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NONATOMIC STATES 

E M M A D ' A N I E L L O 

(Communicated by Anatolij Dvurecenskij ) 

ABSTRACT. We introduce the definition of nonatomicity for a s tate defined on 
an orthomodular poset and we prove tha t the characterization of Boolean algebras 
which admit nonatomic states does not hold in the case of concrete or thomodular 
posets. Finally, we show an hypothesis under which this characterization is true 
for concrete orthomodular posets as well. 

1. Introduction 

There are satisfactory necessary and sufficient conditions for a Boolean alge­
bra to have nonatomic states defined on it ([2; Theorem 5.3.2]). Now, let P be an 
orthomodular poset, a problem recently stated was as follows: if s: P —> [0,1] 
is a nonatomic state then has P all those properties that it would have if it 
was a Boolean algebra on which a nonatomic charge ([2; Definition 2.1.1]) was 
defined or, equivalently, does the characterization of Boolean algebras for which 
the set of nonatomic states defined on them is non-empty continue to hold in 
orthomodular posets? Here, investigating this problem in concrete orthomodu­
lar posets, we prove that the answer to this question turns out to be negative 
and this essentially happens since an orthomodular poset could be made of an 
initial system of blocks (an almost disjoint system of Boolean algebras) ([6; Defi­
nition 2.4.2]) two by two having trivial intersection and, therefore, completely 
independent. Nevertheless, some implications of the characterization showed by 
K. P. S. B h a s k a r a R a o and by M. B h a s k a r a R a o continue to hold 
and, under a particular hypothesis on the Stone space ([4; p. 78]) of the Boolean 
algebra into which a concrete OMP can be embedded ([7; Proposition 1.3]), it is 
possible to characterize concrete orthomodular posets having a nonatomic state 
defined on them using techniques similar to those utilized for Boolean algebras. 
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2. P r e l i m i n a r i e s 

A pair (P, <) where P is a non empty set and < is a partial ordering is called 
partially ordered set or poset. If the supremum (resp. the infimum) of {x, y} C P 
exists in P we shall denote it by x V y (resp. x Ay). 

An orthoposet is a quintuple (P, < ,0 ,1 , ' ) that fulfils the following require­
ments: 

1- (Pj 50 is a poset having a least and a greatest element, 0 , 1 , 
2. ' : P —j> P is an orthocomplementation, i.e. 

for any x , y in P the following conditions are satisfied: 
(i) x" = x, 

(ii) x < y => x' > y', 
(iii) I V I ' = 1 . 

Two elements x , y in P are said to be orthogonal if x < y' and, in this case, 
we shall write x±y. 

An orthoposet P is an orthomodular poset if 
(i) x V y exists for any pair (x, y) of orthogonal elements in P , 

(ii) y = x V ( y A x ' ) , for any x , y in P such that x <y (orthomodular law). 

Let P be an OMP (orthomodular poset), for x, y in P , we shall say that x 
commutes with y and we shall write x C y if x Ay and x Ay' both exist in P 
and x = (x A y) V (x A y'). 

Let C = {x G P : x C 2/ for all y G P } , C is called the center of P . The 
set C is a Boolean algebra ([1], [5]). 

A subset Px of an OMP P closed under orthocomplementation to which 0 
and 1 belong is an orthomodular subposet of P if and only if x_Ly, x,y G P x , 
implies x\/ y £ P1. 

An OMP is said to be concrete if it consists of a family of subsets of a set ft 
with the following properties: 

(i) 0 e P , 
(ii) if AeP (ACf i ) , then fi\AeP, 

(iii) if A,B G P (A,B C ft) and A n P = 0 then A U P G P ([6; p. 2]). 
Let P and Q D e two orthomodular posets. An homomorphism / : P -> Q is 

a mapping that satisfies the following conditions: 

(i) / (0) = 0. 
(ii) / (x r ) = / ( x ) ; , for any x in P , 

(iii) f(xWy) = / ( x ) V / ( y ) , for any x , y in P with xi-2/ ([6; Definition 1.2.7]). 

When / is bijective and f~l is a homomorphism as well, we shall say that 
/ is an isomorphism. 

If / : P —> / ( P ) C Q is an isomorphism, we shall call / an embedding and 
we shall say that P is an orthomodular subposet of Q. 
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Observe that if / is a bijective homomorphism such that f(x) < f(y') implies 
x < y' for any „ , y in P , then / is an isomorphism. 

If an OMP P is isomorphic to a concrete OMP, we shall call it concrete. 

Let P be an OMP. We shall call a state on P a mapping s: P —> [0,1] with 
the following properties: 

1. 5(1) = 1 , 
2. for any x,y G P such that x±y s(x V y) = s(x) -h s(;y) • 

3. Nonatomic states 

DEFINITION 3 .1 . Let P be an OMP. An element x in P is said to be an 
atom if it satisfies: 

(i) x ^ O , 
(ii) if y G P and H < x, then either y = x or y = 0. 

DEFINITION 3.2. Let P be an OMP and let s G ^ ( P ) . An element x in P 
is said to be an s-atom if it fulfils: 

(i) a ( x ) # 0 , 
(ii) if H G P and y < x, then either S(T/) = s(x) or s(y) = 0. 

D E F I N I T I O N 3 .3. Let P be an OMP and s a state on P . The state s is 
said to be nonatomic on P if there are no s-atoms in P or, equivalently, if, 
for any x in P satisfying s(x) > 0, there exists y in P such that y < x and 
0 < s(y) < s(x). 

DEFINITION 3.4. Let P be an OMP and let 5 be a state on P , 5 is said to be 
strongly continuous on P if for every e > 0 there exists a partition { x 1 ? . . . , x n } 
of 1 in P such that s(x{) < £, for every i <n. 

DEFINITION 3.5. Let P be an OMP. A collection of non-zero elements 
[xi ik : i j , . . . , ^ is any finite sequence of 0's and l's, k > l } in P is 
said to be a £ree in P if the following conditions are satisfied: 

(i) xx = (x 0 ) ' , 

(iO (^1 , . . . ,z f c_1 , i)<K,.. . , i f c_1 ,o) ,
) 

( 1 U ) X i i , . . . , i f c _ i , 0 V x i i , . . . , i f c _ i , l = : r ^ l , . . . , ^ f c _ 1 • 

To prove that some implications of the characterization of Boolean algebras 

for which the set of nonatomic states defined on them is non-empty ([2; Theo­

rem 5.3.2]) continue to hold in concrete orthomodular posets, we first recall a 

definition and two theorems already known. 
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DEFINITION 3.6. ([6; Definition 1.3.18]) Let P be an OMP. A subset X of 
P is called compatible if for any finite subset {xx,... , x n } of X there exists a 
finite subset G = {yv . . . , ym} of P such that 

(i) the set G consists of mutually orthogonal elements, 
(ii) for any i (i < n) there exists a subset Hi of the set { 1 , . . . , ra} such 

that 
xi = V Vj ' 

jeHi 

THEOREM 3.7. Let P be an OMP and let X be a compatible subset of 
P. Then there exists a Boolean subalgebra P0 of P such that X C P0 [6; 
Theorem 1.3.23]). 

THEOREM 3.8. Let A be a Boolean algebra and let s be a charge on A. If s 
is strongly continuous then s is nonatomic as well ([2; Theorem 5.1.6]). 

THEOREM 3.9. Let P be a concrete OMP. Consider the following statements: 
(i) there is a nonatomic state on P, 

(ii) P contains a tree, 
(iii) P has a countable atomless subalgebra, 
(iv) there is a strongly continuous state on P. 

Then the following implications hold: (i) => (ii) ==o (iii) = > (iv). Also, 
(ii) and (iii) are equivalent, (ii) does not imply (i) and (iv) does not imply (iii). 

P r o o f . 
(i) ==> (ii): Since s(l) = 1, there exists x in P such that 0 < s(x) < 1 

and 0 < s(x') < 1. Define x = x0 and x' = x1. Applying the same technique 
to x0 and xY separately, we obtain x00, x01, xl0 and xn. (3x00<x0 s.t. 
0 < s(x00) < s(x0) and, since x00 Cx0, 3(x00)'Ax0. Since P is orthomodular 
and s £ S(P), it happens that 

s(x0) = s(x00) + s((x00y A xQ), 

i.e. 
0 < 5(0 roo) / A (xo)) = s(xo) ~ 5(xoo) < s(xo)» 

define (x00)' A x0 = x0l and continue in this way). Proceeding in this manner, 
we clearly construct a tree. 

(ii) ==> (iii): Let T = {x{ ik : in...,ik is any finite sequence of O's 
and l's, k > l } be a tree in P. Then T is a compatible subset of P, because two 
elements of T either are orthogonal or are one contained into the other, therefore, 
by Theorem 3.7, there exists a Boolean subalgebra B of P that contains T . 

Moreover B = < \ / x{ : n £ N and V i£{ l , . . . ,n} x^T > is countable. 
L i<n J 
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(iii) =-!> (iv): Let 5 be a countable atomless subalgebra of P . Starting 
from B it is easy to obtain a tree. Let T = {xi { : i1,... ,ik is any finite 
sequence of O's and l's, k > l} be such tree. Define a state on the subalgebra 
A generated by T in P in the following way: 

5(:ci1,...,ifc_1)
 = 2FT ' 

5 is strongly continuous and, by [3; Theorem 4.3], has at least an extension to 
P which is a state and, obviously, still is strongly continuous. 

(iii) = > (ii) is straightforward. 
To prove that (ii) does not imply (i), consider the following example: 

EXAMPLE 3.10. Let N = {1,. . . , n , . . . } and let T = {Xiiik : iX).. .,ik is 
any finite sequence of O's and l's, k > 1} be a tree in P(N) constructed seeing 
that every X{ ik contains infinitely many even numbers and infinitely many 
odd numbers. It is clear that the Boolean algebra B generated by T in P(N) 
is countable and hence T C P(N). Let X G P(N) be the set so obtained: 

X = [x- i : iy,..., ik is any finite sequence of O's and l's, k > l ) , 
*• * l i « , , j * l b x /v j 

where we choose x • • in 2N fl X-
*1 • • • • • * « *1>••• ,*fc 

Let P be the concrete OMP generated by B and X in P(N). It is straight­
forward to verify that 

P = {Y: 7 G S } U { I , N \ I } . 

Then P is not a Boolean algebra, because X AX0 = 0, but X C (X0)' = Xx is 
false. For any state s on P at least one of the two, X and N \ X, is an atom. 
Further, let s be the state on P defined in this way: 

**.•......«,. * T *(*,. J = ^ , 

and 

s(X) = l. 

It is obvious that 5 is strongly continuous, therefore this example shows how, 
unlike the case of Boolean algebras, in orthomodular posets, in general, strong 
continuity does not imply nonatomicity. 

To show that the strong continuity of a state on a concrete OMP P does not 
imply the existence of a Boolean atomless countable subalgebra of P , consider 
the following example: 
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E X A M P L E 3 .11 . Let N = {1,.. .,n,... } and let P1 = {X0,XX} be a partition of 
4 

N, where X0 and Xx are both infinite. Let X, = \J Y, •, j = 0 ,1 , with any Y, i 

i=l 

infinite subset of N, and consider the partition of N, P2 = {X00, X01, X10, Xn} , 
where X00 = Y01 U Y1A, X01 = Y02 U Y12, X10 = Y03 U Y13 and Xn = 
Y0 4 U 7 1 4 . Then P 2 has the property that each one of its elements has an 
infinite intersection with every element of P1. Let 

8 

Y3,i = U Y3,i,k k=l 

and let 

\i=l / \ i = l 

A 0 0 1 = 

*ooo=( Ů ^ , i ) U Í Ů y i , u ) ' 

^oio=ÍŮro,i.3juíŮri|.3V 

^ O I ^ Í U ^ O . M J U I U ^ . 4 I ' 
i=l / \ i = l / 

^in=( Uyo,^JU( UrM.8j-
Continuing this way, we obtain for any k > 1 a partition of N, Pk = {Xi i : 

i n ... ,ik is any sequence of 0's and l's of length k} consisting of 2k subsets 
of N such that 

гi,...,гfc гi,...,гj / 

for any pair of sequences ( ( i 1 ? . . . , i f c ), ( i 1 ? . . . ,i,)) of 0's and l ' s of length k 
and j respectively, with j < k. 

For any k > 1, let Bk be the Boolean algebra generated by the elements of 
Pk in P ( N ) . Then Bk obviously consists of 0, N and unions of elements of Pk. 
Let K be the disjoint union of all Pk 's. Let P be the horizontal sum of Bk 's 
([5], [6]), it is clear that 

P = {0, N} U {X : X is union of elements of K 

which are in the same partition of N} . 
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Using the technique utilized previously, it is possible to define on P a strongly 
continuous state. Every element of K is an atom of P , hence, if B is a Boolean 
subalgebra of P , either it contains an element of K and, in this case, it has an 
atom, or it does not contain elements of If, but unions of elements of K which, 
clearly, either are its atoms or contain its atoms. 

D 

THEOREM 3.12. Let P be a concrete OMP which can be embedded into a 
Boolean algebra whose Stone space has countably many points. Then (iii) ==> (i) 
in the previous theorem. 

P r o o f . By the previous theorem, it is sufficient to prove (ii) =-> (i). Let 
T = {X{ ik : i1,... ,ik is any finite sequence of O's and l 's, k > 1} be a 
tree in P and f:P->B the embedding of P into B. We can suppose that B 
is the field of all clopen sets of a compact Hausdorff totally disconnected space 
X having countably many points ([4; Theorem 6]). Then f(T) = {f(x{ ik) : 
xi ik G T} is a tree in B. Let A be the subalgebra of B generated by f(T). 
Consider the state sA on A defined below 

Mx- • eT sA(f(x, . )) = 4 -
2l,...,tfc A \J V l l , . . . ,2 fc / / 2 ^ 

The state sA is strongly continuous on A and hence, nonatomic by Theorem 3.8. 
Let sB be an extension of sA on B ([2; Theorem 3.3.4]). Define a state s on P 
in the following way: 

V x G P s(x) = sB(f(x)). 

The state s is nonatomic, in fact, let x be an element of P such that s(x) ^ 0. 
If x = 1, then any z in T satisfies 

0<s(z) = sB(f(z))<s(l) = l . 

If x ?-• 1, we shall prove that there exists z in T such that 0 < s(z) < s(x). 

The set f(x) is a clopen subset of B and so is (f(x))' as well and moreover 

(f(x))' is countable. Thus there exists {an}n£N in X such that (f(x)) = 

{av ..., a n , . . . }. We shall obtain a cover of (f(x))' consisting of clopen subsets 

of X in f(T) in the following way: 
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let Va be the one of the two, f(x0) and / ( x j , to which ax belongs, 

let Va2 be the one of the four, /(x0 0), /(x01), /(x10) and / ( x n ) , 

to which a2 belongs, 

let Va be the one of the nth power of 2 elements of f(T) 

i n {/(*<-.,...,*„) : xti,....»n
 G T ) t o w h i c h an belongs, 

Proceeding in this way, we obtain a sequence of clopen sets 

with the property: 

(/(*))' C (J Van • 
nGN 

As (f(x)) is a closed subset of a compact space, there exists a finite subset I 
of N such that 

(/(*))'<=LK-
But then 

/(^nwj1-
;<=I 

Since the complement of an element of f(T) is a union of elements of / (T) , 
there exists Y in f(T) that fulfils Y C f(x) and then there exists y in T 
satisfying f(y) = 7 C / (x) . Hence, chosen k in N such that ^- < s(x), there 
exists z in T such that z < 7/ and s(z) < -p-, so x is not an atom. • 
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