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ABSTRACT. In his book [BOLLOBAS, B.: Extremal graph theory, Academic 
Press, London-New York-San Francisco, 1978] the author asks about possible 
generalizations of Chvatal ' s well-known hamiltonicity condition [CHVKTAL, V.: 
On hamilton's ideals, J. Combin. Theory Ser. B 12 (1972), 163-168]. For c = 3 
and 4 this follows directly from 2-connectivity. However, Haggkvist [Personal 
communication with J . A. Bondy] found counterexamples for any c > 7. In this 
paper we treat the remaining cases and show tha t for c = 5 such generalization is 
possible while for c = 6 we give counterexamples. Moreover, we show tha t some 
circumference generalization of Chvatal 's condition for any c is even possible. 

1. Introduction 

Several hamiltonicity conditions were actually proved in terms of circum­
ference (see [BChS], [Bon] for example). The circumference c(G) of a graph 
G is the length of its longest cycle. The next result is one of the well-known 
hamiltonicity conditions. 

THEOREM 1. ( C h v a t a l [Ch]) Let G be a graph of order n>3 with degrees 
d{ < d2 < • • • < dn. If di < i < n/2 implies dn_i > n—i, then G is hamiltonian. 

In his book "Extremal graph theory", B o 11 o b a s asks about the following 
circumference generalization of the previous theorem. 

PROBLEM 1. ( B o l l o b a s [Bol]) Let G be a 2-connected graph of order n 
with degrees dx < d2 < • • • < dn. Suppose 3 < c < n and d- < i < c/2 implies 
dn_i >c — i. Does it follow that c(G) > c? 
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For c = 3 and 4 the positive answer to the above problem follows directly 
from the 2-connectivity, and R. H a g g k v i s t [H] found counterexamples for 
&nv c, 7 < c < n . In this paper we treat the remaining cases and show that for 
c = 5 the problem has a positive answer, while for c = 6 we give counterexam­
ples. Thus there are only three values of c for which Theorem 1 extends to a 
circumference condition. However, we show that some circumference generaliza­
tion of Chvatal's condition for any c is even possible. 

2. Results 

First, let us investigate the case c = 5 in Problem 1. In what follows wTe 
characterize all 2-connected graphs with the circumference less than 5. The 
following result plays an important role in this task. 

LEMMA 1. ( B o n d y - L o v a s z [BL]) Let S = {x,y} be a set of two vertices 
in a 2-connected graph G. Then exactly one of the following two statements is 
true: 

(i) The cycles through S generate the cycle space of G. 
(ii) G contains a connected subgraph H which is disjoint from S, and two 

subgraphs Hj (i = x,y) such that H{ contains i and has exactly two 
vertices, say u{ and vjy in H. Moreover, {ux,u ,vx,v } is a vertex cat 
separating x and y in G. see Figure la). 

a) b) 

FIGURE 1. 

For each n > 5, the graph K2n_2 has order n , is 2-connected, and 
c(K2n_2) = 4. The following lemma shows that for every n > 5, there is 
exactly one further 2-connected graph of order n with circumference less than 
5 the graph Klln_2. 

LEMMA 2. Every 2-connected graph G of order n > 5 with c(G) < 5 ts 
isomorphic either to the graph K2 n_2 or to the graph Kxl n 2. 
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P r o o f . Let G be a 2-connected graph of order n > 5 with c(G) < 5. We 
will use the following well-known fact, which follows e.g. from the generalized 
Menger's theorem: 

($) Any 2-connected graph contains a cycle through any two vertices, two 
edges, or a vertex and an edge. 

We distinguish two cases. 

(i) G is bipartite. If the graph G contains an induced P4 (a path on four 
vertices), by ( $ ) , it must contain a cycle of length at least 6, a contradiction. 
So we may assume G does not contain any induced P 4 . If G contains an edge 
xy with d(x),d(y) > 3 , then the vertex x has at least two neighbours, say a, b 
and similarly y has at least two neighbours, say c,d. Since G is bipartite and 
it does not contain any induced P 4 , it follows that all the edges ac, ad, be 
and bd are in G. But now the cycle (a,x,y,d,b,c,a) has length 6. Thus we 
may assume that each edge of G has at least one end-vertex of degree two. If 
G has all vertices of degree two, then it is a cycle on n > 6 vertices, again a 
contradiction. Hence let it be a vertex of degree at least 3 in G. We have proved 
that all its neighbours, say al,a2,...,al, must be of degree two (they cannot be 
of degree one). Since G does not contain any induced P 4 , all these / vertices 
are adjacent to another vertex, say v. It follows that d(v) > 3 . By the same 
arguments as above, all neighbours of v are of degree two and are neighbours 
of u. Hence / = n - 2 and G is isomorphic to K2 n_2. 

(ii) G is not bipartite. If G does not contain two non-adjacent vertices, then 
it is a complete graph with c(G) = n > 5, a contradiction. Thus let x and y be 
two non-adjacent vertices of G. By Lemma 1, either the cycles through {x,y} 
generate the cycle space of G or G contains a connected subgraph H which is 
disjoint from {x,y}, and two subgraphs H{ (i = x,y) such that H{ contains i 
and has exactly two vertices, say u{ and v{, in H. Moreover, {ux,uy,vx,v } is 
a vertex cut separating x and y in G. 

In the former case (recall G is not bipartite) there must exist at least one 
odd cycle through the vertices x and y. Since x and y are non-adjacent, the 
length of the cycle is at least 5, again a contradiction. 

Let us consider the latter case. By ($ ) , G contains a cycle through x and y. 
Since any such cycle contains all the vertices x,y,ux,u ,vx and v and since 
c(G) < 5, we must have it = u„, = u and vv = vni = v. If H or iJ or Hni 

x y x y x y 

contains an edge with both end-vertices different from u and v, then, usiug (<£), 
G would contain a cycle of length at least 5, a contradiction. Hence each edge 
of G has at least one end-vertex from {u,v}, i.e., {u,v} is a dominating set 
of G. Since G is 2-connected and non-bipartite, one can observe that uv is the 
edge of G and G is isomorphic to the graph Klln_2. • 

THEOREM 2. With c = 5. Problem 1 has an affirmative solution. 
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P r o o f . It follows from Lemma 2 that every 2-connected graph G of order 
n > 5 and c(G) < 5 is isomorphic either to the graph K2 n_2 or to A^ x n _ 2 . 
One can observe that these graphs do not satisfy the assumptions of Problem 1 
with c = 5. D 

Second, let us investigate the case c = 6. In the proof of the following theorem 
we give counterexamples to Problem 1, which works for all c > 6 and all n > 
L £ T i J ( c _ 3 ) (if c = 6, then n> 7). 

THEOREM 3. For any n > 7 there is a graph G of order n which satisfies 
assumptions of Problem 1 with c = 6, but c(G) < 6. 

P r o o f . Let c > 6 and n > | _ ^ J (c - 3) be given integers. Let k = [^-^-J . 
A-

Choose m• > c — 4 (i = 1, 2 , . . . , k) such that __^ mi = n — k — \. Consider the 
i=i 

graph G = G(k;m1,m2,... :mk) consisting of a cycle Ck — (vl,v2,...,vk,v{) 
and one extra vertex joined by m • internally disjoint paths of length two and 
one edge to v2 for i = 1, 2 , . . . , k. Note that in the case when k — 2, C> is an 
edge. The graph G(3;4, 4,4) is depicted in Figure lb ) . 

The graph G is obviously 2-connected of order n . Since its minimum degree 
is 2 and since it has |"c/2] vertices of degree at least c — 2, it satisfies the 
assumptions of Problem 1. But, obviously, c(G) = k + 3 < c. 

It follows from the previous that there are only three values of c for whic h 
Chvatal's hamiltonicity condition yields a circumference condition by replacing 
?7 by c and requiring 2-connectivity. Our next result shows that some circum­
ference generalization of Chvatal's condition for any c is even possible. 

THEOREM 4. Let G be a graph with vertices ordered according to their degrees 
d(ih) < d(v2) < . . . < d(vn). Let W = K „,+..«„ ^ a . • • • . " „ } , <" > 3- V 
d(vn_w+l) > n — w, and for any i > n — w, d(v-) < i < y implies d(vn t) 
n - i, then G contains a cycle through all vertices of W. 

P r o o f . The proof is similar to Chvatal's original one. Let G be a graph 
of order n satisfying the conditions of the theorem. First of all note that the 
set W has the property, say (P), that if it contains a vertex of degree /, then it 
must contain all vertices of degree > /. 

Suppose by way of contradiction that there is no cycle through all the vertices 
in W. Obviously, adding any new edge between two non-adjacent vertices from 
W results in a graph satisfying the assumptions of the theorem. 

Hence we may assume that there are as many edges as possible in W (such 
that G does not contain any cycle through all vertices of TV). Now, any pair of 
non-adjacent vertices in W is connected by a path that contains all the vertices 
of W. 
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Since at least one edge is missing in W, we can find two vertices, say x and 
?/, such that 

d(x) = i, (1) 

d(x) < d(y), (2) 

xy i E(G), (3) 

d(x) + d(y) is as large as possible. (4) 

Let P = (x — x0,xx,... ,Xj = y) be a x — y path that contains all the vertices of 
IV. Let xi be a neighbour of x on P. It holds that its predecessor xi_1 is not 
adjacent to y. Because otherwise (x, x1,..., xi_l, H, xt_x,...,xv x) would be a 
cycle containing all vertices of IV, a contradiction. From (1) and (4), it follows 
that the degree of xi_1 is at most i. Similarly, it holds that any neighbour of x 
not on P is not adjacent to y. Moreover, since this vertex is not in W, by (1) 
and from the property (P), its degree is at most i. By the arguments above, if 
x has degree /, then there must be at least / edges missing at y, thus we have 

d(x) + d(y) <n. (5) 

It follows from (2) that i < n/2. Moreover, there are at least i vertices of 
degree at most i in G, hence d(vt) < i < n/2. Since x G VV, it holds that 
d(x) > d(vri_w_^_1) > n — w, hence it follows that i > n — w. By the assumptions 
of the theorem, we must have d(vn_i) > n — i. Thus there are at least i + 1 
vertices, each of degree at least n — i. We claim, that all these vertices are in W. 
Indeed, since i < n — z, all these vertices have degree greater than the vertex x 
which is from W. The claim follows from the fact that W has the property (P). 

At least one of these i + 1 vertices is non-adjacent to x , say z. But d(x) + 
d(z) > n, a contradiction with (4) and (5). We conclude that G contains a cycle 
through all vertices of IV. • 

COROLLARY 1. Let G be a graph of order n > 3 with degrees d1 < d2 < ... 
< dn and let 3 < c < n. If dn_cJrl > n — c, and for any i>n — c,di<i<2

1 

implies dn_{ > n — i, then c(G) > c. 

3. Concluding remarks 

Let us note that if w = n , then d(vn_w_^_1) > n — w follows from the Chvatal's 
part of the condition in Theorem 4, thus Theorem 4 generalizes Chvatal's hamil-
tonicity condition. If w < n, then the following examples show that the condition 
is necessary. Indeed, for w < n/2 + 1 take any tree of order n. The following 
examples show the necessity of the condition also for several w > n/2 + 5. 
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Let G be given graph with two distinguished vertices, say u and v. Define 
the new graph H = G(u,v) as follows. V(H) = V(G) + {x,y} and E(H) -
E(G) + {xu,xv,yu,yv}. We say that H arises from G by downing vertices u 
and v and that x and ?/ constitute a nodal pair. 

Let / and n be integers such that n is even and 2 < I < n/2. Construct the 
graph G(l,n) as follows. Take the complete graph on n + 2/ — 2 vertices and 
pick up n /2 — £ + 1 pairs of its vertices. Now apply the operation downing to 
all the distinguished pairs of vertices. Finally, in the present graph choose one 
vertex of degree two (this will be a vertex of a nodal pair) and connect it to all 
4/ — 4 unused vertices of the complete graph. The degree sequence of G(l, n) is 
the following: 

4/J-4 n - 2 / + 2 

Now, let w = n + 21 + 1. Then W is the set of all vertices of degree at least 
4/ — 2 plus two vertices of degree two. Obviously, the ordering of vertices can be 
chosen so that these two vertices constitute a nodal pair. Because of the nodal 
pair, there is no cycle through all the vertices of W in G(/, n). However, one can 
find an ordering of vertices of G such that the degree condition of Theorem 4 is 
satisfied. Fortunately, the condition d(v2n_w+l) > 2n — w is not for w < 2n-2. 

Note that Theorem 4 is of similar nature as recent results of S h i [S] and 
B o 11 o b a s and B r i g h t w e 11 [BB]. However, it is not their extention in gen­
eral. 

THEOREM 5. ( B o H o b a s — B r i g h t w e l l [BB]; d > n / 2 , S h i [S]) If G is 
a graph of order n and W is a set of w vertices of degree at least d > 2. If 
s — \rn^-11 > 3 , then there is a cycle tlnough at least s vertices of W. 

The previous theorem guarantees cycles through all the vertices of W only 
if d>n/2. 
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