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(Communicated by Pavol Zlatos)

ABSTRACT. Using a congruence for Gauss period the Davenport-Hasse relation
for the Gauss sums is proved.

Let p > 3 be a prime and x be a Dirichlet character modulo p. Let 7(x) =
p—1

x(z)¢; be a Gauss sum. The following theorem shows a non-trivial multi-
z=1

plicative relations between p — 2 Gauss sums.
The following Theorem can be found in [3].

THEOREM (DAVENPORT-HASSE RELATION). Ifl is a divisor of p—1 and
\ is a Dirichlet character modulo p satisfying x' # €, then

00 [T 70c) =307 T ().

Pr=e, P#e Pl=¢, e

For the proof of this theorem, see [2]. An elementary proof is known only in
special cases. For [ = 2" the proof is in [1].

The aim of this paper is to show how this result can be obtained for the fields
Z/pZ from the following lemma proved in [4]. Here 7 denotes a suitable element
of Q(¢,) such that NQ(CP)/Q(W) =p.

LEMMA 1. ([4]) Let p be a prime and n # 1 be a divisor of p— 1. There exists

a prime divisor p of the field Q((,) with p | p such that for any exponent S
there are rational numbers aj,...,a}_, satisfying
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In [4], the prime divisor p is chosen to satisfy the congruence x(a) = a
(mod p) for each integer a relatively prime to p.

Proof of the Theorem. Let x be a generator of the group of Dirich-
let characters modulo p. Denote k = %1 Let ¢ be a positive integer such that

Xil 96 €.
The Davenport-Hasse relation can be rewritten as follows:

T(xi)T(xH'k) . T(X1'.+k.(l—1)) — Yli(l)T(Xk)T(X%) . T(X(l—l)k)T(Xit) .

It is easy to see that both sides of this equality depend only on the residue
class of i modulo k. Let us denote its left-hand side by a and its right-hand
side by .

For any positive integer j < p — 1 relatively prime to p — 1 let o; be the
automorphism of Q(¢,_,,¢,) such that aj(Cp_l) =¢_, and 0;(¢,) = ¢,- Then

o;(c = B) = T(¢)r (I 7 (xR
— Y’Jl(l)r(xk])r(xz'”) ...T(X(l—l)kJ)T(Xul) .
Let r = ij — [%]k, then

Uj(a - B)

— T(XT)T(Xr+k) . _T(Xr+(l—1)) _ le(l)T(ij)T(Xij) . T(X(l—l)kj),r(xrl) .

Denote

-1
M; =r+(r+k)+(r+2k)+---+ (r+ (1 —1)k) =rl+(l—1)p—2-.

By Lemma 1, for n = p — 1 we have
o(@=p) = ™i(p—1)!(aral .- Ay (=1)k -X"'(l)aza3.a(_yyar) (mod pS).

We shall prove that

MO SN X" (Dagaz, - af_yypay  (mod p).

We have mentioned that p satisfies

X' =" (mod p).

176



AN ELEMENTARY PROOF OF THE DAVENPORT-HASSE RELATION

From a} = % (mod p) it follows that it is enough to prove the congruence
1 1 1 1 1 1 1
Mr+k)! (r+ -1k KL@E) (= D)k)! (D)

for each 0 < r < k.

The last congruence can be easily proved by induction with respect to r.
Thus there is an integer § € Q((,,(,—;) divisible by p such that

oj(a—p) = 7™i§  (mod p%).

="

(mod p),

Hence there exists an integer ¢’ € Q({,,(,_,) divisible by p¥(P=1) guch that
No(¢p o)/ (@ = B) = H) oj(a=p)=a=M§  (mod p%).

For each automorphism o € Gal(Q((p,C ~1)/Q¢,—;)) we have a(p)
Therefore there exists an integer 6" € Q((,,(,_,) divisible by p(p-D¢(»=1) guch
that

I
o

NQ(vaCp—l)/Q(a - ﬁ) = pz M; 8" (mod pS) .
Since Mj > (- 1)’%—1—, we have
p—1
> M;> (=) ——e(p-1).
(P_laj)-—'l

Thus there exists an integer 6" € Q(¢,,¢,_;) divisible by p(e=1)e(r=1) sych
that .
Na(eoton)/@(@ = B) =p?@PP=DT 6" (mod pSy

Hence the rational integer

No(¢ygo-/e(@ = 6)
is divisible by the divisor

pw(r)w(p—l)'—;l+v(p)w(p—1) ,

and, consequently, also by the integer

pPPle(P=D T +ep)e(-1)
Since o(a — f) < 2p? for any o € Gal(Q((p,(p_l)/Q) , We have

L -
Nate, gp-nsa(@ = B < (2p8)PP¥F70),
It is easy to see that
(21’%)%0(1’)‘/’(7’—1) < pw(p)<p(p—l)'—;—‘+¢(p)so(zi—1)

for any p > 5. Hence a — 3 = 0, and the Theorem is proved. o
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