement of H is of first category. But
H¢ = AU D, so Theorem 1 and Theorem 2 yield the desired statement. O

Now, consider the space Cj(X) with the relativized compact-open topology
from C(X). Define the set H, = H N Cy(X). Since all the other considered
sets (A, D, A, and D, ) are subsets of Cy(X), they do not change if we
restrict ourselves to the space Cy(X). In particular H = C(X) \ (AU D) and
Hy = Cy(X) \ (AU D). The first question of course is: which of the foregoing
results hold if we replace C(X) with Cy(X)?

Clearly, in the space (C,(X),T,,) both statements of Note 1 remain valid.
Note 2(b) shows that if X is without isolated points, then an analogy of The-
orem 1 is also true in Cy(X). A thorough look on the proof of Theorem 2 reveals
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that it will work in C,(X), too, since the constructed function g belongs to
Cy(X). We conclude that the set AU D, which equals Cy(X) \ Hy, is of first
category in (Cy(X),,,)- To complete our effort we will need some additional
results.

PROPOSITION 3. If T 1is a Baire space and S is a subset such that int S is
dense in T, then S is a Baire space with respect to the relative topology from T .

Proof. Consider asubset E' of S. We know that, without any assumption
on the subspace S, if E’ is nowhere dense in S, then it is nowhere dense in T'.
Therefore a set of first category in S is clearly of first category in T or in other
words, if E' C S is of second category in T', then it is of second category in S.
So let U’ be a nonempty open set in S, hence U' = U N S for some nonempty
open set U in T'. Since intS is dense, the set U NintS is nonempty open
and thus of second category in T'. As U’ contains U Nint S, it must also be of
second category in T and by our initial remarks U’ is of second category in S.
Therefore S is a Baire space. a

PROPOSITION 4. For a non-compact Tychonoff space X the set Cy(X) is
dense in ( ), co)

Proof. If B = (| W(K,,U,) is a 7, -basic neighborhood of a function
i=1

f € C(X), then the set K = |J K| is a compact (and closed) subset of the
i=1

non-compact space X and so there is a point z, € X \ K and a function

h € C(X,[0,1]) with h(z,) =0 and A[K] = {1}. Hence the function g defined

by g(z) = f(z)-h(z) coincides with f on K (thus g € B) and assumes zero at

z, (thus g € Cy(X)), which shows that Cy(X) is dense. a

However, in the sequel we will need a somehow stronger statement composed
in the following proposition.

PROPOSITION 5. If X is a non-compact locally connected Tychonoff space
without isolated points, then int Cy(X) is dense in (C(X),T,,).

Proof. Let B = ﬂW( U;) be a 7, -basic set and f € B. Then

K= U K, isa compact (and hence closed) subset of X . Since X is not com-

pact, X \ K is a nonempty open set, so let ; € X \ K. Then there is an open
connected set V' with z, € V C K°. Choose a point z, € V, z, # z, (this
can be done because X is without isolated points). Having in mind that X is a
Tychonoff space we know that there are continuous functions h; € C(X, [0, 1))
for i = 1,...,4 with the following properties: since {z;} and K are disjoint
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closed subsets we choose h; such that h;[K] = {1} and h,(z,) = 0. Similarly
for z, we put h,[K] = {1} and h,(zx,) = 0. Furthermore z, and K U {z,} are
disjoint closed subsets and so we can choose h, in order that hy[K U {z,}] =0
and hy(z,) = 1. In the same manner we put h,[KU{z,}] =0 and h,(z,) = 1.
Now we define the function g on X by:

9(z) = f(z) - hy(z) - hy(x) + hy(x) — hy(x)  foreach z € X.

Clearly g € C(X,R). Moreover if z € K, then g(z) = f(z)-1-1+0-0 = f(x)
and so g € B. Next, g(z;) = f(z;)-0-hy(z;)+1 -0 =1 and g(z,) =
f(zy) - hy(zy) - 0+0—1=—1. Thus g € W({z,},R") nW({z,},R™) =U
which is a 7 -basic set (Rt and R~ denote all positive and negative real
numbers respectively). Finally whenever h € U, then h(z;) > 0 > h(z,) where
z, and z, are elements of the connected set V', and h is continuous, which
implies that h[V] is connected and with h(zx,) and h(z,) it must contain zero.
Hence h™'({0}) # @ and h € Cy(X). This shows that U is a neighborhood of
g contained in Cy(X), i.e. g € int Cy(X). Consequently BNint Cy(X) # 0 and
therefore int Cj(X) is dense. O

COROLLARY 6. If X is a non-compact locally compact, locally connected para-
compact Tychonoff space without isolated points, then (CO(X),TCO) is a Baire
space.

Proof. By [5; Theorem 5.3.1], the space (C(X),,,) is a Baire space. The

) "co

rest is supplied by Proposition 3 and Proposition 5. O

THEOREM 4. Let X be a locally compact, locally connected second count-
able Tychonoff space without isolated points. Then the set H, s residual in
(Co(X), 7e5) -

1 “co

Proof. As in the proof of Theorem 3, (C(X),’Tco) is completely metri-
zable. It is not difficult to show that if X is compact, then Cy(X) is closed
in (C(X), 1), that is, (Cy(X),7,,) is completely metrizable and hence it is a
Baire space. On the other hand, if X is not compact, then Corollary 6 implies
that (C,(X), 7,,) is a Baire space, too. Therefore we only have to show that the
set Cy(X) \ H, is of first category in Cy(X), but that is true by the remarks

preceding Proposition 3. O

To highlight the resemblances and differences, compared to our Theorem 3
and Theorem 4, we now state the original assertion of Baldz and Salat ([1;
Theorem 2.1]). Herein C(a,b) denotes the complete metric space of all continu-
ous real-valued functions on a compact interval [a, b] of the reals equipped with
the uniform metric. The definitions of all other occurring sets, namely C,(a,b),
H(a,b), Hy(a,b), A(a,b) and D(a,b), are totally analogous to the definitions
at the beginning of our paper.
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THEOREM. ([1; Theorem 2.1])
(i) The set H(a,b) is residual in C(a,b).
(i) The set Hy(a,b) is residual in Cy(a,b).

The paper [1] also contains propositions revealing other properties of A
and D. We shall now investigate the general situation.

PROPOSITION 7. If X is normal, then A is dense in (Cy(X),,,). If more-
over every singleton in X is a G set, then D is dense, too.

Proof. Let B bean arbitrary 7, -basic set in C,(X) and let f € B. Hence
thereis z, € X with f(z,) = 0. On C,(X) the topology of uniform convergence
on compacta and the compact-open topology coincide ([4; Theorem 7.11]), and
so there is a compact K C X and ¢ > 0 such that W(f,K,e) C B. Since f
is continuous at x,, there is U C X open such that |f(z)| < £/2 whenever
z € U. Furthermore there is an open set V such that z, € V C V C U
and hence V and U¢ are two disjoint closed sets, so by the U_rysohn lemma
there is a continuous function h, € C(X,[0,1]) such that h[V] = {0} and
h,[U¢] = {1}. Define the function g; on X by: g,(z) = h,(z) - f(z) for
each ¢ € X. Clearly g, € C,(X) and we also see that V C g;*({0}). Thus
gt ({0}) is not nowhere dense, so g, € A. Moreover, for each z € X we have
0 < hy(z) < 1, which implies 0 <1 —h,(z) < 1. Hence if z € U, then

l9,(z) = f(@)| = |f(@)] - 11 = by (2)] < |f ()] < &/2.

On the other hand, if z € U¢, then g,(z) = 1- f(z) = f(z). Consequently, for
each = € X we have |g,(z) — f(z)| < /2, which implies g, € W(f,K,e) C B.
Thus ANB # 0 and A is therefore dense.

Concerning the set D: since the singleton {z,} is a closed G; set, [3;
Corollary 1.5.11] implies the existence of a continuous function h, € C(X, [0, 1])
for which {z,} = h3'({0}). Define the function g, on X by: g,(z) = g,(z) +
€/2 - hy(z) for each z € X . Clearly g, € Cy(X). Next, for each z € X we have

lg2(2) — f(2)] < lg1(z) = (@) +€/2- |hy(2)| <€/2+€/2=¢.

Thus g, € W(f,K,e) C B. Since g, is constantly zero on V, we see that
95(z) = €/2- hy(z) for each x € V, and therefore z, is the only zero point of
g, in V. Consequently g, € D, which shows that D intersects B and we are
done. a

In view of Proposition 4 and Proposition 7 the next two statements are clear,
provided we realize that if X is compact, then C(X)\ Cy(X) = W(X,R\{0})
is a nonempty open set disjoint from Cy(X) and hence no subset of Cj(X)
(neither A nor D) can be dense in C(X).
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COROLLARY 8(a). Let X be a normal space. The set A is dense in (C(X),7,)
if and only if X is not compact.

COROLLARY 8(b). Let X be a normal space and let every singleton in X be
a G; set. The set D is dense in (C(X),7,,) if and only if X is not compact.

PROPOSITION 9. Let X be a locally connected normal space without isolated
points. Then A is not nowhere dense in (C(X), TCO) . If moreover every singleton
in X is a Gy set, then D is not nowhere dense, too.

Proof. To show a set is not nowhere dense it suffices to find a nonempty
open set in which the set is dense. Let V' C X be a nonempty open connected
set (by local connectedness such set exists). Since X is without isolated points,
we can choose two distinct points z; # z, in V. Put B = W({z,},R*) n
W({wQ}, R‘) , where Rt and R~ denote all positive and negative real numbers
respectively. Clearly B is a 7, -basic set. Again, there is a continuous function
h € C(X,[0,1]) with h(z,) =1 and h(z,) = 0. Define a function by f(z) =
h(z) — 1/2 for each z € X. Immediately we see that f € C(X) and f € B,
hence B is a nonempty open set in (C(X ),’Tco). Furthermore every function
in B is positive and negative at r; and z, respectively, which are elements of
a connected set V. Therefore every function in B has a zero point in X (this
argument has been used several times before), that is B C C;(X). According to
Proposition 7, under their respective assumptions the sets A and D are dense
in B which proves the proposition. O
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