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ABSTRACT. We introduce the notion of zero invariant and idempotent fuzzy
BCC-subalgebras in BCC-algebras with respect to an s-norm, and investigate
some of their properties.

1. Introduction

BCK-algebras form an important class of algebras introduced by K. Iséki and
were extensively investigated by several researchers. The class of all BCK-alge-
bras is a quasivariety. K. Iséki posed an interesting problem (solved in [17])
whether the class of all BCK-algebras is a variety. In connection with this
problem, Y. Komori introduced in [15] a notion of BCC-algebras, and
W. A. Dudek (cf. [2], [3]) redefined the notion of BCC-algebras by using
a dual form of the ordinary definition in the sense of Y. Komori.

L. A. Zadeh [20] introduced the notion of fuzzy sets. At present this con-
cept has been applied to many mathematical branches, such as groups, functional
analysis, probability theory, topology, and so on. In 1991, O. G. Xi [18] applied
this concept to BCK-algebras, and he introduced the notion of fuzzy subalge-
bras (ideals) of the BCK-algebras with respect to minimum, and since then
Y. B. Jun at al. studied fuzzy subalgebras and fuzzy ideals (cf. [11], [12], [13]),
and moreover several fuzzy structures in BCC-algebras are considered (cf. [4],
(5], 7], [8])-

In this paper, we introduce the notion of zero invariant and idempotent fuzzy
BCC-subalgebras in BCC-algebras with respect to an s-norm, and investigate
some of their properties. We consider also the direct product and s-normed
product of zero invariant fuzzy BCC-subalgebras of BCC-algebras with respect
to an s-norm.

2000 Mathematics Subject Classification: Primary 06F35, 03G25, 94D05.
Keywords: zero invariant, idempotent, s-norm, fuzzy BCC-subalgebra, direct product,
S-product.
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2. Preliminaries

In the present paper a binary multiplication will be denoted by juxtaposition.
Dots we use only to avoid repetitions of brackets. For example, the formula
((zy)(2y))(zz) = 0 will be written as (zy - zy) -z = 0.

A non-empty set G with a constant 0 and a binary operation denoted by

juxtaposition is called a BCC-algebra if for all z,y,z € G the following axioms
hold:

(i) (zy-2y)-z2=0,
(ii) zz =0,
(i) 0z =0,
(iv) z0 ==z,

1
(v) 2y =0 and yx =0 imply 2z = y.
Any BCK-algebra is a BCC-algebra, but therc are BCC-algebras which are

not BCK-algebras (cf. [3]). Note that a BCC-algebra is a BCK-algebra if and
only if it satisfies:

TY-z2=1x2 Y. (1)
On any BCC-algebra (similarly as in the case of BCK-algebras) one can define
the natural ordering < by putting

r<y < zy=0. (2)

It is not difficult to verify that this order is partial and 0 is its smallest
clement. Morcover, in any BCC-algebra G, the following are true:

ry <, (3)
zy -2y <z, (4)
r<y = zz<yz & zy<zr. (5)

A fuzzy set in a set G is any function p: G — [0,1]. For « € [0, 1], the set
L) :== {zx € G: p(x) < a} is called a lower level set of p. A fuzzy set

p in a BCC-algebra G is called a fuzzy BCC-subalgebra of G if it satisfies the
inequality:

p(zy) > min{p(z), p(y)}

for all z,y € G.
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3. Idempotent fuzzy BCC-subalgebras

In the following, let G denote a BCC-algebra unless otherwise specified.

DEFINITION 3.1. ([19]) A binary operation S on the interval [0,1] is called
an s-norm, if

(S;) S(a,0)=a,

(S;) S(a,B) < S(a,v) whenever § <7,

(SS) S(avﬂ) = S(ﬁ, a)a

(S4) S(e, 5(8,7) = S(S(e, 8),7)
for all o, 3,7 € [0,1].

Note that max{e, 8} < S(a, ) for all a,f € [0,1]. Moreover, ([0,1};5) is
a commutative semigroup with 0 as the neutral element. In particular

5(8(a, 8), 8(v,8)) = S(S(r,7), S(B,))

holds for all «, 8,7, 6 € [0,1].
The set of all idempotents with respect to S, i.e. the set

Eg={a€[0,1]: S(e,a) =0},

is closed with respect to the operation S. Hence (Eg, S) is a subsemigroup of
([0,1],5).If Im(p) C Eg, then a fuzzy set y is called an idempotent with respect
to an s-norm S (briefly, an S-idempotent).

DEFINITION 3.2. Let S be an s-norm. A function p: G — [0,1] is called
a fuzzy BCC-subalgebra of G with respect to S (briefly, an ‘S-fuzzy BCC-sub-
algebra) if p(zy) < S(u(z),p(y)) for all z,y € G. If an S-fuzzy BCC-algebra
u of G is idempotent, we say that p is an idempotent S-fuzzy BCC-subalgebra
of G.

EXAMPLE 3.3. Let S be an s-norm defined by Sy(a,0) = a = 5,(0,a) and
So(a,8) = 1 if o # 0 # B, where o,8 € [0,1]. Let G = {0,a,b,c} be a
BCC-algebra with the following Cayley table:

0 a b ¢
0 0 0 0 O
a a 0 0 a
b a 0
c c ¢ ¢ 0
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Define a fuzzy set p: G — [0,1] by p(0) = «y, pla) = p(d) = «, and
n(c) = a,, where ag, o, a, € [0,1] with oy < a; < @,. Routine calculations
give that u is an S -fuzzy subalgebra of G, which is not idempotent.

ExaMPLE 3.4. Let G = {0,1,2,3,4} be a BCC-algebra with the Cayley table:

01 2 3 4
0 0 0 0 0 O
1 1 0 1 0 O
2 2 2 0 0 O
3 3 3 1 0 0
4 4 3 4 3 0

Let S,, be an s-norm defined by S, (o, f) = min{a + 3,1} for all «,3 €

m

[0,1]. Define a fuzzy set p in G by

(z) {1 if x€{0,1,2},
T) =
K 0 otherwise.

It is easy to check that u satisfies the inequality

w(zy) < S, (n(z), 1(y))

for all z,y € G, and Im(p) C Eg . Hence p is an idempotent fuzzy BCC-sub-
algebra of G with respect to S, .

PROPOSITION 3.5. Let S, be the s-norm in Ezample 3.4 and let A be a
BCC-subalgebra of G. Then a fuzzy set ju in G defined by

( )___{0 ift € A,
HE) = 1 otherwise

is an idempotent fuzzy BCC-subalgebra of G with respect to S, .

Proof. Let s,y € G. lf x ¢ Aor y¢ A, then p(r) =1 or p(y) =1 and
s0 S (u(z), u(y)) =1 > p(xy). Suppose that z € A and y € A. Then xy € 4
and thus p(zy) =0< S, (,u(g;),/t(y)). Obviously, Im(u) C Eg , completing
the proof. O

PROPOSITION 3.6. If ju is an idempotent S-fuzzy BCC-subalgebra of G . ther
1(0) < p(z) and p(zy) < max{p(@),w(y)} for all z,y € G.
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Proof. Indeed, u(0) = p(zz) < S(u(z),u(z)) = () for all z € G.
Similarly

max{u(@), u(y)} = S (max{u(z), ()}, max{u(z), uv)})
> §(u(z), n(y)) > max{p(z), n(¥)}
for all z,y € G. Hence p(zy) < S(u(=),n)) = max{u(z), u(y)} for all

z,y€G. o

THEOREM 3.7. Let u be a fuzzy BCC-subalgebra of G with respect to an
s-norm S and let o € [0,1]. Then
(i) if S(a,a) = @, then the lower level set L(p;a) of p is either empty or
a BCC-subalgebra of G ;
(ii) if S(a, B) = max{a, B}, then the lower level set L(u;a) of p is either
empty or a BCC-subalgebra of G, and moreover p(0) < p(zx) for all
T€G.

Proof.

(i) Assume that S(a,a) = a and L(u;a) is non-empty. If z,y € L(p;a),
then

u(zy) < S(u(x), u(y)) < S(u(z), @) = S(a,u(z)) < S(a,@) = a,
which means that zy € L(u; ). Hence L(u; ) is a BCC-subalgebra of G.

(ii) If S(a,B) = max{a,(}, then S is an idempotent s-norm and by (i)
every non-empty L(y;a) is a BCC-subalgebra of G. Moreover, for all z € G,
we get

1(0) = p(zz) < S(p(x), p(x)) = max{pu(z), p(z)} = p(z),
which completes the proof. a
COROLLARY 3.8. If u in G is a fuzzy BCC-subalgebra of G with respect to

an idempotent s-norm S, then every non-empty lower level set L(u;a) is a
BCC-subalgebra of G.

THEOREM 3.9. Let S be an s-norm and let p be a fuzzy set in G . If every non-
empty lower level set L(u; ) is a BCC-subalgebra of G, then u is an S-fuzzy
BCC-subalgebra of G .

Proof. Assume that p(z,y,) > S(u(mo),,u(yo)) for some z,,y, € G. Then
ma.x{,u(zo), #(yo)} < 5(“(‘50)’1‘(1/0)) < ap < p(TpY,)

by taking a, = %[ﬂ(zoyo) + S('u(xo),u(yo))]‘ It follows that z,y, € L(y; o)
and .y, ¢ L(p; ap). This is a contradiction, and hence p satisfies the inequality
pu(zy) < S(u(z), u(y)) for all z,y € G. O
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4. Zero invariant fuzzy BCC-subalgebras
DEFINITION 4.1. A fuzzy set ;¢ in G issaid to be a zero invariant (0-invar iant)
if u(0)=0.

Note that the fuzzy BCC-subalgebra of G with respect to S, in Proposi-
tion 3.5 is zero invariant.

In the following theorem, we give a condition for a fuzzy BCC-subalgebra of
G with respect to an s-norm to be zero invariant.

THEOREM 4.2. Let S be an s-norm and let p be an S-fuzzy BCC-subalgebra
of G. If there is a sequence {z,} in G such that

liminf S (p(z,,), u(z,)) =0,
n—00
then p is a zero invariant.

Proof. For any = € G, we have u(0) = pu(zz) < S(u(x), p(z)). Therefore
u(0) < S(pu(z,,), u(z,)) for each n € N, and so

0 < p(0) < liminf S(u(z,), u(z,)) =0.

n—o0
It follows that u(0) =0, i.e. p is zero invariant. O

If p is a fuzzy set in G and O is a mapping from G into itself, we define a
mapping pg: G = [0,1] by pg(z) = p(0(x)) forall z € G.

PROPOSITION 4.3. Let S be an s-norm. If p is an S-fuzzy BCC-subalgebra
of G and © is an endomorphism of G, then pg is an S-fuzzy BCC-subalgebra
of G. Moreover, if | is a zero invariant, then so is p .

Proof. For any z,y € G, we have

1o(zy) = p(O(zy)) = n(O(x)0(y))
< 5(1(6@), 1(0W)) ) = S(11e(+), 1oW)) -
Hence pg is an S-fuzzy BCC-subalgebra of G.

Assume that g is a zero invariant. Since ©(0) = 0, we get 45 (0) = 11(60(0))
#(0) = 0. This completes the proof.

Let f be a mapping defined on G. If v is a fuzzy set in f(G), then the fu 2y
set f~!'(v) in G defined by [f~'(v)](x) = v(f(x)) for all » € G is callec the

preimage of v under f.
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THEOREM 4.4. Let S be an s-norm. An onto homomorphic preimage of a
zero invariant S-fuzzy BCC-subalgebra is also a zero invariant S-fuzzy BCC-sub-
algebra.

Proof. Let f: G —» H be a homomorphism from a BCC-algebra G onto
a BCC-algebra H and let v be a zero invariant S-fuzzy BCC-subalgebra of H.
Then

[ )] (zy) = v(f(zy) = v(F(2)f ()
< S(V(f(x))ﬂ/(f(y))) = S([f_l(V)](x), [f‘l(l/)](y))
for all z,y € G, and
[£ 71 )] (0) = v(£(0)) = v(0) = 0.

Hence f~1(v) is a zero invariant S-fuzzy BCC-subalgebra of G. a

DEFINITION 4.5. Let p be a fuzzy set in G and f a mapping defined on G.
The fuzzy set uf in f(G) defined by pf(y) = inf p(z) for all y € f(G) is
called the anti image of p under f. z€f )

An s-norm S on [0, 1] is said to be continuous if S is a continuous function
from [0, 1] x [0, 1] to [0,1] with respect to the usual topology.

THEOREM 4.6. Let S be a continuous s-norm and let f be a homomorphism
on G. If p is a zero invariant S-fuzzy BCC-subalgebra of G, then the anti image
of n under f is a zero invariant S-fuzzy BCC-subalgebra of f(G).

Proof. Let A, = f~(y,), 4, = f(y,) and A,, = f~'(y,y,), where
Y1, ¥» € f(G). Consider the set

AAy:={z€G: z=aya, forsome a; € A, a, € A,}.

If 2 € AjA,, then z = z,z, for some z; € A4;, z, € A,, and so f(z) =
f(zyz,) = f(z)f(z,) = Y1y, i€, T € fH(y,y,) = Ajp. Thus A; A, C A, It
follows that

f(y,y,) = inf p(z)= inf p(z
w (y1y5) xef-uylyé)( )= inf p(z)

< inf z) < inf p(z,z
—IEAlAQ'LL( )_zleAx,'I( 1 2)
z2€A>

< inf S(p(z,), u(x,)).
- T1€AL, (/ ( 1)’l ( 2))
T2EAL
Now S is continuous, and thercfore if € is any positive number, then there exists
a number § > 0 such that
S(z7, x <S’( inf p(x inf tm.)—l-s
(z7,23) < QJIEA]/(I) 2EA2/(2) )

b
xz
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whenever 7 < inf pu(z;)+d and z3 < inf p(z,) + 4. Choose a; € 4, and
r1€EA; 22€As
a, € A, such that
< inf )+ 6 d ,) < inf ) + 0.
wlay) < inf p(@,) + and  p(ay) < inf pu(x,) +

Then
< i i .
S(uay), may) < 5 int plx,), inf pla,)) +e
Consequently
W (y,9,) < inf S(u(z,), p(z,))
T1€A,,
22€A2
< S(z,”elgl u(wl),m:ggzﬂ(wg))
= S(u! (yy), 1 () -
Moreover, uf(0) = }nf( )/z(x) < 11(0) = 0 and hence pf(0) = 0. Thus uf is a
z€f~1(0
zero invariant fuzzy BCC-subalgebra of f(G) with respect to S. O

5. Direct products and s-normed products

PROPOSITION 5.1. Let S be an s-norm and let G = G| x G, be the direct
product of BCC-algebras G| and G.,. If ju; (resp. ju,) is a zero invariant S-fuzzy
BCC-subalgebra of G| (resp. (i,), then pu = piy X ., is a zero wnvariant S-fuzzy
BCC-subalgebra of G defined by

;L(:I:l,l‘.z) = (lh X /Lz)(af'pl'z) = 5(1‘1(5‘71)7/‘(-32))
for all (z,,z,) € G.

Proof. Note that p(0,0) = S(u,(0),1,(0)) = S(0,0) = 0. Let = —
(z,,z,) and y = (y;,y,) be any clements of G'. Then

w(zy) = p((@, ) (0, Y,) = w2y, 2,y,)
= S(lh(z]yl)a/“z(xgyz))
< S(S i)y i w)), S (a(2), 12(3)) )
s(

S(/h (351)’ Hz(l'z))a S(/’q (y1)7 l‘g(yz)))
= S(ulwy,wy), 1y, 9)) = S(u(@), m(y)) .-
Hence p is a zero invariant S-fuzzy BCC-subalgebra of G. O

Now we will gencralize the idea to the product of n > 2 fuzzy BCC-sub-
algebras with respect to S. We first need to generalize the domain of s-norm to

[110,1] as follows:
i=1
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DEFINITION 5.2. The function S, : [][0,1] = [0,1] is defined by
i=1

S (a,aq,...,0,)=8(a;,85,_,(a,...,a;_;, Qs La,))
forall 1 <i<mn, where n>2, 5,=.25 and S, =id (identity).
Using the induction on n, we have the following two lemmas.

LEMMA 5.3. For any s-norm S and every a,,3; € [0,1], where 1 < i < n
and n > 2, we have

Sn (S(al >/31)$ S(a27162)) ccy S(a717:8n))
= S(Sn(al’ a27 ] an)) Sn(ﬂl)ﬁzv e :,Hn)) .

LEMMA 5.4. For an s-norm S and every ay,...,a, € [0,1], where n > 2,
we have

So(ay,...,e,) =S(...8(S(S(y, ), a3) ). . ., ;)
= S(a;,S(ay, S(ag,...S(e,_;,a,)-..))).
THEOREM 5.5. Let S be an s-norm and let G = [] G, be the direct product
i=1
of BCC-subalgebras {G,}I_, . If every p; is a zero invariant S-fuzzy BCC-sub-
algebra of G, where 1 <i < mn, then p = [] p; defined by
i=1

lt(z1’$2) v 7m11) = (Huz) (a"17x‘2’ e 7"1‘.11,) = Sn (H’] (x1)7ﬂ2($2)7 Tt :“’71,(‘,1"11))
i=1

is a zero invariant S-fuzzy BCC-subalgebra of G.
Proof. We first note that

N(ana . ,0) = Sn(M(O):#z(O): T '$/1'n(0)) = Sn(0’07 v "0) =0.

Let = = (z,,2,,...,2,) and y = (¥;,¥5,---,¥,) be any elements of G. Then,
by the above Lemma 5.3,

/L(:I?y) = /1'(5171?/1 1 LYoy e - oy CUnyn)
= S-n (lul(‘rlyl)’ ”2("[2:1/2)7 Tttt p‘n(',‘l"nyn))
< 8, (S @1) i W), S (o), 1a(30)), - ., S (1 (@), 1 (1))

= 5, (1 @), g )y s 1 (@) S (1 (), 2 W), s 1, (9,))

= S(“(xUmZ’ Tt ‘Tn)7 ﬂ(yl’y27 te ’yn)) = 5(#(@»#(?])) .
Hence p is a zero invariant S-fuzzy BCC-subalgebra of G. a
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DEFINITION 5.6. Let S be an s-norm and let g and v be two fuzzy sets
in G. Then the S-product of ju and v, denoted by [u-v]_, is defined by

- 1], (&) = S (u(a), v(2))
forall z € G.
Obviously [u-v], is a fuzzy set in G such that [p-v] = [v-p]_ .

THEOREM 5.7. Let S be an s-norm and let ;o and v be zero invariant S-fuzzy
BCC-subalgebras of G. Let §* be an s-norm which dominates S, i.e.,

§*(S(e,7), 5(8,0)) < S(S™(e, ), S™(7,9))

for all o, ,v,6 € [0,1]. Then S*-product [p - v]g. is a zero invariant S-fuzzy
BCC-subalgebra of G.

Proof. Note that [u- 1] (0) = S*(p(0),(0)) = 5*(0,0) = 0. Hence
(1 - v]g. is zero invariant. For any &,y € G, we have

(- Vg (zy) = S* (1(zy), v(zy))
< 5°(S(u@), p(w)), S (v(2), v(v)))
< S(5* (u(@), v(@), §* (n(y), v()) )
= S(ln-vls. (&), - v]s- (),
which proves that [p - v]g. is an S-fuzzy BCC-subalgebra of G'. m]

Let f: G —» G’ be an onto homomorphism of BCC-algebras. If p1 and v are
zero invariant S-fuzzy BCC-subalgebras of G', then the S*-product [i - v]..
is a zero invariant S-fuzzy BCC-subalgebra of G' whenever S* dominates S.
Using Theorem 4.4, the preimages f~'(u), f~'(v) and f~' ([ - v]g.) are zero
invariant S-fuzzy BCC-subalgebras of G.

THEOREM 5.8. Let S and S* be s-norms in which S* dominates S. L t
f: G — G' be an onto homomorphism of BCC-algebras. For any zero invariant
S-fuzzy BCC-subalgebras 1 and v of G', we have

(7 P R e (R A O] 9
Proof. Let € G. Then
17 ) @) = [ Vs (@)
= $* (0(f@),v(f@)) = 5* ([ W) @), ' W] ()

= [ )] (@),
completing the proof. O
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THEOREM 5.9. Let S be a continuous s-norm, f a homomorphism on G,
and let pp and v be zero invariant S-fuzzy BCC-subalgebras of G . If an s-norm
S* dominates S, then:

W o). € (0 v)se)

Proof. Using Theorem 5.7 and Theorem 4.6 we known that the S*-product
(it - V]g. is a zero invariant S-fuzzy BCC-subalgebra of G, and that the
S*-product [uf . I/f] g- is a zero invariant S-fuzzy BCC-subalgebra of f(G).
Moreover, for each y € f(G), we have

7 : .
. . = . - == f S* )
(ln-2s.) @) = inf (n-vls.(@) = inf % (), v())
>5*( inf p(z), inf
- (xe}gl(z%(x) me}r-ll(;)(x»

=5 (1! (), v/ (v) = [ - V] (),

and hence [pf - v/, C ([n- V]S,)f. O
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