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EXISTENCE OF POSITIVE SOLUTIONS TO
VECTOR BOUNDARY VALUE PROBLEMS I

ILJA MARTISOVITS
(Communicated by Milan Medved’)

ABSTRACT. We show that the question about the existence of a positive solu-
tion to certain m-dimensional differential system of second order with Dirichlet
boundary condition can be answered by multiple (step-by-step) solving of differ-
ential equations of the first order.

1. Introduction

In [2], M. Feckan has dealt with the existence of a solution of the problem:

—u" = (f,(z) + g(u)) - u—s(u) - v,

—v" = (a+7(u) v —12?,

u(0) = u(m) = v(0) = v(w) =0,
u(z) >0, wv(z)>0 forall ze (0,n),
where the functions f, g, r, s fulfil the following conditions:
f,() € C'(R xR, R), g,8,7 € C'(RR),
T10>0, 022,
g(0) =4'(0) =0, g(u) <0 for u>0,
r(0) =7'(0) =0, s(0) =s'(0) =0,
r/(0,00) <1, 7' /(0,00) > 0, s/(0,00) >0,
limg=—o0 for =z — 0.

Using the bifurcation method he found a necessary and sufficient condition
for the parameter a that problem (1.0.1) may have at least one positive so-
lution u, v. Attention to similar problems has been paid in papers [7], [4] where

(1.0.1)
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solutions in a cone have been studied. Another problems with similar formula-
tion or with similar method of solution (degree theory) were studied in papers
(31, [1].

In this paper we shall investigate the existence of a positive solution depend-
ing on definition intervals which are determined by the Dirichlet boundary con-
ditions for single components of the solution. We shall consider the second-order
n-dimensional vector differential system, n > 2, (see (3.0.1)). In this paper the
question about the existence of solution to n-dimensional differential system can
be answered by multiple (step-by-step) solving of differential equations of the
first order. This can be considered as the contribution of this paper. The whole
paper is divided into two parts which will be published in this journal separately.
In the first part some auxiliary lemmas are stated which will be proved in the
second part of this paper. These lemmas and the Brouwer degree of the mapping
will be used to prove Theorem 6.1 at the end of this part. This theorem gives
a sufficient condition for definition intervals that guarantees the existence of a
positive solution to problem (3.0.1) when some other assumptions on the form
of right sides are fulfilled. This theorem is the first main result. In the second
part of this paper all auxiliary lemmas will be proved which were applied in this
part. Then we will introduce and prove the second main result of this paper —
Theorem 7.3, which gives a necessary condition on definition intervals for the
existence of a positive solution to problem (3.0.1) under some assumptions on
the form of the right sides of that problem. The last main result in the second
part is Theorem 8.1, which gives simple conditions on the right sides of problem
(3.0.1). This result gives a necessary and sufficient condition for the existence of
a positive solution to our problem.

2. Auxiliary lemmas

In this section auxiliary lemmas are stated which are necessary for the main
section of this part of work. These lemmas will be proved in the next part of the

paper.

LEMMA 2.3. Let the functions f(z,u,,u,), g(x,v,,v5) satisfy locally Cara-
théodory’s conditions on the set ((a, b) x RY x ]R) and the conditions

(1)
f(2,0,0)=0 forall z € {(a,b), (2.3.1)

(2)
flz,a v, 0 uy) > o f(z,ug,uy)

(2.3.2)
for all (z,u;,u,) € ({(a,b) x R xR) and forall a>1,
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(3) the function f satisfies locally Lipschitz’s condition
|f (2, uy,uy) = f(,0,0,)] < Ly - (|u1 —vy| + |uy —v) (2.3.3)
(4)

g(xaulauz) 2 f(xau17u2)

for all (z,u,,u,) € ({a,b) x Rf x R). (2.34)

Let the functions u(-),v(-) € AC'({a,b),Rf) be solutions of the equations

u"(z) = f(z,u(z), ¥ (z))
o1(2) = g(,v(2), 0'(2)) } for almost all z € (a,b), (2.3.5)
which satisfy
u(z) >0  forall z € (a,b), (2.3.6)
v(a) < u(a), v(b) < u(d). (2.3.7)
Then at least one of two following assertions is true
(1)
v(z) < u(z) for all z € (a,b),
Simultaneously { (|v(a) — u(a)| + |v'(a) — v'(a)]) > 0, (2.3.8)
(Io(®) = u(®)| + v/ () — /() > 0.
()
Ja>1 Vz€((a,b) v(z) =a-u(z). (2.3.9)
Proof. In the second part of this paper. O

LEMMA 2.4. Let the functions f(z,u), g(z,v) satisfy locally Carathéodory’s
conditions on the set ({0,a) x RY) and all assumptions (2.3.1), (2.3.2), (2.3.3)
and (2.3.4) from Lemma 2.3, where f, g do not depend on arguments u,, v, .
Let now v(-) € AC'(0,a) be a solution of the equation

V(@) = 9(z,v(@)), (2.4.1)
v(z) >0 forall z € (0,a), v(0)=0, 2'(0)>0, wv(a)=0.
Then the solution u(-) of the equation

u"(z) = f(z,u(z)), u(0) =0, '(0)=1'(0) (2.4.2)
has another zero in the interval (0, a).

Proof. In the second part of this paper. O
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3. Preliminaries

Throughout the paper we shall use the following notations

E, €(0,00) x (0,00) x -+ x (0, 00).

n

~—
n times

E’ is defined as the compactification of topological space E, by adding
point co and

defining its base of neighbourhoods O, def {j’ €E_; || > k} U {oo}.
En’odzef{.’fe En’ z; =0 for some i € {]_,2’ ,n}}
def
En,+ = En \En,o'
E:;»O d:ef En,o U {OO} .
E:l,+ dzef En,+ U {OO}

In the paper we will study the problem

uy(z) = F, (z,u,(2), up(), . .., u,(2)),
ul(z) = Fy(x,uy (x), uy(2), .. ., u, (7)),

@"(2) % F(z,i(z)) &% (%) _ 2 (o), 5(2) @) (3.0.1)
u!(z) = F, (z,u,(7), uy(2),. .., u,(x))

with the boundary conditions
u,(0) = u,(T;) =0, Ve e (0,T;): u;(x) >0 for i=1,2,...,n.
In the sequel we shall assume some of assumptions:

Vke{1,2,...,n} VzeR Vuy eR

(3.0.2)
Fi(z,ug, ot _,0,u 0, .0,u,) =0.
Vke{1,2,...,n} VzeR Vu €eR
F(z,uy,...,u,) =F, (x, “”g‘m, “”2“‘2‘, ety ”"'E‘""‘) . (3.03)
Vke{1,2,....,n—2} VzeRS
Vu; € R which fulfil uy ,-up, 5...u, =0 (3.0.4)

F (z,uy,uy,...,u,) = F(z,u,...,u,0,0,...,0).

n—k times
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Vke{L,2,...,n—-1} VzeRf Vu,eR

oF, OF,
TyUp, Uy 150,y u) = —R (2, uy, ..., U, 4,0, 0,...,0).
auk( 1 k—1 k+1 n) Bu,‘:( Uy k-1 )
n—k times
(3.0.5)
(3.0.6) The functions F(z,u;,u,,...,u,) and @(z Uy, Uy, - .-, U,) AIE CON-
tinuous in (u;,uy,...,%,) on the set E_ for any fixed = € Rf and for
all k,i e {1,2,...,n
and F,(z,uy,uy,...,u ) are measurable in z € (0,00) for each fixed
(ul,..., u,) €E, andforallkE{lZ ,n}.
(3.0.7) g%(x,ul,um ...,u,) is locally bounded on the set R} x E,
for all k,i € {1,2,...,n}.
(3.0.8) For all T'> 0 there exist continuous functions ¢, (}),...,c,(});

c;(+): (0,00) = (0,00) suchthat)\hm c;(A) = ooforallz€{12 ..,n}
—00

and
Vke{l,2,...,n} Yze(0,T) VA>0
Vi e {@; u, =c,(A) and 0 < u; <¢;(\) forall i € {1,...,n}, i #k}

F (z,u;,uy,...,u,) >0.

Vk €{1,2,...,n—-1} VzeR} Vu,eRf, u, >0
O0F,
6+

1
ZTyUyyeey Uy, 0,...,0) > —Fp(z,uy,...,u;, 0,...,0). (3.0.9)
( 1 k H/—’) Uy, k( 1 k )

n—k times n—k times
We will study the question when problem (3.0.1) has at least one that solu-
tion. We shall apply the shooting method and therefore the following definition
of the mapping T'(&) will be used.

DEFINITION 3.1. Let & % (@y,---y0,) € E, . Let @ be the solution of the
following problem

(3.1.1)
If for each component u;, ¢ = 1,2,...,n, of solution # there exists a point T;
such that

0<T, <00, u(T;)=0,
u,(z) >0 forall z, 0 <z < T,
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then we define T/(&) der( -y 1)
In the case that at least one component u,;(-) is positive on the whole interval

(0,T,,,(@)), where (0,T,,. (&) is the maximal interval where @ is defined,
then we put T/(&) o€ E;.

In the following definition the domain of T will be extended from Ef to E, .

. . . def v, A
For this purpose we use the functions 4,(x) = wle) - wlz)

(e 7 u;(o)'
DEFINITION 3.2. Put
def Fi(z,4y - ay,..., 0, «
G,(z,0,.. ,n,al,..,a)_e (2, @y 1(.;. Gy - O) for a; >0
(]

and (3.2.1)
Gz, 0y,...,0,,07,...,0,)

def aF N 0. i A ﬁi+mi|

5y +(r Uy Qe Uy 0y, ,ui+1-ai+1,...,un-an)-—2——

for a; =0.

Let now o € E7 .
(1) If & = oo, then we define T(a@) =
(2) If & # oo then we shall consider the solution @ of the following problem

#0)=0, @ (0)=(11,...,1). (3.2.2)

Let (0, T, ..(@) be the maximal interval where the solution @ can
be defined.

(a) If 3ie{l,...,n} Vze (0,7 ,.(a) d,z)>0,
then we deﬁne .
T(@) ¥ oo
(b) Otherwise let T; be the zero point of @, for i € {1,2,...,n}

such that 4,(T;) = 0, T; € (0,7,,,.(e)) and @;(z) > 0 for all
z € (0,T;). Then we define

T(d@) € (T,,T,,...,T,).

In the following lemmas we shall show the correctness of previous definitions

as well as the relation between @, T, (&) and i, max(a)
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LEMMA 3.3. Let F fulfil (3.0.2), (3.0.3), (3.0.6) and (3.0.7). Then G(z, i, &)
defined in Definition 3.2 satisfies Carathéodory’s conditions.

Proof. In the second part of the paper. O

LEMMA 3.4. Let F fulfil (3.0.2), (3.0.3), (3.0.6) and (3.0.7). Then the problem
(3.2.2) has the property of global uniqueness.

Proof. In the second part of the paper. O

LEMMA 3.5. Let F fulfil conditions (3.0.2), (3.0.3), (3.0.6), (3.0.7) and (3.0.8).
Let T > 0 be a fived number. Let c,(N),...,c,(X) be some functions satisfying
(3.0.8). Then the following assertion is true:

Let & € E, be fired. Let i(-) be the mazimal solution of problem (3.1.1)
which is defined on the interval (0,T, . (&@)) , that is

@"(z) = F(z,d(z)),

o , (3.5.1)
%(0)=0, @ (0)=4da.
If
T<T,,./(d) (3.5.2)
and
uw,(T)<0 forall i€ {1,2,...,n}, (3.5.3)
then u;(z) < ¢;(0) for all i € {1,2,...,n} and for all z € (0,T,, (d)).
Proof. In the second part of this paper. O

The following lemma deals with the relation between solutions @ and @ of
problems (3.1.1) and (3.2.2), respectively.

LEMMA 3.6. Let the function F fulfil (3.0.2), (3.0.3), (3.0.6) and (3.0.7). Let
a € E,. Let i(-) and u(-) be the mazimal solutions of problems (3.1.1) and

(3.2.2), respectively, which are defined on the intervals (0,T) and (0,T) respec-
tively. Then T =T and u,(-) = o, - 4,;(-) for all i € {1,...,n}.

Proof. In the next part of the paper. O

—

4. Continuity of the mapping T

The following theorem has fundamental meaning for us.

THEOREM 4.1. Let F fulfil (3.0.2), (3.0.3), (3.0.6), (3.0.7) and (3.0.8). Then
the mapping T': EY — E* , defined in Definition 3.2, is continuous.

Proof. In the next part of the paper. O
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5. Definition of the set 22

Here we shall define the set {29 and the mappings a, by means of which the
set 02 can be easily defined. We shall also show later that for all (T}, T, ...,T,)
€ Q2 problem (3.0.1) has at least one positive solution when some conditions

are fulfilled.
DEFINITION 5.1. Let F},..., F_ fulfil (3.0.2), (3.0.3), (3.0.6) and (3.0.7). Let
the functions G, ...,G,, be defined as in (3.2.1). Let k¥ € {1,...,n}. Let the
mapping ﬁk: E.* = E,* be defined by the following method:

Let & € E};:

(1) If & = oo, then we define ﬁk(&) = 00.

(2) If & # oo then we shall consider the following system

u)(z) = G, (2,4 (2), 0,...,0,a,, 0,...,0),
N—— N——

n—1 times n—1 times

uy(z) = Gy(z,uy(2),uy(2), 0,...,0, 07,05, 0,...,0 ),

n—2 times n—2 times (511)

u'(z) = G, (z,u,(z),...,u.(z), 0,...,0,0,...,0,,0,...,0 ),
£ (@) k(2,4 (2) k() 1 k )
n—k times n—k times
u;(0)=0, wu;/(0)=1 forall ie{1,2,...,k}.

Let (0,RE . (@)) be the maximal interval of definition of the solution

max

(CHONRNO)E
(a) If 3ie {1,...,k} Vze (0,RE, (&) wuyz)>0,

then we put

Rk(d') L.

(b) Otherwise we put R, to be the zero point of u, for ¢ € {1,2,...,k}
such that u,(R;) = 0, R, € (0,R¥, (a)) and u;(z) > 0 for all
z € (0,R,) and we put

3~ def
R,(&) = (R, R,,...,R,).

LEMMA 5.2. Let F,,...,F, fulfil (3.0.2), (3.0.3), (3.0.6), (3.0.7) and (3.0.8).
Then the mappings ﬁk: E; — E} defined in Definition 5.1 for all k € {1,...,n}
are continuous.

Proof. Let k€ {1,2,...,n} be arbitrary, but fixed. Now we can use The-
orem 4.1, in which we put k in place of n which we write n ~ k, similarly
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F(z,uq,...,u,) ~ F(z,uy,...,u;0,...,0) for i € {1,...,k},
Gi(x,uy, . uy, 00,0, 0,) ~Gi(T,uy,..,u;,0,...,0,0q, ., 0
forie{1,...,k} and

T(): E: - EX ~R,(): E = E;.

Then lemma follows from Theorem 4.1. O
LEMMA 5.3. Let F|,...,F, fulfil (3.0.2), (3.0.3), (3.0.6), (3.0.7) and (3.0.9).
Then Yk € {1,...,n— 1} the mapping Rk: E} — E; defined in Definition 5.1
is injective when we restrict this mapping to the set (Rk)_l(Ek).

0,...,0)

Proof. By contradiction. Let

3@\, @ € E, R,(a@)=R,(a% € E, while @ # a>. (5.3.1)
Then we can choose i, € {1,...,k} such that
Vie{l,...,ip—1} o;=a] and o #af . (5.3.2)

From condition (5.3.1) using (3.0.2), (3.0.3) and Definition 5.1 it follows that
the solutions ! (-), @?(-) of problem (5.1.1) for @', @ are defined on the whole
interval (0,00). Using (5.3.2) and the diagonal structure of problem (5.1.1) we
can easy show by (3.2.1) and (3.0.7) that

Vie{l,...,ip—1}  wui()=u(-) on (0,00). (5.3.3)

Putting u,(-) € u}() = w3(), o; ¥ al = a2, R, ¥ R. = R2 for i €

{1,...,iy — 1}, by (5.3.3) we get that the functions ufo for Jj € {1,2} are
solutions of the following equation on the interval (0, R, )

{0”(:5) = p(z, am,u (x)) “10(0) =0, u{o'(O) =1,

w (R, )=0  and ul (z)>0 forall z€ (0,R,) (5:3.4)
10 10 ’Lo ) 10/ ?
where we have used function p which is defined for a,u > 0
n—ig times n—ip times
—— ——

def
p(z,0,u) = Gio(:c,ul(:c),...,uio_l(x),u, 0,...,0,a,...,«

io—1>@ 0,...,0 )
(5.3.5)

n—ig times

(3.0.2),(3.2.1) OF, e
- Y (31;,*? (0 uy (@), 0y 0y 4(2),0, 0,...,0)
)

n—ig times

u_d— [Fio(x,al cu ()0 uy o (2),8, 0,...,0 )} dﬁ)

?

+

dg B
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We can estimate the expression in the last integral. For all > 0

n—ig times

——
i F;o(z’al'ul(m)”"’aio—l'uio—l(z)’lg7 O,,O)
dg 8
n—1g times
1 ( dF, :
:E<aui+0(w’al'“1(55)7-"’0‘1'0—1' Ujy— _1(z),B, 0,..., )

n—1ig times

——
F, (:c, ay - uy (T), 0wy (2),6, 0,...,0 )) (3.0.9) 0

>
g
Without losing generality we can consider that 0 < a < a . If this is used in

(5.3.6), then the following relations hold

Vze(O,R,) Yu>0: p(wa u) < p(z,a?  u),

9’

(5.3.7)
Vze(0,R;) Vu,a>0 Ve>1: p(z,a,c-u)>c p(z,au).
(5.3.8)

Now we can verify the assumptions in Lemma 2.3, where we put

(a,b) = (O,Rio), f(z,uy,u,) = p(z, azo’ul) g(z, vy, v,) =p($va?0avl)a
u() =5 (), () =ui ().
By (5.3.7), (5.3.8) we get conditions (2.3.4), (2.3.2). From (5.3.5) and (3.2.1)
using (3.0.7), (3.0.6) we get that f(z,-,-) fulfil Lipschitz’s condition (2.3.3) and
also (2.3.1). (5.3.4) implies (2.3.5), (2.3.6) and (2.3.7). Hence Lemma 2.3 can
be applied. Statement (2.3.8) cannot be true because (5.3.4) contradicts its sec-

ond condition. Thus statement (2.3.9) must be true and then from u;'(0) =
u?!(0) = 1 we get

u, (x) def ! (z) = uf (2) forall z€(0,R,).

0
From this by (5.3.4) we get
p(z, o}, v (z)) = p(z, 0, u, (<))
which contradicts (5.3.7). O

DEFINITION 5.4. Let Fy,..., F, fulfil assumptions (3.0.2), (3.0.3), (3.0.6) and
(3.0.7). Let R, () be the mapping defined in Definition 5.1 for k € {1,...,n}.

Then we put 2, & R, (E;)\ {co}. Evidently Q, C E, for k€ {1,...,n}.
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LEMMA 5.5. Let F,,...,F, fulfil assumptions (3.0.2), (3.0.3), (3.0.6), (3.0.7),

(3.0.8) and (3.0.9). Let ﬁk() be the mapping defined in Definition 5.1 for k €
{1,...,n = 1}. Let Q, C E, be defined as in Definition 5.4. Then the inverse

mapping ﬁ;l(-): Q, = E, s continuous.

Proof. The existence of the inverse mapping follows from Theorem 5.3.
Now, by contradiction, we shall show its continuity. Let the sequence {7;}3°, C
€1, be such that L

T,-T,€Q, for i—o00
and in opposition to continuity,

VieN: ||&@ —a&,)>e>0 (5.5.1)
where

a ¥R NT)eE, for ieN,.
The space Ej is compact, and therefore there exists a subsequence {d;, }:‘;1
such that R
]ll)rglo a; =d, € Ey. (5.5.2)

Because the mapping Rk() is continuous (see Theorem 5.2) we get

Ry(Gy) = Ry Jim &, ) = lim £, (d@,) = Jim T, =T, = B(d,) € O C By

j—oo Jj—o0

The mapping ﬁk(') is injective on the set ﬁ;l(Ek) and therefore

a, = @,
and the contradiction can be obtained from (5.5.1) and (5.5.2). O

DEFINITION 5.6. Let Fj,...,F_ fulfil assumptions (3.0.2), (3.0.3), (3.0.6),
(3.0.7) and (3.0.9). Then we can define the mappings a,(-): Q,_; — E; for
2 < k < n by the following way:

For any T = (Ty,...,T_y) € Qy_, weput (ag,...,0p_4) = def (Rk D T)
Let the functions u,(-),...,u;_;(-) be defined as solutions of the problem (5.1.1).
(Using ﬁk_l(&) =Te¢ E,_, we can show by assumptions (3.0.3), (3.0.2) and
by definition of functions G;(-) (3.2.1) that the functions u,(-) are defined on
the whole interval (0,00).) Let the function v(-) be defined as the solution of
the following problem

n—k times
a.e. 8F —— viz) + vz
v (z) = 7 +(m a, - u (@) oy u_q(2),0, 0,...,0)-————( ) 2' ()]
=G ce, U1 (), ,0,...,0,0q,...,0,_1,0,0,...,0),
k(x,ul(a:), 1 (2), v() 1 Qg1 )
n—k times n—k times
v(0) =1, 2'(0)=1. (5.6.1)
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By assumptions (3.0.6), (3.0.7) we can easily obtain that v(-) is uniquely defined
also on the whole interval (0, c0).
(1) If solution v(:) is positive on the interval (0,00), then we put
a (Ty,...,T,_y) & oo € EF.
(2) Otherwise, let T be the zero point of solution v(-) on the interval (0, co)
such that v(T') =0 and v(z) > 0 for all z € (0,7). Then we put

a,(T,,...,T,_,) ¥ TeE:.

LEMMA 5.7. Let F|,...,F, fulfil assumptions (3.0.2), (3.0.3), (3.0.6), (3.0.7),
(3.0.8) and (3.0.9). Then mappings a,(-) for 2 < k < n defined in Definition 5.6
are continuous.

Proof. From the definition of mappings a,(-) and ﬁk() we can easily
obtain the following identity
€Ek-1

A
la N

(Ty, ..., Ty ar (T T q)) = By (R,_y)~ (Ty,-- T 0),0)  (5.7.1)

~

€E)
where we shall assume that if a,(1,...,T),_;) = oo, then we put the vector
on the left side equal to co € E}. From Lemmas 5.2 and 5.5 it follows that the
right side in identity (5.7.1) is continuous in (T},...,T;_,) € Q,_, C E,_, so
also the left side is continuous and we can easily obtain that a,(-): Q,_, — E7
is continuous, too. O

The following lemma gives us a recurrent formula between sets 2, ; and Q,
using mappings a,(-).
LEMMA 5.8. Let F,,...,F, fulfil (3.0.2), (3.0.3), (3.0.6), (3.0.7), (3.0.8) and
(3.0.9). Let 2 < k <n. Let sets Q,_, and Q. be defined such as in Definition 5.4
and let a,(-) be defined in Definition 5.6. Then the formula

Q. ={T,...,T,_,,T}) € E,;

(T, Tl y) €Q_yy ap(Ty,..., T_;) < T, <00} (5.8.1)

is true.

Proof. At first we show the inclusion C in (5.8.1). Let (T},...,T}) € Q,..
According to Definition 5.4 and Definition 5.1 there exists (ay,...,q,) € E,
such that the following system is fulfilled

n—1i times n—i times
—— e N—
u(z) = G, (z,u,(2),...,4(2),0,...,0,0,...,0,,0,...,0) (5.8.2)

for i € {1,...,k}
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with boundary conditions

u;(0)=0, v'(0)=1, u(T)=0,

forall i€{1,2,...,k} (583
u,(x) >0 forall z€(0,T;) } or all i € { b )

where wu,(-) are defined on the whole interval (0,00). From system (5.8.2) for
i€{l,...,k—1} weget (T},...,T,_,) = B, (ay,...,a,_,) € Q,_, . In addition
we must prove the inequality a,(T3,...,T_;) < T). We shall consider the
solution v(-) of the following problem similarly as in the definition of a,(-) (see
Definition 5.6)

n—k times n—k times
—— ——
V'(z) = Gy (z,u,(2), ..., uy_q(2),v(2), 0,...,0 ,0,...,0;_;,0,0,...,0),
(5.8.4)

v(0)=0, V'(0)=1, v(a(Ty,...,T}_y)) =0,
v(z)>0 forall ze€ (0,a,(T,...,Ty_,))-

If we define the function p(z, @, v) similarly as in (5.3.5)

n—k times n—k times

def N
p(z,a,v) = Gk(x,ul(:zz),...,uk_l(a:),v, 0,...,0,0q,...,04_;,0, O,...,O),
(5.8.5)

then in the same way as we have got formula (5.3.7), we get
Vze(0,T,) Vu>0 p(z,0,u) < p(z, ap,u). (5.8.6)

Since the function p(z,0,v) is linear in v for v > 0, we get
Vze(0,T,) VYu>0 Vec>1 p(z,0,c-u) =c-p(z,0,u). (5.8.7)

Using this new function p the equations for u,(-), v(-) can be rewritten in the
form

uy(z) = p(z, ),y (x)) & boundary conditions, (588
v"(z) = p(z,0,v(z)) & boundary conditions. 88)
Now Lemma 2.4 can be used, where in our context we put (0,a) = (0,7}),
f(z,u) = p(z,0,u), g(z,v) = p(z,a;,v), u(-) = v(-) and v(:) = u,(-). From
(5.8.5), (5.8.6) and (5.8.7) the assumptions of Lemma 2.4 follow which we put
on f, g. From (5.8.2), (5.8.3), (5.8.4), (5.8.5) and (5.8.8) assumptions (2.4.1),
(2.4.2) follow. According to Lemma 2.4 we get that a,(T3,...,T,_;) < T, and
this is what we needed.

Further we show the inclusion D in (5.8.1). Let (7},...,T}) € E, fulfil
(1), Tpy) € Q4 and a,(Ty,...,T_1) < T, < ©. (5.8.9)
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Let o € R} be a free variable in the following expression
€Ek_1

A\

Rk(SRk—l) (Ty, -, Ty @)

S

EEk
This expression is a function from R{,F — Ej, which, by Lemmas 5.2, 5.5, is
continuous. Simultaneously we easily see from definition of Rk() that first k—1
components in the image (if it is not just co € E}) are again T3,...,T}_;.
Using (5.7.1) we know that if we put a = 0, then the last component in the
image is a,(T},...,T,_;). If « is increasing, then only the last component in
image will being changed (continuously). So if a increase to oo, then from

ﬁk(m) = 00 it follows that the last component of image must reach all numbers

from the interval <ak(T1, ..., Ty _1),00) so also T}, will be reached and therefore
(T,,...,T,) € R, (E,)NE, = . Thus also the second inclusion is showed, and
so (5.8.1) is proved. a

DEFINITION 5.9. Let F},...,F  fulfil (3.0.2), (3.0.3), (3.0.6), (3.0.7) and
(3.0.9). Let v(-) be the solution of the following problem

OF
U“(I) = “'—_}_‘(‘T,O,,O) M :Gl(x,v(z), 0,--~7050$ 07“-’0))
n times n—1 times n—1 times

v(0)=1, v'(0) =1.
The right-hand side fulfils locally Carathéodory’s conditions and locally Lip-
schitz’s condition because conditions (3.0.6) and (3.0.7) are satisfied. From this,
using linearity of right-hand side in v for v > 0 and condition (3.0.7), we obtain
that v(-) is uniquely defined on the whole interval (0,00). We will now define
a, € E}:
(1) If solution w(-) is positive on the whole interval (0, c0), then we put
a, o€ ET.
(2) Otherwise let T be the zero point of solution v(-) such that v(T) =0
and v(z) > 0 for all z € (0,T). Then we put
o, ¥TeE;.
LEMMA 5.10. Let F,,...,F, fulfil (3.0.2), (3.0.3), (3.0.6), (3.0.7), (3.0.8) and
(3.0.9). Let the number a, be defined as in Definition 5.9. Let the set Q, be
defined as in Definition 5.4. Then

O, ={T; a, <T < o0}.

Proof. Analogically as in proof of Lemma 5.8. O
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LEMMA 5.11. Let F,,...,F. fulfi (3.0.2), (3.0.3), (3.0.6), (3.0.7), (3.0.8)
and (3.0.9). Let 1 < k < n. Let Q, be defined as in Definition 5.4. Let
ay,a5(:),...,a,(-) be defined in the same way as in Definition 5.6 and Defi-
nition 5.9. Then

Q, = {(Tl, ..., T},) € E, such that the following conditions step-by-step hold

a, <T, < o0,
ay(T)) £ T, < o0,

0Ty, Tyy) ST, <0}

Proof. By mathematical induction. The first step follows from Lemma 5.10.
The second step is based on Lemma 5.8. O

Now we are prepared for the following definition of the domain ¢ .

DEFINITION 5.12. Let Fy,...,F, fulfil (3.0.2), (3.0.3), (3.0.6), (3.0.7), (3.0.8)
and (3.0.9). Let ay,a,(-),...,a,(-) be defined as in Definition 5.6 and Defini-
tion 5.9. Let us put

Q> def {(Tl, ...,T,) € E_ such that gradually the following conditions hold

a; <T), < o0,
ay(T)) < T, < o0,
a;(T,,T,) < Ty < o0,

ap(Ty -, Ty) < T < 00}
Note. (T},...,T,_;) belongs to the domain of functions a,(-) (for i € {2,3,...
..,n}) and it follows gradually from Lemma 5.11.

Note. We also show an easy algorithm for verifying if (1},...,7,,) € Q0. The
whole algorithm follows from facts, which we already have shown in this part.
We put on functions Fj,...,F_  the same assumptions as we have put in Defi-
nition 5.12. Let us have some T' = (1y,...,T,) €E,.
1st step. Let v(:) be the solution of the following equation
) o) + [v(a)|
v (il)) - 'éu_i{_(ma& u) ) )
n—1 times

v(0)=1, 2'(0)=1.
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From all assumptions it follows that solution v(-) is defined on the whole interval
(0,00). If v(-) does not have any zero point in the interval (0,T;) then we need
not continue and we know that T' ¢ 22 . Otherwise we have verified the 1st step.

kth step. Let us assume that we have verified k£ — 1 steps of verifying (2 <
k < n) and so we have constructed k — 2 functions wu,(-),...,u;_,(-), which
fulfil the following system of equations (for ¢ =1,...,k — 2)

w(z) = Fy(z,u,(z),...,u(z), 0,...,0)  on interval (0,00),
n—1i times

u,(0) =0, u,(T;) = 0, Vz e (0,T;): u;(xz)>0.

Because we have verified the (k — 1)st step, we know how to construct u,_,(-),
in order that it fulfil the system for ¢ € {1,...,k —1}. Let v(:) be the solution
of the following equation

.,y ae OF v(z) + |v(z)|
v (z) = ﬁ(w,ul(x),...,uk_l(x),O, O,I.c..,O ) - —
n—k times

v(0)=1, v'(0)=1.

It follows from our assumptions that v(-) will be defined on the whole interval
(0,00).If v(-) has no zero point in the interval (0,7} ), then we need not continue

and we know that T ¢ Q°. Otherwise we have verified the kth step.
If we verify gradually all n steps, then Te Q¢ . Otherwise T ¢ o.

6. Sufficient condition for the existence of a solution

Purpose of this part is to prove the following theorem.

THEOREM 6.1. Let F|,...,F, fulfil assumptions (3.0.2) to (3.0.9). Let Q7 be
the domain which has been defined in Definition 5.12. Then problem (3.0.1) has
at least one positive solution for ¥ (T},...,T,) € Q7.

Proof. We shall reduce it to Theorem 6.7, which will be proved in the
end of this part and which has stronger assumptions than this theorem. Let
Tyer € (0,00) be arbitrary but fixed and let us redefine the functions F,..., F,
in the interval (T),,;,00) by the following way. Let c,(-),...,c,(-) be the func-
tions whose existence is guaranteed by assumption (3.0.8) for 7' = T,;. Let

Min > 0 is chosen such small that the following condition holds
Vie{l,...,n} VA€ (0,00) ¢;(A) > Min .
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Let us now redefine the functions F; in the interval for all z € (T}, 00) by the
following way

F(z,uq,...,u,,.

)d_ef{ u,; - (u; —Min) for u, >0,
N 1o for u; <0.
We can easily see that the new redefined functions fulfil not only assumptions
(3.0.2) to (3.0.9), but also the following two conditions:
(6.1.1) There exist functions ¢; (A),...,¢,(A), ¢;(-): (0,00) — (0,00) such that
lim ¢;(\) = oo for all i € {1,2,...,n}
A—00
and
Vke{1,2,...,n} Vze€(0,00) YA>0
Viie {i@; u, =cy(N) and 0 <w, <¢;(A) forall i € {1,...,n}, i #k}

F (z,uy,uy,...,u,) >0.

(6.1.2) 3IMin >0 3T,,>0
Vke{l,...,n} Ve>T,, Vu, e R(1<i<k~-1)

OF
k(x Up,y ..., Up_1,0, 0,...,0) < —Min.
ouf ——
n—k times

In Theorem 6.7 just these two assumptions will be added to the set of as-
sumptions which are considered in this theorem and assumption (3.0.8) will be
replaced by new assumption (6.1.1). We shall now define two domains 29 and
Q) r,., such as in Definition 5.12, where we will use the old functions Fi, ..., F,
or the new redefined functions F),..., F, defined in this part respectively. From

definition it follows that

Qo n <O’ Tdef> - Q?L JTgef <0’ Tdef>n

Let now (T3,...,T,) € Q2 be chosen arbitrarily. If we choose T}, > rgax T,

then according to the last identity (Ty,...,T,) € Q2 Ty.e» and then by The-
orem 6.7 problem (3.0.1) with redefined functions F, has a positive solution
which will be also a solution of the original problem with the old functions be-
cause functions F; have been redefined only in the interval (Tdef,oo). So the

reduction of this theorem on Theorem 6.7 is done. O

DEFINITION 6.2. Let functions Fy, ..., F, fulfil assumptions (3.0.2) to (3.0.7),
(3.0.9), (6.1.1) and (6.1.2). Let a,, ay(: ), .., a,(-) be defined according to Defini-

tion 5.6 and Definition 5.9. Then we define the following mapping B E'—E;.
Let T = (T},...,T,) € EX.
def

(1) If T = o0, then we put B(T) < oo.
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(2) Otherwise T e E,, and step-by-step we shall define

B, :=4(T) —a,), dy :=a; + By,
B, = J(Tz—ag(dl)), d, := a,(d;) + B,,
Bn = 6( - a’n—l(dl’ et 7dn—2))’ dn—l = a‘n—-l(dl’ o "dn—2) +Bn—1’

—1° Tn—l
Bn = 5(Tn - an(dl’ tee dn_l)) ’

where 4(s) ef max{s,0}. And then we put: E(f) def (By,...,B,).

LEMMA 6.3. Let F,,...,F, fulfil the same assumptions as in Definition 6.2.

Then the mapping B: E} — E7 from that definition is correctly defined and is
continuous.

Proof. By definition of mapping B and by Lemma 5.11 step-by-step
we see that for i € {1,...,n —1}: (d,,...,d;) € Q,;, which implies correct-
ness of definition a;,,(d;,...,d;). We just need to eliminate the case that
some a;_,(dy,...,d;) reach value co. We even show that a,,(d,,...,d;) are
bounded on the domain Q, for 1 < k < n — 1. (Finiteness of a, would be

shown by simple adaptation of the following method.) So let (T},...,T}) € Q,

be arbitrary and let T, def a1 (Ty,...,T}) € E7. Using Definition 5.6 and

Definition 5.1 we get the existence of functions u;(-) (i € {1,...,k}), v(-) and
numbers o, (i € {1,...,k}), which fulfil the following system

uf(z) = G, (z,u,(), 0,...,0,0,, 0,...,0),
N et S——
n—1 times n—1 times
a.e.
u'z'(x) = GQ(SL‘,UI(.’L‘),Uz(.’L'), 0,...,O,a1,a2, Oa"-’O);
n—2 times n—2 times
(6.3.1)
a.e.
up(z) = Gz, u (@), ., u (2), 0,...,0, 0,0, 0,...,0),
n—k times n—k times
w,(0) =u,(T) =0, uj(0)=1 forall i€{1,2,...,k},
u,(z) >0 forall z€(0,T;),
SF n—k times ( ) | ( )|
v(z) + |v(x
V(2) % S (3,00 u (), 0 (), 00 0) S
Uk+1

v(0)=0, v'(0)=1, Vze(0,T,,): vz)>0.
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If we define new functions v;(-) by the following way

v () = oy () for i€ {l,... K},
v,() %0, o0  for ie{k+1,...,n},

then using the definition (3.2.1) of functions G,(-) and assumptions (3.0.4) and
(3.0.5) we get that system (6.3.1) is transformed to

v/ (@) = Fi(,0(2),...,0,(2)),

U;c,(:lj) £ Fk (fl),’Ul(.’lI), s ,’Un(.'l,‘)) ’
”;c/+1(m) = Fyia (:c,vl(x),. U, (T)), (63.2)
vl (z) = E (z,v,(z),..., v, (),
700)=0, ¢'(0)=a,
v,(T)<0 forall i€{l,...,n} where T ¥ ma<xk(T),
" (x a.e. aF}c-}—l z,v ’U(.’II) + l’U(l‘)l
(=) = 6”:+1 ( (@)oo )) 2 ’ (6.3.3)

v(0) =0, 2'(0)=1, Vz € (0,T},,): v(z)>0.
Now let us apply Lemma 3.5 to system (6.3.2). If we realize that functions

¢;(),...,¢,(-), whose existence follows from assumption (6.1.1), fulfil assump-
tion (3 0.8) for arbitrary T', then we get from Lemma 3.5
Vz €(0,00) Vie{l,...,n}  wv,(z)<c,0). (6.3.4)

Let T,,.; be defined by assumption (6.1.2). If we now define the following compact

K ¥ {(z,@) € (RT XE,); 0<z < Ty, 0<u, <¢;0) forall i € {1,...,n}}

(6.3.5)
then according to (3.0.7) we can choose such a sufficiently great constant M
that

- OF,
V(z,%) € K: '6 f_‘“(x,u) <M.
Upt1
From this and from (6.3.5) and (6.3.4) we obtain
OF,
i“ (z,v,(x),...,v,(2))| < forall z € (0,Ty,). (6.3.6)
Qu iy
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Let Min > 0 is chosen according to assumption (6.1.2). Let us define z(-) as the
solution of the following equation

Z"(z) =r(z) z(z), 2(0)=0, 2(0)=1,

where (6.3.7)
r(z) € M for all z € (0, Tyq)
r(z) 4 _ Min for all o > T, .

By the form of this equation it follows that z(-) has on the interval (0,c0) a
zero-point T' such that

2(T) =0 and z(z) >0 forall z € (0,T). (6.3.8)

Now by contradiction we shall show validity of the following estimate from which
the estimation of a,_,(-) follows

Tk+1 = ak+1(T1a o Ty) < T. (6.3.9)

Let us prove it. If 3
Tr<T,,,, (6.3.10)

then according to (6.3.3) v(:) fulfils on the interval (0,T)
V'(2) ¥ p(e)-v(z)  on (0,1,

v(0)=0, V(0)=1, o(@)>0 forall z€(0,T), (6.3.11)

p(z) & %(m,vl (z),...,v,(z)) .

where = T
Ouy, 1

From estimate (6.3.6), definition (6.3.7) of r(-) and assumption (6.1.2) the in-
equality

p(z) <r(z) forall ze(0,T) (6.3.12)
follows. Now we shall use Lemma 2.4, where we put f(z,u) = p(z)-u, g(z,v) =
r(z) - v, u(:) = v(-) and v(:) = 2(-). By (6.3.12), (6.3.7), (6.3.8) and (6.3.11)
then assumptions of Lemma, 2.4 follow. Then Lemma 2.4 implies, that v(-) has a
zero-point on the interval (0,7, what gives us the contradiction with (6.3.10).
So assertion (6.3.9) holds, from which the correctness of Definition 6.2 follows.
We should verify else the continuity of the mapping E()

(1) Continuity at points T e E_ follows from its correct definition and from
continuity of mappings a,(-), which is proved in Lemma 5.7.

(2) Continuity at point T=c0¢€ E; easily follows from definition of map-
ping B () and from proved global estimation of mappings a,(-).
O
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LEMMA 6.4. Let F,..., F, fulfil (3.0.2) to (3.0.7), (3.0.9), (6.1.1) and (6.1.2).
Let the mappings f() and E() be defined as in Definition 3.2 and Defini-
tion 6.2, respectively. Then the mapping BoT: E! — E* is continuous and has
the following properties:
(1) BoT(c0) = 00.
(2) If d=(ay,...,a,) € E, andif i, exists such that a; =0, then either
BoT(d) =0 orif BoT(&) =:(B,,...,B,) € E,, then B; =0.

Proof. The continuity of the mapping follows from Theorem 4.1 and from
Lemma 6.3. The first property follows similarly from definitions of both map-
pings. To prove the second property let us assume

d=(a,...,a,)€E,, T@=T=(T,...,T,) €E,,
B(T)=:B=(B,,...,B)€E

n

Let, according to assumptions, 3k € {0,1,...,n — 1} such that o, ;, = 0.

Now we shall show that B, , = 0. Assumption T(d@) = T implies according to
Definition 3.2 that u(-) fulfils the system

u!(z) = G, (z,uy(2), ..y u,(T), 0, ) for i€ {1,...,n},
u,(0) =0, u;(0) =1, v, (T;) =0,u,(z) >0 forall z€(0,T)).
(6.4.1)
If we use a,,; = 0, the (k + 1)th equation transforms by using (3.2.1) and
(3.0.5) to the following form

e OF Upy1(2) + |ugy (7))

ulk{+1($) a:e 6u++1 (x7a1'ul(x)v“',ak'uk(z): Ov---)O) ' B 2 + )
k1 n—k times

u41(0) =0, Up41(0) =1, Upy1(Thqr) =0, (6.4.2)

Uy () >0 forall z € (0,T;,,).

When we use o, ; =0 and (3.2.1) and (3.0.4), we obtain for all 7, 1 <i < k,
and for all # > 0 the following identity

Gy, uyy Uy gy ey 0y, By gy, )
=G,(z,uqy,...,u, 0,...,0,0q,...,0;,_1,3,0,...,0).
—— ———
n—1i times n—i times

Lemma 3.3 implies continuity of the mapping G, in 3, so the previous identity
holds also for V8 > 0, what we can obtain when 8 — 0% in the last identity.
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Then from (6.4.1) it follows that

n—i times n—1i times

—— ——

w!(2) = G(z,u, (), ..., u(2), 0,...,0,0y,...,0,;,0,...,0)
for ie{l,... .k}, (6.4.3)

u,(0) =0, u;(0) =1, uw,(T;) =0, u,(z) >0 forall z € (0,T)).
Let us now consider two following cases:

1. If possibility & > 1 occurs, then from Definition 5.1 equation (6.4.3)
implies that

R (ay,...,a ) = (Ty,...,T}). (6.4.4)
Using this, from Definition 5.6 and from equation (6.4.2) we get that

o (Tyy e T) = Ty - (6.4.5)

Now from (6.4.4) it follows by Definition 5.4 that (7},...,7T,) € Q,, what,
together with Lemma 5.11, implies

a,(Ty,...,Tp_,) <T,.

When we use these inequalities in the definition of the mapping B(-) (Defini-
tion 6.2), step-by-step we get that d, =T, d, =T,, .

.., d,, =T, from what
it follows that

(6.4.5)
By =0(Tigy — tppa(dys o)) = 0(Typy — 0y (Ty, . Ty)) =0
what we needed to prove.
2. If possibility £ = 0 occurs, then from (6.4.2) and from Definition 5.9 we
get that T} = a,, what by Definition 6.2 implies that B, = 6(T} —a,) =0. O

LEMMA 6.5. A mapping M: E* = R" ezists such that it fulfils the following
conditions:

(1) M is one-to-one mapping from E? to B, (0,1) def {zeR; (2] <1}.
(2) M: Ex — B, (0,1) is continuous.
(3) M~1: B, (0,1) = EZ is continuous.
(4) M(E; o) =5,0,1) E (FeRrr; [|Z] =1}.
(5) If 7,2' € S,(0,1) Z=—Z' and {Z,7'} # {M(0), M(0)}
then if we put & := M~1(Z) and &' := M~1(Z"),
for all i € {1,...,n} it holds that |z,| + |z,'| > 0.
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Proof. We can define M for example by the following way.

(1) M(,...,0) < (0,...,0,-1).
H/—’ ——
n times n—1 times

(2) M(c0) L (0,...,0,1).
——

n—1 times

(3) Let & = (z,...,2,) € E,, £ # 0. We want to define M(%) =:
(21, ., 2,) . Let us define gradually s := Z1d22tF2a (eyidently s > 0),
z, = L;;ﬁ—s—l, y,=s—x, forall i € {1,...,n} (evidently i;yi =0)
(a) Ify, =y, =---=vy,_, =0 (what implies y,, = 0),
then we put z; 1= 2, := ... 1= 2, _,:=0.

(b) Otherwise, if at least one y; 76 0, then we put
w (evidently Zy =0and s>0 = r>0).

z, =1 W+y2+ — \/1—z2f0rallz€{1 .,n—1}.
1 2 nl

And now we put M(Z) ifz—(zl,... z).

s o}

It is easy to check that so defined mapping fulfils all conditions we put on it.
Od

LEMMA 6.6. Let F,, ..., F, fulfil (3.0.2) to (3.0.7), (3.0.9), (6.1.1) and (6.1.2).
Let T, B be defined, by Definitions 3.2, 6.2, respectively. Then B o T(E, ) D

En,+ holds.

Proof. According to Lemma 6.5 it shall be sufficient for us to prove the
following assertions:

(6.6.1) MoBoToM™(G,(0,1)) DG,(0,1)

where G, (0,1) def {Z € R*; ||Z]] < 1} and where M is defined in
Lemma, 6.5.

Let us define for this purpose the following mapping F: B, (0,1) = B, (0,1)

FEZ) Y MoBoToM ™ (Z) for ZeB,(0,1). (6.6.2)

Now we shall prove the following properties of the mapping F:

(6.6.3) F: B, (0,1) = B, (0,1) is continuous.
(6.6.4) (0,1)) € 8, (0,1).
(665) V5L 00 "FE) 4

(s,
S
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Let us prove it:

(1) From Lemmas 6.4 and 6.5 (points 1, 2 and 3) we obtain that F as
composition of continuous mappings is continuous, too.

(2) Property (6.6.4) also follows from Lemmas 6.4 and 6.5 (statement 4).

(3) Let us prove the last property (6.6.5). We shall divide the proof to the

following cases:
n—1 times

—~——

(a) If 2= M(oc0)=(0,...,0,1), then from Lemma 6.4 we obtain
F(Z)=MoBoT oM (M(c0)) = M(c0) = Z# —7 what had
to be proved.

n—1 times

(b) If 2= M(0) = (0,... 50, —1), then the proof of condition F(2') #
—Z=M(x) ( = BoT( 0) # oo € E?) is sufficient in this case.
And for this it is sufficient to show condition T'(0) # oo, because
from definition of the mapping B (Definition 6.2) it follows that
oo ¢ E(En,o)- Let us prove it: According to Definition 3.2 we

obtain that the system (3.2.2) for @ = 0 transforms to

n times

a +
u,(0) =0, i(0)=1 forall ie{1,...,n}.

By assumption (6.1.2) it follows that some numbers Min, T,
exist such that

OF,
V> Ty, %—;(m,o,...,O)gMin<O.
' n times

From this it follows by use of comparison theorems that all u,(-)
must have a zero point somewhere on the interval (0,00) and

therefore f(ﬁ) # 0o, what we had to prove.

(c) If Z ¢ {M(0), M(c0)}
contradiction. Let f (z

then validity of (6.6.5) will be shown by
—Z. Let us define 7 := M~1(2) 2’ :=

)

M1 (.7-'(2’)) “1(-2). (It is evident that 7,3’ € E, ;). Then
BoT(Z) = ( (#)) = ©'. Because ¥ € E,, = 3k €
{1,...,n} : ack = 0, and therefore from prevxous assertions it

follows, when we use Lemma 6.4, that 2} = 0, what together with

476



EXISTENCE OF POSITIVE SOLUTIONS TO VECTOR BOUNDARY VALUE PROBLEMS I
z, = 0 by using previous definitions of ¥, £’ and Lemma 6.5
(statement 5), gives us the contradiction.

So property (6.6.5) is showed, too.

Let us return to the proof of (6.6.1). Here we shall use the Brouwer degree theory
as it is given in [6]. Let d be the Brouwer degree of mapping. Let us define the
first homotopy h,(t,Z): (0,1) x B,(0,1) = B,,(0,1) by the following way

h(t,Z2) &t F(Z)+(1-1t) 7.

This homotopy connects F (for ¢ = 1) with identity mapping for ¢ = 0. Its
continuity follows from (6.6.3). Let us verify that

Vte(0,1) VZe S (0,1): hy(t,Z) #0.

By contradiction let us assume that for some ¢, it holds that ¢-F(2") = (¢—1)-Z.
When we use (6.6.4), we obtain t = [t — 1| =1—-t = t =1/2 and therefore
we obtain 1/2- F(Z') = —1/2- Z, what by (6.6.5) implies contradiction. Now by
the homotopy property we obtain

d(F,0,G,(0,1)) =d(I,0,G,(0,1)) = 1. (6.6.6)

Let us choose an arbitrary point z; € G,(0,1) (||Z,]| < 1). Let us define the
second homotopy h,(t,2): (0,1) x B,(0,1) = B, (0,2)

hy(t,7) € F(Z) —t- 7.

Its continuity follows from (6.6.3). Let us verify that
vVte(0,1) VZe S, (0,1): hy(t,Z) #0.
By the contradiction we can obtain for some ¢, 2" that
F(Z)=t-Z.
Using (6.6.4), we get
L= |IF@) =t 7%l <%l <1

what gives us the required contradiction. So, when we use second homotopy, we
get

d(F(), 2, G, (0,1)) = d(F() — %,0,G,(0,1)) = d(F(),0,6,,(0,1)) “L 1.

By the properties of the degree, we obtain that Z, € F(G,(0, 1)). Because
Z, was arbitrary, we get G, (0,1) C F(G,(0,1)), from what required (6.6.1)
follows. O
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THEOREM 6.7. Let F,,...,F  fulfil (3.0.2) to (3.0.7), (3.0.9), (6.1.1) and
(6.1.2). Let Q2 be the domain defined in Definition 5.12. Then problem (3.0.1)
has for all (T},...,T,) € Q2 at least one positive solution.

Proof. Let T = (Tl,...,Tn) € 22 be arbitrary, but fixed. From Defini-
tion 5.12 it follows that the following sequence of definitions is correct.

(6.7.1)

B, =T —a,(f,,....T_).

YT n—1

By Definition 5.12 we also obtain that Vi € {1,...,n}: B, > 0 = B :=

A A

(By,...,B,) € E, ;. Then from Lemma 6.6 we get 3@ = (a;,...,a,) € E, |

such that Eof(&) = 5 If we now put T = (1y,...,T,) = T(&), then when we

rewrite the identity 1:5" = E(T) with help of Definition 6.2, we gradually obtain
0<B,=6(Ty—a))=T, —a, dy=a;+B, =T,
0< By =6(Ty — ay(Ty)) = Ty — ay(TY) dy =T,

0< Bn—l = 6(Tn—1 - an—l(Tl""7Tn—2)) = Tn—l _an—l(Tl”" 7Tn—2) dn—l = Tn—l
0< B, = 6(Tn - an(Tl,...,Tn__l)) =T, —a,(Ty, ..., Tp_q)-

From this and from Definition (6.7.1) we successively obtain
1 :Bl+a1 =T -a))+a, =Ty,
T, = B, + a,(T}) = (Tz - az(Tl)) +a,(Ty) =T,,

“w
T =B +a,/(T,....,T, )= (T,—a,(Ty,-..,T,_)))+a,(Tyy....,To_y) =T,
So T(a) - T = f, what from Definition 3.2 implies, that problem (3.0.1) has
for T, = T, solution, what was to be proved. O
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