
Mathematica Slovaca

Janina Ewert; Stanislav P. Ponomarev
On the existence of ω-primitives on arbitrary metric spaces

Mathematica Slovaca, Vol. 53 (2003), No. 1, 51--57

Persistent URL: http://dml.cz/dmlcz/136876

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 2003

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/136876
http://project.dml.cz


Mathematica 
Slovaca 

©2003 
K/i _,L r i c o /<-.í-.no\ M i 1-1 i--/ Mathematical Insti tute 
Math . SlOVaCa, 5 3 ( 2 0 0 3 ) , NO. 1, 5 1 - 5 7 Slovak Academy of Sciences 

ON THE EXISTENCE OF ^-PRIMITIVES 
ON ARBITRARY METRIC SPACES 

JANINA EWERT — STANISLAV P . PONOMAREV 

(Communicated by L'ubica Hold) 

ABSTRACT. In this paper a final solution to the problem of the existence of 
u-primitives on an arbitrary metric space (X, d) is given. Namely, it is shown 
that if / : X —> [0, oo] is an upper semicontinuous function, vanishing at each 
isolated point of K, then there exists a function F: X —•> R whose oscillation 
equals / at each point of X. We call such a function F an a;-primitive for / . 
Moreover, an cj-primitive can always be found in at most Baire class 2. 

1. Preliminaries and basic definitions 

In the present paper we give a final solution to the problem on the existence 
of ^-primitives on arbitrary metric spaces. That problem was solved earlier in 
some particular cases (see e.g. [1], [3], [4], [5]). We will use the basic notations 
and definitions from the mentioned papers. But for completeness and reader's 
convenience, we will recall them, along with citing some results that will be 
needed. 

Let X = (X, d) be a metric space. For each A C X we use the standard 
notations Ad, Int A, FT A to denote the derived set, interior and boundary of 
A respectively. We will also use the well-known notations B(x,r) = {z G X : 
d(z, x) < r} , dist(.r, E) = inf {d(x, y) : y G E} for an open ball and the distance 
from a point to a set. 

It is convenient to define the oscillation of a real valued function via its upper 
and lower Baire functions. Namely, given a function F: X —» E, we let for each 
xex 

M(F,x) = lim(sup{F(;z) : z G B(x,r)}) , 

m(F,x) = lim (iní{F(z) : z e B(x,r)}\ 

2000 M a t h e m a t i c s Sub j ec t C l a s s i f i c a t i on : Primary 26A15, 54C30, 54C99. 
Keywords : metric space, massive space, a-discrete space, oscillation, ^-primitive, Baire 
classes. 

51 



JANINA EWERT — STANISLAV P. PONOMAREV 

Then the oscillation of F at the point x is defined as 

u(F, x) = M(F, x) - m(F, x) 

(we put oo — oo = 0 ([6])). 

We abbreviate USC (resp. LSC) for an upper semicontinuous (resp. lower 
semicontinuous) function. Instead of (A, d), we will often write X for brevity. 

Given a metric space (A, d), we let, for each set A C A containing more 
than one point, 

AA = mi{d(x,y) : x,yeA, x ^ y} , 

for a singleton {x} we let A{x} = +00 and A0 = +00. 

Then, as a particular case of [3; Theorem 1.2], we have the following result. 

LEMMA 1. Let (X,d) be a metric space. 

(a) If Ad X and A A > 0. then Ad = 0 (so that A is closed and discrete). 
If, in addition, X = Xd, then A is nowhere dense. 

00 

(b) The space X contains a dense set D of the form D = (J Dn, where 
n=l 

the sets Dn are pairwise disjoint and ADn > 0 for n G N. 
00 

(c) Each a -discrete set A C X can be represented in the form A = (J An, 

where An are pairwise disjoint and AAn > 0 for n G N. 
71=1 

A metric space A is said to be ([1]): 

• a-discrete at a point x G A if there is an open neighborhood V of x 
00 

which is a cr-discrete set, i.e. V = (J En where En are discrete sets; 
n = l 

empty set is considered as discrete; 
• massive if it is not cr-discrete at any of its points. 

Given any metric space A , we let 

E(A) = {x G A : A is cr-discrete at x} . 

It follows immediately from these definitions that 

(i) The set S (A) is open and A \ Xd C S ( A ) . 
(ii) Each massive space is dense in itself. 

THEOREM 1. Let (X,d) be a metric space. Then 

(a) T>(X) is a a-discrete set; 
(h) if X \ S (A) y£ 0. then it is a massive subspace of X. 
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P r o o f . 

(a) Let B be a cr-discrete base of E(.X') ([2; p. 352]). Therefore B can be 
written in the form 

oo 

B=\jBn, 
71 = 1 

where Bn = {Gnt : t G T n } , the sets Gnt being open, cr-discrete, and Gnt, n 
oo 

Gnt,, = 0 whenever t' ^ £". For each t G Tn we have Gn< = IJ J?nt •, where 
i = i 

Enti are discrete. It follows that the set (J Enti is discrete since the open sets 
t£Tn 

Gnt are disjoint (with respect to t € T n ) . 

Therefore the space 
oo oo oo 

-w = U*=UU*» = UUU*«« 
71=1 71=1 i = i teTn 

is a-discrete too, what was to be shown. 

(b) We will omit a trivial proof of the fact that if X \ S(XT) ^ 0, then this 
closed set is a massive subspace of X. • 

COROLLARY 1. A metric space X is a-discrete if and only if it is a-discrete 
at each of its points. In that case we have S(K) = X. 

COROLLARY 2. The subspace S(X') is dense in itself if and only if X is so. 

COROLLARY 3 . If a metric space X is not a-discrete, then it can be written 
in the form 

X = E(X) U M(X), 

where £(XT) n M(X) = 0 and S(XT). M(X) are respectively a-discrete and 
massive subspaces of X. Such a decomposition of X is unique. 

We will use, in the subsequent proofs, the following results concerning the 
existence of a;-primitives in the case of massive spaces and in the case of 
cr-discrete spaces dense in themselves. 

LEMMA 2. ([1; Theorem 1]) Let (X,d) be a massive metric space and f: 
X -> [0, oo) an upper semicontinuous function. Then there exists an LJ-primitive 
F: X -> [0, oo) for f such that 

(a) 0 < F < / ; 
(b) M(F,x) = f(x) and m(F,x) = 0 for each x G X; 
(c) F is in at most Baire class 2. 
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LEMMA 3. ([4; Theorem 1]) Let (X,d) be a a-discrete dense in itself metric 
space. If f: X —> [0, oo) is a USC function and g: X —>• (0, oo) an LSC function, 
then there exist a dense set S C X and a function F: X —> R, at most in Baire 
class 1, such that —g<F<f, F\g < 0, and u(F, •) = / . The u-primitive F 
is given by the formula 

_ J f(x) ifxeX\S, 
F(x) = < _f^ + U m s u p j ^ if x e S . 

2. Main results 

In this section we will show that the problem of the existence of u -primitives 
is always solvable for any metric space. 

First we study the case when X is an arbitrary a-discrete metric space, not 
necessarily dense in itself. 

THEOREM 2. Let (X,d) be a a-discrete metric space, and f: X —> [0, oo) a 
USC function which vanishes on the set X \ Xd. Then given any LSC function 
g: X —> (0, oo) , there exists a dense set S C X and a function F: X —•> R, at 
most Baire 1. such that —g<F<f, F\g < 0. and uo(F,>) = / . 

P r o o f . We will reduce the assumptions of the theorem to the assumptions 
of Lemma 3, by taking a cartesian product. We also assume that X \ Xd ^ 0, 
for otherwise, there would be nothing to prove in view of Lemma 3. Define 

X = Xd x {0} U (X \ Xd) x Iq , 

where I denotes the set of all rational numbers in the interval [0,1]. We con­

sider the set X as the subspace of the metric space X x I with the metric 

d((x,,t,),(x",tn)) = max(d(a; ,,a; / ,),|* / - * " | ) . It is obvious that the cartesian 

product of two a -discrete spaces is again a -discrete. So X is a -discrete and, 
what is also important, dense in itself. Now define the functions / : X —> [0, oo) 
and g: X -> (0, oo) letting f(x,t) = f(x), g(x,t) = g(x). It is easily checked 
that / is USC whereas g is LSC. Thus X, f\jj satisfy all assumptions of 
Lemma 3. Let F: X —•> R be an CJ-primitive for / constructed by^that lemma. 
We have that — g < F < f. There also exists a set S, dense in X, such that 

Next observe that for each x G X \ Xd the set {x} x / is an open subset 

of the space X. Moreover, since / vanishes on {x} x Iq, we have, by (1) of 

Lemma 3, that F also vanishes on that set. 
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Define F: X -r R letting F(x) = F(x,0). We claim that F is the required 
u -primitive for / . Indeed, we have for each r > 0 and each x G l 

F(B((x,0),r))=F(B(x,r)), 

where jB((x,0),r) is the open ball in X, centered at (x,0) and of radius r. It 
readily follows that for each x e X 

u(F, x) = CJ(F, (x, 0)) = f(x, 0) = f(x). 

Now let p: X x Iq -* X be the natural projection. Since S is dense in X, 
the set S = p(S) is dense in X. It remains to show that F\g < 0. First note 
that X \ Xd C S. Indeed, S is dense in X whereas F vanishes on each set 
{x} x Iq, x G X \ Xd, which, as it has been already observed above, is open in 

X. Hence F vanishes on X\ Xd. Now if x G S fl Xd we obviously have that 
(x,0) G S. Therefore F(x) = F(x, 0) < 0. Thus F\g < 0. As for the Baire class 
of F, it was shown in [4] that each function on a a -discrete metric space is at 
most Baire 1. • 

Remark. Note that given an arbitrary metric space X, the assumption that a 
USC function / : X -» [0, oo) vanishes at each isolated point of X is obviously 
necessary for the existence of an a;-primitive for / . Theorem 2 thus shows that 
the assumption is sufficient in the case of a -discrete spaces. It will be proved in 
Theorem 3 and Theorem 4 that this assumption is also sufficient for any metric 
space. 

THEOREM 3. Let (X,d) be an arbitrary metric space and f:X -> [0, oo) 
a USC function which vanishes on X \ Xd. Then for each LSC function 
g: X -> (0, co), there exists a function F: X —,• R, at most in Baire class 2, 
such that UJ(F, •) = / and ~9 < F < f. 

P r o o f . By Corollary 3, we have the decomposition X = E(X) U M(X) 
where E(X) is a -discrete and M(X) is massive. We assume that neither of these 
sets is empty, for otherwise, the proof is immediate by Lemma 2 or Theorem 2. 
Define the function gx: X -> [0,oo) letting gx(x) = min(g(x),dist(x,M(X))). 
Obviously g1 is LSC and gx | w j n > ^- By Theorem 2, there exist an cj-primitive 

F\: E(X) -> R for f\^(X) a n d a s e t S c S W > d e n s e i n S W > s u c h t h a t 

~9I\E(X) <FI^ fk(X) a n d Fi\s < °-
By Lemma 2, there exists an cj-primitive F2: M(X) -r [0, oo) such that 

F2 < f\M(X)> M(F2V) = f\M(X) a n d m ( F 2^) = 0 (note that here the 
Baire functions M and m are considered, of course, on the subspace M(X)). 
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Now define the function F: X —¥ R letting 

Fx{x) i f x G S ( X ) , 

F2(x) \(xeM{X). 
F(x) = | 

It is immediate that F is at most in Baire class 2 and —g<F<f. Since 
S(K) is open and disjoint from M(X), it is clear that to prove that F is 
an cj-primitive for / , it suffices only to show that uo(F,x) = f(x) holds for 
x G FiM(X). Let x0 e Fr M(X). Since F < f and M(F2,x0) = / ( x 0 ) , we 
may write at once that f(x0) = M(F2 , x0) < M(F, x0) < M ( / , x0) = / ( x 0 ) , i.e. 
M(F, x0) = f(x0). On the other hand, recalling the properties of F2, we have 
for each r > 0 and each x G B(x0,r) fl S that 

- r < -dist(x,JVf(K)) < -gx(x) < Fx(x) = F(x) < 0 . 

It follows, since F2 > 0, that —r < inf F|^/ \ < 0. Whence, letting r —> 0, 

we get m(jP, x0) = 0. Therefore CJ(F, x0) = M(F, x0) — m(F, x0) = f(x0), wdiich 
completes the proof. • • 

Now we are in a position to prove our main result (Theorem 4). The only 
point that differs it from Theorem 3, is that now a USC function / may take 
the value -f-oo. We will use the scheme much like the proof of [1; Theorem V] 
or [3; Theorem 2], modulo some modifications due to the fact that this time we 
deal with metric spaces which might contain isolated points. 

THEOREM 4. Let (X,d) be an arbitrary metric space and f:X —> [O.oo] 
a USC function which vanishes on X \ Xd. Then for each LSC function 
g: X —> (0,oo) there exists a function F: X —> R such that cj(F, •) = / 
and —g<F<f. Such a function F can always be found in at most Baire 
class 2. 

P r o o f . Let E = [x G X : f(x) = +00} . Clearly, E is closed. We have 
the decomposition of A" into disjoint subspaces 

X = (X\E)UlntEl)FiE. 

Without loss of generality we may assume, of course, that none of the terms in 
the above decomposition is empty. By Theorem 3, there exists an u-primitive 
Fx: X \ E —> R for f\(x \ E) > a t m o s t in Baire class 2, such that 

~d\(X\E) <Fi <f\(X\E)-

Since / | ( K \ xd) = 0, we have E C Xd. It follows that (X\Xd)nh\tE = 0. 

Therefore the open subset IntE is dense in itself. By Lemma 1(b), there exists 
00 

a set D = | J D^ , dense in IntJS, where Dk are closed and pairwise disjoint. 
k=i 
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oo 

Moreover, by (b) of Lemma 1, we have that the set IJ Dk is dense in Int.E for 
each n G N. k=n 

Define the function F2 : Int E —> [0, oo) letting 

F(x) = i k iix^Dk, k€N, 
2{ ' 1 0 if xelniE\D. 

So F2 is a Baire 2 function, such that for each x £ Int E we have w(F2, x) = +00. 
Next let us consider the continuous function T: X \E -¥ (0, 00) defined by 

T(x) = (dis t(z,£)) - 1 . 
Finally, define F: X -> E as follows. 

F(x) 

' Fг(x) + T(x) iîxeX\E, 

F2(x) i f ж Є І n t E , 

0 i f x Є F r E . 

In much the same way as in [1], [3] or [4], it could be easily checked that the func­
tion F is indeed an a;-primitive for / on X satisfying the required properties. 

• 
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