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A NOTE ON SUMMABILITY METHODS 

H l K M E T SEYHAN 

(Communicated by Lubica Hold) 

ABSTRACT. The purpose of this paper is to establish some relations between 
the |C,OL\8\k and \R,pn;5\k summabili ty methods, where a > 0 and k > 1. 

1. Introduction 

Let __ an be a given infinite series with (sn) as the sequence of its nth partial 
sums. We denote by ta the nth Cesaro means of order a, with a > — 1, of the 
sequence (nan), i.e., 

1 n 

ta = ̂ -'yAa-}Jvan, (1) 
n Act ' -J n—v v ' v / 

n v=i 

where 

Aa = 0{na), Aa = l and Aa
n = 0 for n > 0, a > - 1 . (2) 

The series __ an is said to be summable |C, a; 5^ , fc > 1, a > —1 and 5 > 0, 
if (see [3]) 

oo 

X^n^l^l^oo. (3) 
n = l 

If we take S = 0 (resp. 6 = 0 and a = 1), then |C, a;5|fc summability is the 
same as |C, a|fc (resp. |C, 1^) summability. 

Let (jpn) be a sequence of positive numbers such that 

n 

Pn = Y^Pv^°o a s n - > o o , (P_- = p_- = 0, i>l). (4) 
v=0 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 40D25, 40F05, 40G05, 40G99. 
K e y w o r d s : absolute summability, Riesz summability, Cesaro summability, infinite series. 
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The sequence-to-sequence transformation 

1 n 

T n = p ~ X ! - V i , (5) 
n v=0 

defines the sequence (Tn) of the (R>Pn) means of the sequence (sn) , generated 
by the sequence of coefficients (pn) (see [4]). The series _C a

n is said to be 
summable \R,pn\ky k> 1, if (see [1]) 

E«fc-1l--rn_1|fc<oo, (6) 
n = l 

and it is said to be summable \R,pn]6\k, k > 1, and 5 > 0, if (see [2]) 

f;n'*+*-1|Arn_1|*<oo l (7) 
n = l 

where 
Arn_1 = - p ^ - E ^ _ 1 a t ) ) n > l . (8) 

If we take 6 = 0, then \R,Pn] 6\k summability reduces to \R,pn\k summability. 
The following theorems are known. 

THEOREM A. ([5]) Let (pn) be a sequence of positive numbers such that 

Pn = 0(napn) as n -> oo. (9) 

If the series Y, an is summable \R,pn\k > then it is also summable |C, a\k, k > 1 
and 0 < a < 1. 

THEOREM B. ([5]) Let (pn) be a sequence of positive numbers such that 

Pn = 0(npn) as n -> oo. (10) 

If the series _C a
n *5 summable \R,pn\k, then it is also summable |C, a\k, k > 1 

and a > 1. 

2. 

The aim of this paper is to generalize above theorems for \R,pn;6\k and 
|C, a; 6\k summability methods. Now, we shall prove the following theorem. 

THEOREM 1. Let (pn) be a sequence of positive numbers which satisfy con­
dition (9) of Theorem A. If the series _C a

n *5 summable \R,pn;5\k, then it is 
also summable |C,a;5\ k , k>l, 0 < a < 1 and 0 < 6k < 1. 
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THEOREM 2. Let (pn) be a sequence of positive numbers which satisfy condi­
tion (10) of Theorem B. If the series __Za

n

 Z5 summable \R,Pn)S\k, then it is 
also summable |C, a\ S\k, k > 1, a > 1 and 0 < Sk < 1. 

It should be noted that if we take S — 0 in Theorem 1 and Theorem 2, then 
we get Theorem A and Theorem B, respectively. 

We need the following lemma for the proof of our theorems. 

LEMMA. ([6]) If a > (3 > 0, then 

_ k ^ - G O ' - ) . (ID 
n=v-\-l 

3. Proof of Theorem 1 

Let tn be the nth (C, a) means of the sequences (nan), with 0 < a < 1. By 
(8), we have that 

"n = -^Tn_l + ^ATn_2. (12) 
Pn Pn-1 

If we put (12) in (1), then we have that 

t« = J-ў^AГjЛ-—Д2_ 1 + -̂ =-__Г_ Л n Act Z—. n ~ v 1 ri v~- T) v ~ 2 I 
^ n v = i i ^v -^v-i j 

n - 1 
nP 1 7 ł - 1 P 

- n A T - _ ^ 7 J A « - - І J _ Д T 

PnЛn Л n v - i Pv 

n-1 

+ _^E(-+1Æ- i^ iAГ v _ 1 
Л n v = l Pv 

n - 1 

Pn^n A n v=_i Pv 

Since 

-VPV A
a

nzl + ( « + i ) c i - i n -i = - ^ . -Mí.:. - ̂ . ^ i . - ! + P.,-!^:;.!, 
we have 

r?_° i 2__i P 
ta __ -p-AT . - -f-Vu-S-A^-íAT,, j 

r, ^ c * n—1 j a ______ *- « n—v v —1 
•* n n n i*—_ 1 -• _* 

- ^ E W J - . - V - U + i_-E %--̂ =;-iA-;-i 
~ _ > = 1 n v - \ rv 

— foc \ foc i + a , J.OL 

— Ln,l ^ Ln,2 ^ Ln,3 "+" lny4 ' 
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Since 

l'n,l +'",2 +'n,3 +<n,/ < *k(K,l\k + Kfll" + I ' n / + I'n,/) , 
to complete the proof of Theorem 1, it is sufficient to show that 

m 

En**"1l'»,rl* = °(1) a s ™->°°> r = 1,2,3,4. 
n = l 

Firstly, we have that 
m m 

E n* fc-1 l*S.l I' = 0(1) E n ' f c + f c _ 1 ( ^ n M X ) ' ! ^ - ! I* 
n = l n = l 

m 

= 0(l)53n^+fc-1|Arn_1|
fe 

n = l 

= 0(1) as ra->oo, 

by virtue of the hypotheses of Theorem 1. 
Since Pn = 0(napn) for 0 < a < 1 implies Pn = 0(npn), when k > 1, by 

Holder's inequality, we have that 
m + l 

TOŽ nSk-1 i ^ P V 

n=2 V ri) y Vz=1 V v ) 

m+1 - fn-1 / p x fe ^ 

= °( 1 )E^ + T{E- f c (^) (n-.r-IAT^I^x 

xíg^-.r-2} 
m+1 , n - l , p v k 

= ° ( 1 ) E ^ 4 T r E v f c ( ^ ) ("-<-2lAT,-ilfc 

n = 2 v=l \ y v / 
J-3- /řP\k m + 1 fn i A a - 2 

=<>W £»*(£) l-*.-.l*_ í ^ r 
v=l V ť " / „ = „ + 1 n 

m íP \ k m + 1 

=o(i)E v f c (p 1 L ) IAT^IV*--*- 1 E ( ^ - v > 
„=1 X j ř W n = v + i 

m / P \k 

= 0 ( D E U t ^ ^ l A T ^ l ' 5 

V = l N * * / 
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= 0(l)^vSk+k-1\ATv_1\
k 

v=l 

= 0(1) as m —> oo , 

by virtue of the hypotheses of Theorem 1. 
Also we have that 

m + l 

E»"-X3i* 
^Sk—l\4.a \k 

i 

n=2 

" 2 + 1

 nSk-l ( "^L1 

--Eп=vf E ^ = І - I І Д T . - I І 
n=2 V n J l v=l ) 

m + 1 Sk-1 ( n _ 1 ì k 

=°(-)Eп=vf E ^ = І I Д T . - I І [ 
n=2 V n J K v=l J 
m + 1 ( n - 1 ï ( л n - 1 ì 

=o(D £„«-i-J E-^n=iiДT,-iifc І E c : 
n = 2 l v=l ) l n v = l J 
m m + 1 • ч 

=o(i)E-fc|Д^-iľ E {j£â 
v=l n=v 

m 

=o(i)E«ífc_1«fciд-;-i 

^a+l—đ/c 

v = l 
m 

= 0 ( l ) ^ ^ + / e - 1 | A T v _ 1 | f c 

v = l 

= 0(1) as m —r oo , 
by virtue of the hypotheses of Theorem 1 and Lemma. 

Finally, we have that 
m + l 

E»"~X4i* 
n = 2 
™>+1

 n6k-l ( n~1 P } h 

<E^U E-^ î-llAT^I 
n=2 V n ) \ v=l Fv ) 

™+ l n6k-l ("-1 p \ k 

= <>(-> E T ^ E ^ n = i | A T , - l l 
n = 2 V n J K v=l yv ) 

m + 1 Sk-1 f n ~ 1 / p \k } ( 1 "Zl =0<1)S V{S(&) ^ ^ - ' I H S ^ 
fc-1 
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m + l n - 1 , p ч k 

= 0(1) £ n5k-'~a £ M (n - VГ-ҶAT^ 
n = 2 v=l Ч П ' 

m / г> \ k m+1 / ч 

- О Д W U ) |ДT_.Ѓ E ^ 
v = l V ^ / n=V+l П 

Ш / P \ k 

=°(!)£ / *̂~ч---;-iľ* 
« = i ч ť t , / 

m 

= O ( І ) £ У * + * - 1 | Д T _ _ 1 | * 
v = l 

= 0(1) as m -+ oo, 

by virtue of the hypotheses of Theorem 1 and Lemma. Therefore, we get that 
m 

lCn^" 1 l*n,rl* = °( 1 ) a s ™->°°, r = 1,2,3,4. 
n = l 

This completes the proof of Theorem 1. 

4. Proof of Theorem 2 

The case a = 1 is easy, so consider a > 1. We show only that 
m 

Xy'-'ICI*^1) ^ m-too, r = l,2, 
n = l 

since the other case is the same as in Theorem 1. We have that 
m m 

E ^ - X l l * < Y,n"'+k~1(Pn/naPn)k\Xrn_l\
k. 

n = l n = l 

By the fact that Pn = 0(npn) implies Pn = 0(napn) for a > 1, it follows 
that 

m m 

£ n5k~l \ta
tl \

k = 0(1) £ n5^'11ATn_x |fc 

n = l n = l 

= O(l) as m —¥ oo. 

If a = 1, then AVA"I* = 0, hence ta
 2 = 0. Now, we shall consider the case 

a > 1. Since 
n - i " - 1 

£ ( n - v)a~2 = 0(1) f (n - x)a~2 dx = 0(na~l), 
«=i I 
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k-1 

m + 1 (^ r,Лa-2 (n - v)c 
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by Holder's inequality, we have for k > 1 

m+l m+l 5k_1 r n-1 p \ k 

E "'"KJ < E h^\ E ^ I V O I ^ I 
n=2 n=2 V ri) \ v = 1 rV J 

m+l - ( n-1 / p \ k 

= 0(l)E^S-^-[E/{^) («-<-2|ATv-il 

xJE(n-<-2| 
771+1 -j n—1 / p \ k 

= °(-)EnTO*E«fc ( f ) (n--r-2iA^-ii 
„=2 " „=1 V***/ 
m / F> \ k m + l • 

= o(i)E^(?) IATUI* E ^ 
«=1 ^ " ' n = - + l n 

= 0(l)J_]vSk-1[^L) lAT^I* 
17 = 1 V ^ ' 

m 

= 0 ( l ) ^ t ; 5 f c + f c - 1 | A r i ; - 1 | f c 

v = l 

--- 0(1) as m -> oo, 

by virtue of the hypotheses of Theorem 2 and Lemma. 
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