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NORMAL AUTOMETRIZED 
LATTICE ORDERED ALGEBRAS 

T O M Á Š KOVÁŘ 

(Communicated by Tibor Katriňák ) 

ABSTRACT. Results proved for normal autometrized lattice ordered algebras 
under the assumption of semiregularity are shown to be valid without this as­
sumption. 

Autometrized algebras were introduced by S w a m y (cf. [6]) as an attempt 
to obtain a unified theory of abelian lattice ordered groups and Brouwerian 
algebras. S w a m y and R a o (cf. [7]) studied the concept of an autometrized 
lattice ordered algebra. 

S w a m y and R a o (cf. [7]) remarked that the notion of an autometrized 
algebra is too general and they introduced the notions of a normal autometrized 
algebra and a semiregular autometrized algebra. This work was continued by 
H a n s e n (cf. [1] and [2]) and R a c h u n e k (cf. [3], [4] and [5]). 

In this paper we show that several results which were proved in the above 
quoted papers under the assumption of semiregularity can be proved without this 
assumption. We also give a characterization of an ideal of a normal autometrized 
lattice ordered algebra. 

An algebra A = (A; 0; +; A; V; *) of type (0;2;2;2;2) is a normal au­
tometrized lattice ordered algebra (abbreviated, NA^-algebra) if the following 
holds (cf. [6; Definition 1] and [7; Definition 1]): 

(i) (A; 0; +; <) is an abelian lattice ordered monoid, i.e. 
(a) (̂ 4; 0; + ) is an abelian monoid, 
(b) (A; A; V) is a lattice (the induced order is denoted by < ) , 
(c) x + (y A z) = (x + y) A (x + z) for all x,y,z e A, 
(d) x + (y V z) = (x + y) V (x + z) for all x, H, z G A, 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 06F05. 
K e y w o r d s : convex subset, lattice (algebraic, Brouwerian, distributive, pseudocomplemented), 
lattice ordered group, lattice ordered monoid. 
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(ii) * is a metric operation, i.e. 

(a) x * y > 0 and x * y = 0 if and only if x = y for all x, 2/ G A, 

(b) x * y = H * x for all x, y G -4, 
(c) x * y < (x * z) + (z * y) for all x, ?/, z G -4, 

(iii) x * 0 > x for each x G -4, 
(iv) (x + y) * (x' + y') < (x * x') + (2/ * y') for all x, y, x', y' G A, 
(v) (x * y) * (x; * H') < (x * x') + (y * y') for all x, y, x', H' G .4, 

(vi) x ,y G A and x < y imply there exists z £ A such that x + z = H. 

An NA^-algebra A is semiregular if the following holds (cf. [7; Definition 5]): 

(vii) x > 0 implies x * 0 = x for each x G A. 

In what follows A stands for an NA^-algebra. 
A subset I C A is an ideal of A if the following holds (cf. [7; Definition 2]): 

(i) o e / , 
(ii) x,y G / implies (x + y) G / , 

(iii) x G -4, 2/ G / and x * 0 < y * 0 imply x G J. 

The set of all ideals of A ordered by set inclusion is a complete algebraic 
lattice 1(A) (cf. [7; Theorem 1]). In this lattice, i~A J = In J (cf. [7; Lemma 1]) 
and / V J = { z G . 4 | z * 0 < x + y f o r some x G I and y G J } (cf. [7; 
Corollary 1]). An ideal generated by a set B C A is denoted by 1(B) and 
an ideal generated by a singleton {x} C A is denoted by I(x). Furthermore, 
I(x) = {y £ A\ 2 / * 0 < n(x * 0) for some natural n) (cf. [7; Lemma 2]). 

A finitely meet-irreducible ideal I G 1(A) is a prime ideal (cf. [3]). The set 
of all prime ideals of A ordered by set inclusion is denoted by 1P(A). 

Elements x, y G A are orthogonal, x _L y: if (x * 0) A (y * 0) = 0 (cf. [4]). If 
B C i , then B1 = {x G A \ x ± y for all y G B] is the polar of the set B. 
The polar of a singleton {x} C A is denoted by x1-. A set C C A is a polar 
if there exists the set B C i such that C = L?-1-. The set of all polars in A 
ordered by set inclusion is denoted by T*(A). 

The set of all (additively) invertible elements of A endowed by + , A and 
V is denoted by In (A) and the set of all (additively) idempotent elements of A 
endowed by + , A and V is denoted by ld(A). 

1. THEOREM. In(A) is an abelian lattice ordered group. 

P r o o f . Clear. D 

2. THEOREM, X G ln(A), y e A and y < x imply y G ln(A). 

P r o o f . Since y + ( - x ) < 0 therefore there exists z G A such that y + 
(-x) + z = 0. Hence y G In(A). D 
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3. THEOREM. ld(A) is an abelian lattice ordered monoid. Moreover, in Id(.4), 
the following holds: 

(i) x > 0 , 
(ii) x + y = xV y. 

P r o o f . Assume that x,y e ld(A). Since (x A 0) + (x A 0) = (x + x) A (x + 0) 
A (0 + x) A (0 + 0) = x A 0 therefore ( x A 0 ) G ld(A.). Since x A 0 < 0 therefore 
Theorem 2 implies (x A 0) G In(A) and thus x A 0 = 0. Hence x > 0. 

Clearly, 0 £ Id(A). Since (x + 2/) + (x + ?/) = (x + x) + (y + y) = x + y therefore 
(x + y) G ld(A). Since (xA?/) + (xA?/) = (x + x)A(x + y)A(y + x)A(y + y) = xAy 
therefore (x Ay) G ld(A). Since x < xV y and y < xV y therefore there exist 
x1 G A and y± € A such that x + xx = x V y and y + y1 = x V y. Then 
(x V H) + (x V y) = [x + (x V j/)] v[y+(xVy)]=(x + x + xl)V(y + y + yx) = 
(x + x^V (y + yx) = xV yV xV y = xV y and therefore (x V y) G Id(.A). Hence 
ld(A) is an abelian lattice ordered monoid. 

Finally, x + y<(xVy) + (xVy)=xVy<x + y. Hence x + y = x V y. • 

4. LEMMA. For x ,y G A and z G In(.A), the following holds: 

(i) x * 0 > x V 0 , 
(ii) x * y = (x + z) * (y + z). 

P r o o f . 

(i) Clear. 

(ii) It follows from x * y = [x + z+ (—z)] * [y + z + (—z)] < [(x + z) * (y + z)] 

+ [(—z) * ( - z ) ] = (x + z) * (y + z) < (x * y) + (z * z) = x * y. • 

In viewT of (ii) of Lemma 4 we observe that any mapping / : A —> A, f(x) = 
x + y, where y G In (A) is a fixed element, is an isometry of A, i.e. a surjective 
and distance preserving mapping. 

5. LEMMA. For x G A and I G 1(A), the following holds: 

(i) x e I if and only if (x * 0) G I, 
(ii) J(x) = J ( x * 0 ) , 

(iii) x G In (.A) implies I(x) = I(—x) = I(x * 0) . 

P r o o f . 
(i) In view of [7; Lemma 5], we obtain ( x * 0 ) * 0 = x * 0 , which yields the 

assertion. 

(ii) It follows from (i). 

(iii) In view of (ii) of Lemma 4, we obtain x * 0 = [x + (—x)] * [0 + (—x)] = 

0 * ( -x ) = ( -x ) * 0 and (ii) yields I(x) = I(x * 0) = l((-x) * 0) = I(-x). • 
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6. THEOREM, (cf [2; Proposition 3]) A subset I C A is an ideal of A if and 
only if the following holds: 

(i) / is a sub-NA£-algebra of A, 
(ii) I is a convex subset of A. 

(iii) (x * 0) G / implies x G / for each x G A. 

P r o o f . Assume that / G I(-4). In view of [7; Theorem 4]. there exist a 
normal autometrized algebra B (cf. [6; Definition 1] and [7; Definition 1]) and 
a homomorphism / : A -> B (cf. [7; Definition 4]) such that / = ker(/) = 
{x G A | f(x) = 0 } . If x, y G / , then f(x + y) = f(x) + f(y) = 0 + 0 = 0 and 
f(x * y) = f(x) * f(y) = 0 * 0 = 0, i.e. (x + y) G / and (x * y) G / . Since 
x < xVy < (x*0) + (y*0) therefore 0 = f(x) < f(xVy) < f((x*0) + (y*0)) = 0, 
i.e. (xVy) G / . Since in any abelian lattice ordered monoid the identity x + y = 
(xAy) + (xVy) holds therefore f(xAy) = f(x/\y)+f(xVy) = f((xAy) + (xVy)) = 
f(x+y) = 0, i.e. (x/\y) G / . If x < y, then there exists z G A such that x+z = y 
and thus f(z) = f(x) + f(z) = f(x + z) = f(y) = 0, i.e. z G / . Hence / is a 
NA-? -algebra. 

If x < z < y and z £ A, then 0 = f(x) < f(z) < f(y) = 0, i.e. z G / . Hence 
/ is a convex subset. 

If (x*0) G / , then f(x) *0 = f(x)*f(0) = f(x*0) = 0, i.e. f(x) = 0 . Hence 
x e l . 

Conversely, assume that I C A satisfies the conditions (i). (ii) and (iii) and 
x,y e I. Obviously, 0 G / and (x + y) G / . If z G A and z * 0 < x * 0 . then in 
view of (ii), we observe (z * 0) G / , and (iii) implies z G / . Hence / is an ideal. 

• 
7. LEMMA, (cf. [3; Propositions 2, 3]) For x,y e A, the following holds: 

(i) / ( x ) n / ( y ) = / ( ( x * 0 ) A ( y * 0 ) ) . 
(ii) I(x) V I(y) = I((x *0)V(y* 0)) = l((x *0) + (y* 0)), 

(iii) x > 0 and y > 0 imply I(x) V I(y) = I(x V y) = I(x + y). 

P r o o f . 

(i) In view7 of (ii) of Lemma 5, (ii) of Theorem 6 and 0 < (x * 0) A (y * 0) < 
(x * 0), (y * 0), we obtain l((x * 0) A (y * 0)) C I(x * 0) n I(y * 0) = I(x) n I(y). 
Conversely, if z G /(.T) n I(y), then there exist natural numbers n and m such 
that z * 0 < n(.T * 0) and z * 0 < m(y * 0). In view of [1; Lemma 1.2], we obtain 
z*0 < [n(x*0)] A [m(y*0)] < nm[(x * 0) A (y * 0)] . i.e. z E l((x * 0) A (y * 0)) . 
Hence / (x) n /(y) C / ( ( x * 0) A (y * 0)) . 

(ii) In view of (ii) of Lemma 5, (ii) of Theorem 6 and 0 < (x * 0). (y * 0) < 
(x*0)V(y*0) < (x*0) + (y*0) we obtain I(x)Vl(y) = l(x*0)Vl(y*0) C / ( (x*0) 
V (y * 0)) C I((x * 0) + (y * 0)) . Conversely, if z G I((x * 0) -+- (y * 0)) . then there 

372 



NORMAL AUTOMETRIZED LATTICE ORDERED ALGEBRAS 

exist a natural number n such that z*0 < n[(x*0) + (y*0)] = n(x*0) + n(y*0), 
i.e. z G I(x) V I(y). Hence l((x *0) + (y* 0)) C I(x) V I(y). 

(iii) In view of (ii) of Theorem 6 and 0 < x,y < xV y < x + y we obtain 
I(x) V I(y) = I(x V y) C I(x + y). Conversely, if z G I(x + y), then there exist a 
natural number n such that z*0 < n[(x + y)*0] = n[(x + y)*(0 + 0)] < n[(x*0) 
+ (y * 0)] = n(x * 0) + n(y * 0), i.e. z G I(x) V I(y). Hence I(x + y) C J(x) V J (y) . 

D 

8. THEOREM, (cf. [7; Lemma 6, Theorem 6]) The following holds: 

(i) 1(A) is an algebraic lattice, 
(ii) 1(A) is a complete lattice, 

(iii) 1(A) is a distributive lattice, 
(iv) 1(A) is a Brouwerian lattice, 
(v) 1(A) is a pseudocomplemented lattice. 

P r o o f . 
(i), (ii) Cf. [7; Theorem 1]. 
(iii) Assume that I,J,K G 1(A) and u G J n ( J V K). There exist x e I, 

y G J and z G Jf such that w * 0 < a ; < : r * 0 and u*0 <y + z < (y*0) + (z*0). 
In view of [1; Lemma 1.2], we obtain u * 0 < (x * 0) A [(y * 0) + (z * 0)] < 
[(x * 0) A (y * 0)] + [(x * 0) A (z * 0)], and (i) of Lemma 7 yields u G l((x * 0) A 
(y * 0)) V I((x *0)A(z* 0)) = [I(x) n I(y)] V [l(x) n /(.*)] c (J n J ) V (J n K). 
Hence J n ( J V JC) C (J n J ) V (J n FT). The rest is clear. 

(iv) It follows from (i) and (ii). 
(v) It follows from (iv). • 

9. THEOREM, (cf [3; Theorem 4]) For I G 1(A), the following are equivalent: 

W ieiP(A), 
(ii) JDK CI implies J CI or K C J for all J,K G 1(A), 

(iii) (x * 0) A (y * 0) G J implies x G J or y € I for all x,y e A. 

P r o o f . 
(i) =.> (ii) Assume that J n Jf C J . In view of (iii) of Theorem 8, we 

obtain I = IW(JnK) = ( J V J ) n ( J v J C ) and therefore I = IWJ or I = IVK. 
Hence J C I ox K C I. 

(ii) = > (iii) Assume that (x * 0) A (y * 0) G J . In view of (i) of Lemma 7, we 
obtain I(x)f)I(y) = l((x*0) A (y*0)) C I and therefore I(x) C I or I(y) C I. 
Hence x G J or y G J . 

(iii) = > (i) Assume that I = JnK,I^J and y e K. There exists 
.r G J \ 7 . In view of (i) of Lemma 7, wTe obtain (x*0) A(y*0) G J((x*0) A(?j*0)) = 
I(x) n 7(H) C J HK = I. Since x £ J therefore i / G / . Hence K = I. • 
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10. THEOREM, (cf [3; Theorem 8]) If {Ix}xeA is a totally ordered system of 
prime ideals of A, then I = PI{^A}AGA

 Z5 a Prime ideal of A. 

P r o o f . Assume that x, y G A, (x * 0) A (y * 0) G J and x $. I. There exists 
A0GA such that x £ Ix for each A G A, A > A0. In view of (iii) of Theorem 9, 
we observe that y G Ix for each A G A, A > A0, i.e. y G J. Hence J G IP(A). 

D 

11. COROLLARY, (C/ [3; Corollary 9]) Each prime ideal contains a minimal 
prime ideal. 

12. THEOREM. J G IP(A) and x e A\I imply xL C I. 

P r o o f . Assume that y G x x . Then (x * 0) A (y * 0) = 0 and in view of (i) 
of Lemma 7, we obtain J(x)nJ(y) = J((x*0) A(?/*0)) = J(0) = {0} C J. Since 
I(x) £ J therefore (ii) of Theorem 9 yields y G I(y) C J. Hence ^ C / . • 

13. THEOREM, (cf. [4; Corollary of Theorem 6]) For B,C CA, the following 
holds: 

(i) BCC implies CL C Bx, 
(ii) BCB-1--1, 

(iii) B-1 = BLLL , 
(iv) J B ± n B J - L = {0} ; 

(v) B is a polar if and only if B = BL± , 
(vi) B C C - 1 if and only if C C B1. 

P r o o f . 
(i) Clear. 
(ii) If x G .B, then x _L 2/ for each y G J? 1 . Hence x G i?-1-1. 
(iii) It follows from (i) and (ii). 
(iv) Since 0 _L x for each x G -4 we conclude that 0 G BL n J?-1-1. If 

x G -B-1 n B-1-1, then x * 0 = (x * 0) A (x * 0) = 0. Hence a; = 0. 
(v) If J? is a polar, then B = C1 for some CCA and (iii) yields J? = 

C 1 = C±±A- = BL±. Conversely, if B = J 5 ± x , then B = CL, where C = BL. 
(vi) It follows from (i) and (ii). • 

14. THEOREM, (cf [4; Theorem 5j) £ C A implies B1- = n { j G IP(-4) | 
B g J } . 

P r o o f . Denote C = {J G IP(-4) | B ? / } . Assume that y € BL, I e C 
and x e B\I. Then (x * 0) A (y * 0) = 0 and in view of (iii) of Theorem 9, we 
obtain y el. Hence B i C n C . 

Conversely, assume that y £ BL, i.e. there exists x G B such that (x * 0) 
A (y * 0) > 0. In view of [4; Theorem 4], there exists J G lP(A) such that 
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((x * 0) A (y * 0)) ^ J and (i) and (ii) of Theorem 6 yield x £ I and y <£ I. Since 
x e B\I therefore J G C and y £ I implies y £ DC. Hence f]C C B^. D 

15. COROLLARY, (cf [4; Corollary of Theorem 5] and [7; Lemma 7]) Each 
polar in A is an ideal of A. 

16. THEOREM, (cf [2; Lemma 5] and [4; Theorem 2]) B C A implies B± = 
{xeA\ I(x)nI(B) = {0}}. 

P r o o f . It is well known that the identity xA ( V Vx) = V ixA2/A) h°icls 

in any Brouwerian lattice. Assume that x G A. In view of (i) of Lemma 7 and 

Theorem 8, we obtain I(x) n J(.B) = J(x) n ( V -%)) = V (*(*) n /(»)) = 
V2/6B J y£B 

V J((x * 0) A (y * 0)). From this we observe that I(x) n J(B) = {0} if and only 
yeB 
if (x * 0) A (y * 0) = 0 for all y G B . Hence I(x) n J(£) = {0} if and only if 
xeBL. • 

17. COROLLARY, (c/. [2; Lemma 4] and [4; Corollary of Theorem 2]) B C A 
implies J?-1 = 1(B)1-. Hence any polar in A is the polar of an ideal. 

18. THEOREM, (cf [7; Lemma 7]) For each I G 1(A), J x is the pseudocom-
plement of I in 1(A). 

P r o o f . In viewr of (ii) and (iv) of Theorem 13, we obtain J n Ix = {0}. 
Assume that J G 1(A), J n J = {0} and x G J. Then J n I(x) C J n J = {0} 
and Theorem 16 yields x E I±. Hence J C / 1 . • 

19. THEOREM, (c/. [4; Theorem 8] and [7; Theorem 7]) P(A) is a complete 
Boolean algebra when equipped with the meet D, a new join operation V; defined 
by I V1 J = (I V J)L1- and complementation ^ . The mapping $ : 1(A) —» P(A) 
defined by <3>(J) = J-11 zs a lattice epimorphism. 

P r o o f . It is well known to be valid in any Brouwerian lattice. • 

20. THEOREM, (cf [4, Theorems 6, 7]) The following holds: 

(i) p| B£ = ( IJ B\) f°r al1 B\ C -4, ^ftere A G A, 
AEA VA<EA ' 

(ii) n J ^ = ( V Bx) f°r dl Bx e J ( A ) ?
 where XeA> 

AGA V AGA ' 

(iii) f| Bx = ( V -BA ) for all Bx G P(A), where A G A, 
AGA ^AGA ' 

(iv) ( n BA = \ / #A M aU B\ £ P(-4), ^ e r e A G A. 
ЛЄЛ ' AЄЛ 
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P r o o f . It is omitted since it is basically a theorem about Brouwerian 
lattices. • 
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