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ABSTRACT. We present a Herglotz theorem in the context of vector lattices.

Introduction

It is well known that Fourier-Stieltjes coefficients of positive measures can
be characterized as positive definite sequences. Recall that a numerical sequence
(a,)> . is sald to be positive definite if for any (complex) sequence (z,)
having only a finite number of terms different from zero we have

§ :a"n,—mznzm, Z 0.

n,m
Now, according to the Herglotz theorem [5; Theorem 1.7.6], a numerical sequence
(a,)x_ .. is positive definite if and only if there exists a positive Borel measure
poon [—m 7] with p({—n}) = p({r}), such that

a, = / e ins d,u(s)
[~m,m)
for all n ==0,41,... (cf. also [1] and [4]).
In this paper, we give a generalization of the Herglotz theorem for a, being

clements of a vector lattice. As for terminology and some results from vector
lattices we shall use as reference the book [2].
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MILOSLAV DUCHON

1. Preliminaries

Let Y be a (Dedekind) complete vector lattice. Denote by L°(X.Y) the
vector space of all o-bounded operators on the normed space X into Y . that

is, if U € L°(X.Y), then {U(x); ||2|| <1} is an o-bounded subset of Y. For
Ue L°(X,Y) we put

101 = sup{ U ()] ol < 1}

In the following, let T denote the quotient group R/27Z (. and Z denoting
the additive group of reals, integers, respectively), as a model we may think of the
interval [0,27), and let C'(T) denote the space of all scalar continnous functions
on T with the usual sup norm. If U € L°(C(T),Y), then an element of Y7 of
the form

Jf;r(”) - U ((‘7 in.[)

is called the nth Fourier coeflicient of U. The (formal) series

Z U(n) el

nez
is called the Fourier series of (/. It is clear that there exists an element 0 < (" € Y’
such that )
U(n)| < C, nez.

We shall investigate some properties of such Fourier series.
A trigonometric polynomial on T is a function a = a(t) defined on T by
"
a(t) =3 a; e'7'. Denote by p(T) the set of all trigonometric polynomials on T.
-1
We shall need the following theorem ([5; Theorem 2.12]) asserting that trigono-
metric polynomials are dense in C(T).

THEOREM A. For every f € C(T) we have o, (f) — f.n— x.inthe C'(T)
norm.

Recall that

n

—n

where f(j) is the jth Fourier-Lebesgue coefficient of f defined by

f) = s [ 1we it

(The integration is taken over T.)

The following simple lemma will be useful for us.
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LEMMA. Let U: C(T) — Y be an (0)-bounded linear operator. For every a =
i”./ elit we have Ula) = Z%U(*j) and |U(a)| < |la||||U]|, where

Jall = supla(o)]
We have the following result.
THEOREM 1. (PARSEVAL’S FORMULA) Let f€C(T) and U € L°(C(T).Y).

Then
N

u(f) = A}i_r;;}%(l - N‘—L—)f(j)m—j).

Proof. Since f = lim o, (f) in the C'(T) norm, it follows from lemma

and the fact that U is (0)-bounded (hence (o0)-continuous) that

U(f)

I

U( lim o“(f)> = lim U(o,(f))

T AT

0

Remark. The fact that the preceding limit exists is an implicit part of the theo-
remn. It is equivalent to the C-1 (Cesaro) summability of the series > f(j)U(—j),
the members of which are elements of the space Y. If this last series converges,
then clearly,

COROLLARY. (UNIQUENESS THEOREM) If U(j) = 0 for ali j € 7, then
' =0.

Parseval’s formula enables us to characterize sequences of Fourier coefficients

of (0)-bounded linear operators on C(T) similarly as in the case of linear func-
tionals ([5; 7.3])

THEOREM 2. Let (yj) be a two-way sequence of elements of Y . Then the
following two conditions are equivalent:

(a) There is an operator U € L°(C(T),Y) with |[U|| < C € Y such that
U(j) =y, forall j €.
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l ..
(b) For all trigonometric polynomials a = § a; e/t there holds

l
>y, <lalc  with 0<Cey.
—1

Proof. Clearly, (a) implies (b) since
! !
’Eaﬁ‘y]‘ = ’Za_]ﬁ(j)‘
l Il
- ‘ S a Ui
-1

Conversely, let for {yj} C Y and for some C €Y

l
‘Xlla-jyj

< Clall

l
—ijt
Zavje
—1

< |UIJ - sup
t

I
< Csup\ Za_j e 1t
t
—1

Put

Then
l

—ijt
E a_.e
—j

-1

l

A\
‘U <Za_j e” 'J')‘ < Csep

-1

It follows that U is an o-bounded operator on trigonometric polynomials. these
are dense in C(T), hence U has an o-bounded extension to C'(T). Also we

obtain U(j) = Y- O

Let (yj) be a two-way sequence of elements of Y. Put

N .
-N )

and denote by Sy (Y) the (0)-bounded linear operator on C(T) defined by

SyY)(f) = %/f(l)UN(Y,t) dt, fed(T), N=1.2 ...
T
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If U € L°(C(T),Y) and if y; = U(j), we shall write
on(Yit) =on(U,t) and  Sy(Y) = Sy(U).

We have
_ 1 (il Ny
SN = o [ fBox(Vit) dt =3 (1- 557 ) FG;,
T -N

N=12,..., feC(T).
We may now prove the following.

THEOREM 3. The members of a two-way sequence (yj) 'Y are the Fourier
coefficients of some U € LO(C(T),Y) with Ul < C € Y if and only if
ISy <C, N =1,2,.

Proof.

The necessity: Let y, = 7(j) for some U € LO(C(T) Y) with |U]| < C.
Then Sy(Y) = Sy(U), N = 1,2 . Recall that o (f )< ||l for all
feo(T ) Since, for feC(T), Sy(U )( ) = U(UN(f)),We have

1Syl = 185 (@) = sup{ISy @)+ £€CCTY, 71 <1}

=sup{[U(on(N)]: £ECT), <1

<sup{U(f)|: f€C(T), lf| <1}
=|u<c

for N=1,2,....

l ..
The sufficiency: Take a = Zaj e/, Then we have
=1

N

l
/ L |7 _
dovoja = 1\}5“002(1 TNAT )% T A S (V(a).
-1 N

"%N

Thus
l
|y jay| = Jim 1Sy (V)(@)] < llallsup 1Sy (V) < gy
—1

According to the preceding theorem, there exists U € LO(C’(

- '(T),Y) such that
y;, =U(j) and ||U| < C.
J O

ot
o
t
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2. Fourier-Stieltjes coefficients of vector measures
of (0)-bounded variation

Let Y be a complete vector lattice. Recall that T is a compact Hausdortl
space, and let B(T) be the sigma algebra of Borelian subsets of T. Let m :
B(T) — Y be an additive set function which satisfies the condition that for any
E € B(T) the set

{ L lm(A;)|; (A,,...,A,) is B(T)-partition of E}

i=1
is (0)-bounded. We shall say that m is a vector measure of the (br)-tvpe or of
(0)-bounded variation, and we shall denote

E)=supG(FE).

U (

k
If fisa B(T)-simple function, f(t) = > ;x4 (1), we define

i=1

[ 10 dmic i

and then we extend this integral for bounded Borel functions on T ([3]).
Denote by BV°(T,Y) the vector space of all measures on T with values in
of o-bounded variation.

Further, if m € BV°(T,Y ), then an element of Y of the form

I

m(n) = ! /c-i”' dmy(t)

2w
T

is called the nth Fourier-Stieltjes coefficient of m
We shall make use of the following result.
The general form of the (0)-bounded linear operator U: C(T) — Y is given

by the formula
/ f(t) dm(t

where m: B(T) — Y is a measure of (0)-bounded variation ([3]).

Now we can prove the following.

THEOREM 4. Let Y be a complete vector lattice. Let (y,) be a two-way se-
quence of elements of Y . Then the following two conditions are equivalent:

(a) There is a measure m: B(T) — Y of (o)-bounded variation with
v, (T) < C €Y such that y, are Fourier-Sticltjes coefficients of m .

H36
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v, =(j) = = /e—-iit dm(t)  forall jeZ.
T

l .
(b) For all trigonometric polynomials a = Zaj el’t € p(T) there holds
—1
l

1> a,y,| < llallc
l

for some C €Y.

Proof. Clearly, (a) implies (b) since

\Zl’:a;jyj = ‘zl;a_j‘lw /e‘iﬁ dm(t)‘
a /(Zl) am(v)] < o, (T)

by using ([3; p. 407]).

If we assume (b), then the linear operator U: p(T) — Y from the proof of
Theorem 2 is an (0)-bounded linear operator that admits an extension that is
an (0)-bounded linear operator on C(T) with ||U]] < C. But according to ([3;
Corollary]), there exists a measure m of (0)-bounded variation such that

v = / f() dm(t),  feC(T).

Clearly, U(j) = m(j) = Yj- O
If m € BV°(T,Y), then the (formal) series
Z m(n) einz
nez

is called the Fourier-Stieltjes series of m.
If the measure m is of the (0)-bounded variation, and y; = m(j), j € Z,
we shall write

on(Yt) =oy(m,t) and  Sy(Y) = Sy(m).

We can now prove the following.
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THEOREM 5. Let Y be a complete vector lattice. The trigonometric series
X:yjein:v7 yjey’
nez

is the Fourier-Stieltjes series of the measure m: B(T) — Y of the (o)-bounded
variation, i.e., y; = m(j), j € Z, if and only if there exists an element 0 < C
€Y such that

ISy(V)|<C, N=1,2,....

Proof. If there exists a measure m of (o0)-bounded variation, m €
BV°(T,Y) such that y, = m(j), j € Z, then, as we know, the equation

5= [0 amo),  seom),
defines an (o0)-bounded linear operator U: C(T) — Y with ||[U]| < C for some
0 < C €Y. Hence, according to Theorem 3, we have
ISy = ISyl = lISy(m) <C,  N=1,2,....

Conversely, if ||[Sy(Y)|| <C, N =1,2,...,forsome 0 < C € Y, then, according
to Theorem 3, there exists an (0)-bounded linear operator U: C(T) — Y such
that U(j) = y;- But then there exists a measure m of (0)-bounded variation
such that

/j ) dm(t), fec(T).
But |U|| = v,,(T) < C. Clearly, U(j ) =m(j)=y;, j €L o

It is useful to establish the Parseval formula explicitly also for the Fourier-
Stieltjes series of the measure m of (0)-bounded variation.

THEOREM 6. Let Y be a complete vector lattice, and let f € C(T). Then we

have
/f(t> dm(t) = lim Z(l NH)f(j)m(.j).

Proof. By the Parseval formula from Theorem 1, the last equality holds

for f € C(T). 3

It is a very important fact that we have established not only a characterization
of the Fourier-Stieltjes series of the measure of (0)-bounded variation but also
a method how to recapture the measure by means of its Fourier-Stieltjes series.
Theorem 6 gives a recipe how to recover the measure m. In this sense. we may.

dmt) Zm e/t

JEZ

by abuse of notation, write

H38
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for m € BV°(T,Y).
It is easy to see that if the measure m: B(T) — Y is positive, then m is of
the (o)-bounded variation. Hence we may establish the following.

THEOREM 7. Let Y be a complete vector lattice. The necessary and sufficient

condition for
ikx
> ue
keZ

to be the Fourier-Stieltjes series of a positive measure m with values in Y is

that o5 (Y,t) >0 for all N on T.
Proof.

The necessity: If y, = (k) for a positive measure m, we have

N

(TN(Y‘t):z,\;(l NLZGI—I) —m_z( —N—]>'rh(—j)e_”t

27r_/2< m) ~) dimy(1) /K (s — ) dm(t) > 0

since m is positive, and Féjer’s kernel K is nonnegative. So we have o, (Y,t)
>0on T.

Assuming o (Y,t) > 0 we obtain

I |

ISn(Y)Il = sup
IES!

1
/f(t on(Y,1) dt‘ 27r/crN(Y t) dt =y,,

and by Theorem 5,
J
JEZ
is the Fourier-Stieltjes series for some ™m € BV°(T,Y). For arbitrary nonnega-
tive f € C(T)

/f(t) dm(t) = lim —/f Yon (Y, 1) dt >0,
hence
U f— /f(t) dm(t)

defines a positive linear operator on C(T) into Y which can be extended ([2;
5.1.2, Theorem]) to the positive linear operator (denoted again by) U defined
on the complete vector lattice containing characteristic functions c, of Borel
sets 4 in T. From the definition ([3; Theorem]), m(A) = U(c,), and it follows
that m is positive. t
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It is not unexpected that Theorem 7 gives rise to a representation of posi-
tive definite functions defined in a suitable sense, analogous to those known for
complex-valued positive definite functions.

Suppose that (y,), n = 0,41,42,..., is a two-way sequence of elements in
a vector lattice Y. Then it is called positive definite if for any sequence (¢, ) of
complex numbers having only a finite number of terms different from zero we

have
> Yy = 0.

m,n

THEOREM 8. Let Y be a complete vector lattice. A necessary and sufficient

condition for a sequence (y, )0 CY to be positive definite is that there exists

a positive measure m: B(T) — Y such that y, = m(n) for all n.

Proof. Assume y, = m(j) with m: B(T) — Y positive, then

Z(‘,ﬂﬁyngm = /<chqqi(n——m)t> dm(f)

m,n h m.n
2
. aint
= / Z(,”L”I dm(t) > 0.
* n

It

Conversely, if the sequence Y; is positive definite, and we take ¢, = ' then

N
S T = (N + Doy (Y1) >0,

m,n

and it is enough to apply Theorem 7.
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