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BOUNDED SCALAR VALUED FUNCTIONS

IVvAN DoBraKovT

(Communicated by Miloslav Duchori)

ABSTRACT. In this paper we prove a general convergence theorem which ex-
tends our Multilinear Lebesgue bounded convergence theorem. The extension is
that we have not only convergent sequences of functions, but also a convergent se-
quence of multimeasures (polymeasures). As an application we prove a particular
Fubini theorem.

1. The multilinear integral

In the following, d will be a fixed positive integer denoting the dimension of
multilinearity, and Y will be a Banach space over the scalar field K of real or
complex numbers. We have d measurable spaces (1},S,;), ..., (T, S,;), where
S, is a o-ring of subsets of T, for i = 1,...,d, and there is given a separately
o-additive vector d-multimeasure (d-polymeasure) v: S; x...x S, =+ Y. Note
that the separate o-additivity of v means that:

1) v(-,A,,...,A,;): S = Y is a o-additive vector measure for each
(A4y,...,A)) €S, x ... x S,

d) v(4,,...,4,_1,"): S = Y is a o-additive vector measure for each
(A, A1) €S x...x 8y
(see [1; Definition 1]). We will use the abbreviations: xC, = C; x ... x C,, and
(C) =(Cy,...,Cy).
We obtain the multilinear integral of d-tuples of bounded scalar valued
measurable functions in an elementary way, in contrast with the general case
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of vector valued functions, see [2] and [4]. First, let us recall the definition of the
supremation 7 of v (see [1; Definition 2])

3(4;) =sup{|y(B))|; B;€ A;nS,;, i=1,...,d}.

Then
(N) ¥(T;) = sup 7F(4;) <+oo
(A:)eExS;
by Nikodym uniform boundedness theorem for multimeasures (see [1; p. 490]).
For i = 1,...,d, S(S;) denotes the linear normed space of all §;-simple

functions f;: T; — K with the norm || f;||l, = sup |f;(t;)]. For (4;) € xS, and
t;€T;

i

Ti
fOI' (fz) e XS(St) Wlth fi :]Z:laij'XAija al‘]‘ €K7 7': 1:"'ad7 ] = 1)""Ti’
and A4;; € S,, j =1,...,r;, pairwise disjoint for each ¢ = 1,...,d, we define

the multilinear integral naturally as

’7[(fi)a(Ai)] = /(f,) dy = Z "'Zaljl ""'aldd"Y(AinAij,»)'

(A:) J1=1 Jja=1

Let us note first that the finite iterated sum on the right hand side neither
depends on the order of summation nor on any grouping of the summation. We
call this property the Inner Fubini property of the multilinear integral, and we
will state it explicitly later when the integral is extended to d-tuples of bounded
scalar valued measurable functions.

For i = 1,...,d let S(S,) be the closure of S(S;) in the norm || - I, of
uniform convergence on T; in the Banach space of the bounded scalar valued
functions on T;. It is well known that f; € —STS,—) if and only if f,: T, - K
is bounded and S;,-measurable. Our extension of the integral is based on this
density of the space of simple functions.

Our integral mapping v[(-), (0]: x 8(S;) x (x8;) = Y has the properties:

1) 'Y[(fi)’(Ai)] = ’7[(fi)a(Ai n {ti €T, fi(ti) # 0})] for each (fz) €
x5(8;) and each (A;) € xS;. We use this equality to define v[(f,), (T})] .

2) ’y[(fi), ()] : X8, =Y isseparately o-additive for each d-tuple of func-
tions (f;) € xS8(S;).

3) 7[(),(4,)]: x 8(S;) = Y is separately linear for each d-tuple of sets
(4;) € xS,. Its norm ||v||(4,), called the semivariation of v on (4,),
satisfies the inequality

”'Y“(Ai) < 4d 'W(Ai) < 4d 'W(Ti) < +o0,
see [1; Theorem 3.4)] and (N) above.
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Hence, by continuity it has a unique separately linear and bounded extension
9[(-), (4;)]: xS(S;) = Y with the same norm ||7||(4;). More precisely, we have
the following extension of our multilinear integral:

DEFINITION. Let (f;) € xS(S;) and (4,) € x§;,andlet foreach : =1,...,d,
fin €58(S,), n; =1,2,... be such that 1i_rf1 If; = fin.l7. = 0. Then
) 1 n', w yie 1

= [war= im [ ) avey

(A:) (Ai)

exists uniformly with respect to (A;) € x&§;. This limit is independent of the
converging sequences (f; ).

Obviously the analogs of properties 1) and 2) above hold for this extension of
integral. Note also that if p: §;®S, = Y is a countably additive vector measure,
if v, =p: x8, =Y, and if (f;) € x5(S,), then f; -...- f, is integrable with
respect to u, and we have the equality

/(fi) dv, = / fio fydu for each (A4;) € xS;.
(A:) A

1X...XAq

Note that there are many polymeasures which are not restrictions of measures
(see [5; Remarks 2 and 3)).

Since finite iterated sums depend neither on the order nor on the grouping of

summation, and since, by our extension of the integral, we have uniform limits,
the following important property holds:

THE INNER FUBINI PROPERTY. Suppose d, is a positive integer such that

1 <d <d, and let f; € S(S;) and A; € S, for i = 1,...,d. Then ob-
viously (XAI""’XAdl’flerl""’fd) € x5(S,), the mapping (A, 4,) —

(Af)(XAla--~vXAd1afd1+1a~-’fd) dy, (Ap---,Adl) € Slx...del, is a d, -poly-

measure, and

/(fi)d'y: / (Frreees fa) d / (oos Fargrs o fa) A
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Hence
JX2E
(A:)
/ 7 d / fy)d
( 'AZ
[ cotand] [
(rrAd—1) (.rAd)
= [ 1. / (G 4| [ Gra| [ e
Ag (Aa—1, (Az,...) (A1,...)
= the analog for any permutation of {1,...,d}
= the analog for any decomposition of {1,...,d} into finite groups,

and any order of it.

2. The Basic convergence theorem
First we prove the 1-dimensional version. In the following two theorems, S
will be a o-ring of subsets of a non empty set T'.

THEOREM 1. Suppose that p,: S =Y, n=1,2,..., are countably additive,

and p,(A) = p(A) €Y for each A € S. Further, let f, f, € S(S ) k=1,2,.
let f,, = [ pointwise and let |f,| < C < 400 for each k =1,2,. Then

lim /fkdun=/fdu foreach A€S.
A

k,n—00

This limit is uniform with respect to A € S, provided that p,(A) — p(A)
uniformly with respect to A€ S.
Proof. By the Nikodym uniform boundedness theorem, a = supz, (T)

n
< 400 (see [1; p. 490]). Further, by the Vitali-Hahn-Saks-Nikodym theorem,

the supremations #,,,p: S = [0,+00), n = 1,2,..., are uniformly continuous
from above at the empty set 0 (see [1; p. 490]). Hence, if we put
|z (A)
Z iy o for A€S,
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then clearly 7z, p, n =1,2,..., are uniformly A-absolutely continuous.

Let € > 0 be given. Then there exists § > 0 such that E € S and A(F) < 4
imply |ffk dp,| < C. 1, (E) < £ for each k,n =0,1,2,..., where f, = f and

Mo = [ By Egoroff’s theorem there exists E, € S such that A(E,) < §, and the

sequence f,, kK =1,2,..., converges uniformly to the function f on T — E_.

Take g, € 5(S), j=1,2,...,s0 that lim ||f —g,[lz =0, and let A€ S. Then
J]—00

{/fkdun—/fdA

E
<5 I/fkdun _/Efdu‘
s-§+‘/ ~H+ (- 9] dn,
+| / 9; dp, — / gjdu|+| /(gj—f)dﬂl
A-E, A-E, A-E,
<5+ e = fllp_p, +1F = gjllz] -a

+lg; = fligp-a

+’ / g; dp,, — / g; dp
A-E, ©

for each j,k,n=1,2,....
Due to uniform limits, and finiteness of a, there exists j, such that

'/fkd/in_/fdll‘fge‘*" / 95, dtt, — / gjodu}
A A A-E,

A-E,
for k>j,, n=12,....
Since g, is a S-simple function, the convergence p,(B) — w(B) foreach B € S
implies the existence of n, > j, such that the estimated difference is less than ¢

for n > n,. This estimation does not depend on A, provided that p, (B) — u(B)
uniformly with respect to B € §. The theorem is proved. O

We will need the following extension of the previous Theorem 1.

THEOREM 2. Suppose By oona :S—=Y,ng,...,ny=12,... are countably
additive, and ~ lim Nm,.‘.,nd(A) w(A ) €Y exists for each A € S. Further

N1y.eny g —> 00
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let f,f,€S(S), k=1,2,..., let f, > f pointwise and let |f,| < C < +oo for
each k =1,2,.... Then

. _ d
8 [ = [ £ 0
A A

for each A € S. This limit is uniform with respect to A € S provided
lim g (A) = p(A) € Y uniformly with respect to A€ S.

M1,e0yT2d 00

Proof. If the assertion of the theorem does not hold, then there exist
A €S, a>0, and subsequences kiynyjy ooy mgyy J=1,2,..., such that

/ajm%uwmj—/?du

Hence, if f’ = fk and u] =fhny ;na _for j =1,2,..., wehave a contradiction
with Theorem 1.'We obtain the assertion concerning umform limit similarly. O

>a foreach j=1,2,....

THEOREM 3. BASIC CONVERGENCE THEOREM. Suppose v, : xS, - Y,
n = 1,2,..., are separately countably additive and let v,(A;) = v(4;) € Y
for each (A;) € xS;. Let f;, fir, B =1,2,..., be bounded S;-measurable
functions such that f;, — f; pointwise, for each i =1,...,d. Suppose finally
that |f; | < C < 400 foreachi=1,...,d and each k =1,2,.... Then

hm /(f1 k) = / (f,)dy  for each (A;)€ xS,.

kd,n—)OO
(A:) (A:)

Proof. We proceed by induction on the dimension d. For d = 1 the
assertion follows from Theorem 1. Suppose the theorem is valid for d — 1
with d > 2. Let 4, € S, ..., 4; € S, be fixed. Put p, , (4)) =

(Af)(XAl’fz,kz""’fd,kd) dy, for A, € §,, and for k,,...,kgn = 1,2,....
Then, by the inductive assumption,

Im oy (A4)) = / (X fore- o fg) dy=n(4) €Y

kg,...,kd,’n-—)OO
(Ai)

foreach A, €S, .

Now

ki,....,kq,n—>00 ki,....ka,n—00

lim / (fi,ki) d’Yn = lim /(fl,kl) dukz,‘..,kd,n
(As) ' .
=/Aw=/mmv
Ay (A:)
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by Theorem 2 and the Inner Fubini property. O

COROLLARY 1. Let vy, = v for each n = 1,2,... in Theorem 3. Then we
have the Multilinear Lebesgue bounded convergence theorem.

Let us note that this Corollary 1 suffices for the multilinear part of Theorem 1
in [5]. Note also the difference with respect to the proof of Theorem 3 in [3] what
is essentially the same assertions.

COROLLARY 2. Let v,: x8;, =Y, n=12,..., be separately countably
additive and let 7, (4;) = 7(4;) €Y for each (A;) € XS;. Further let (A, ,) €
xS, k=1,2,..., and let A, — A, for each i =1,...,d. Then

n,k1,‘1.1.g€1d—>oo ’Yn(Ai’ki) = 7(A1) )
COROLLARY 3. THE JOINT CONTINUITY OF A d-POLYMEASURE. Let
v: X 8; =Y be separately countably additive, let (A, ;) € xS;, k=1,2,...,
and let A, — A; for each i =1,...,d. Then

o i 1) = 2(4).

COROLLARY 4. Let v: xS, = Y be separately countably additive and let
A, €S, n=12,..., be pairwise disjoint for each i =1,...,d. Then

7( U Ai,n;) hlr\}’ld—)oo Z Z zn,

ni=1 ni=1 na=1

3. A Particular Fubini theorem

We give a Fubini theorem for n-tuples of bounded measurable functions
with respect to the product, more precisely the indirect product, of our vector
d-multimeasure with a family of scalar multimeasure, which in general depend
on the coordinate variable.

As before, let v: x S; = Y be the given vector d-multimeasure. Suppose
there are 7 € {1,...,d} for which there are measurable spaces (7 ],Si’j), j=
L...,m, S ; beinga o-ring, and a mapping v,(-,...): T; xS, ;x...xS,; .. = K
such that:

a) vt ) Sq x ... xS, . — K is separately countably additive for
each t; € Ti,

b) (s Aiqs-- A ,,): T; = K is S;-measurable for each (4, ,,...,4, )
€ S X X% Sl g and this family of functions is uniformly bounded
on T;.
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First we consider all such i’s, and for the remaining i € {1,...,d} for nota-
tional simplicity, we put n, =1, T} ; = {1}, S;;, {{1} 0} 7 (t »{1}) =1 for
each t, € T;, and ,(¢,,0) =0 for each t, € T Hence the assumptions in each
coordinate § = 1,...,d are the same, i.e., a) and b) above.

For each i = 1,...,d and j = 1,...,n; we denote by (T} x T”,Si®8i,j)
the usual product of the given measurable spaces, i.e., S; ® S; ; is the o-ring
over §; x S, ;. For t; € T, the t;-section of aset E; ; € S, ®S,~)j is given by the
equality

E:‘_{t’l] 1]’(tt }ES

1 71,j
THEOREM 4. Leti € {1,...,d} be fized, letf”'TXT - K,j=1,...,n,;
be bounded S; ® S, ; measumble functions, and let f; ;,: T; X T, ; — K k =
1,2,..., be S, ®S ;-simple functwn such that f; ;. — f;; and |f,, kl T 1fi ]

pointhse for each J =1,. . Then:
1) the functionst > 71(t Ef,...,Ei ), t; y (Biyy-o By ) €
;@81 %x...x85,0S, ., are S; measumble, and are uniformly bounded
on T,
2)
il / (fia ko) fin it ) (i)
(Bh )

= [ Gt fin) dn )

(BilyyenBE)
for each (E,;,,...,E; ;) €85,®S8,; x...X S, ®S,,. andeacht; €T,
3) the functions t, — f ( z,l(ti")" m‘( )) d'yl( i), 4 €T,
(BiiyrEil)
and (E;,,...,E;,) €S, ® Sip XX S$;®S, ,,, are S;-measurable,
and are uniformly bounded on T;.

Proof.

1) If E;; € o(S; x S, ;) — the ring over the rectangles S, x S, ., for
j=1,. , then 1) holds by assumption b) and the separate add1t1v1ty of
7, (L, - ) Denote by M, the class of all E,; € §; ® S, ; for which 1) holds
prov1ded E,;, € 5 % S for j > 1. Then M1 is a monotone class over the
ring o(S; x S, ;) owing to the separate countable additivity of ~,(t;,...), and
assumption b) Hence M; = S§;® S;;. If n; > 1, denote by M, all these sets
E,,€85,®8,, for which 1) holds provided El 1 e §5,®S;, and E  €5,08, ;
for j > 2. Then M, =S§,®S,,, similarly as in the case of M;. Contlnumg in
this way we obtain the vahdlty of 1).
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2) follows directly from the Multilinear Lebesgue Bounded convergence the-
orem; see Corollary 1 of Theorem 3.

3) Since a pointwise limit of a sequence of measurable functions is measur-
able, the asserted S;-measurability follows from 1) and 2). Assumption b) and
the boundedness of f; ; for each j =1,...,n; imply the uniform boundedness
assertions. 0O

Using assertion 1) of Theorem 4, assumption a), and the Multilinear Lebesgue
bounded convergence theorem (see Corollary 1 of Theorem 3), we immediately
obtain the following theorem on the existence of the indirect product of the
multimeasure  with the family of multimeasures {v;(t;,...)}.

THEOREM 5. For ((E;,,...,E;,)) € X(§;®8;; x...x8,®S, ) put

(7 ® {7t .)})(EM, B )= / (B, ... EE)) dy.
(T3)

Then v @ {7;(t;,-- )} X (§;®8;, x...x 85 ®S;,) = Y is a separately

d

countably additive ) n,-multimeasure which we call the indirect product of the
i=1

multimeasure v with the family of multimeasures {'yi(ti, .. )}

We are now ready to give a short proof of the following theorem.

THEOREM 6. PARTICULAR FUBINI THEOREM. Suppose f; ;: T,xT; . — K,

i=1,...,d, j=1,...,n;, is a bounded S; ® S, ;-measurable function. Then

((fi,p ce i,m)) d(')’ ® {'Yi(ti’ . )})

((Ei1y-Eiyn;))
( t

/ (fi,l(ti")7""fi,n.-(ti")) d%“w---)) dy

i E‘i

1000 i,ni)

g

(T) “(E
for each E; ; € §;® S

Proof. The integrands in the iterated integral are measurable and uni-
formly bounded, hence integrable with respect to v, by assertion 3) of Theo-
rem4.Fori=1,...,d and j = 1,...,n,; take asequence of §;®S§, ;-simple func-

tions f, ; ,: T;xT; ; = K, k=1,2,...,such that f; ; , — fijand [f; ol 11 5]
pointwise. By Theorem 5 the Fubini equality holds for (f;;,), ¢=1,...,d and
j=1,...,n, for each k =1,2,.... Now by the Multilinear Lebesgue bounded
convergence theorem and assertion 2) of Theorem 4 we obtain the equality of

the theorem. O

hi’ i=1,...,d,end j=1,...,n;.
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