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ABSTRACT. We present a Herglotz theorem in the context of vector kittices. 

Introduc t ion 

It is well known that Fourier-S t iel t jes coefficients of posi t ive measures can 

be charac terized as posi t ive definite sequences. Recall that a numerical sequence 

(an)n = -oo *s s a ^ t ° be posi t ive definite if for any (complex) sequence (zn) 

having only a finite number of terms different from zero we have 

E an~m
ZnŽm ^°-

Now, according to the Herglo tz theorem [5; Theorem 1.7.6], a numerical sequence 

(an)n = -00 *s PO S l t ive definite if cind only if there exis ts a posi t ive Borel measure 

// on [—7r,7r] wi th /i({—TT}) = //({7r}), such that 

/ 
e~ins d/ i(s) 

[—7T,7r) 

for all n = 0, ± 1 , . . . (cf. also [1] and [4]). 

In this paper , we give a general iza t ion of the Herglo tz theorem for a being 

elemen ts of a vec tor la t t ice. As for terminology and some resul ts from vec tor 

la t t ices we shall use as reference the book [2]. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 28E10, 81P10. 
K e y w o r d s : Fourier-Stieltjes series, vector lattice, positive definitness. 
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MILOSLAV DUCHON 

1. Preliminaries 

Let 7 be a (Dedekind) complete vector lattice. Denote by L°(XA~) the 
vector space of all o-bounded operators on the normed space X into Y. that 
is, if U £ L°(X,Y), then {U(x) ; ||x|| < l } is an o-bounded subset of Y. For 
U G L°(X,Y) we put 

| |J7||-=sup{|C/(x)|; | N | < 1 } . 

In the following, let T denote the quotient group IR/27rZ (IR and Z denoting 
the additive group of reals, integers, respectively), as a model we may think of t he 
interval [0, 27r), and let C(T) denote the space of all scalar continuous functions 
on T with the usual sup norm. If U G L°(C(T) , Y) , then an element of Y of 
the form 

U(n) = U(e~[nt) 

is called the nth Fourier coefficient of U. The (formal) series 

^ U ( n ) e ! ' " ' 

is called the Fourier series of U. It is clear that there exists an element 0 < C G ) ' 
such that 

\U(n)\ < C , neZ. 

We shall investigate some properties of such Fourier series. 
A trigonometric polynomial on T is a function a = a(t) defined on T by 

it 

a(i) = Yl a elJt • Denote by p(T) the set of all trigonometric polynomials on T . 
—a 

We shall need the following theorem ([5; Theorem 2.12]) asserting that trigono­
metric polynomials are dense in C ( T ) . 

THEOREM A. For every f G C(T) we have (Jn(f) —• / , n -> 3c . in the C(T) 
norm,. 

Recall that 

X - i _ J L / M ^ ' '«(/•') = M I - Ä / O > 
where f(j) is the j t h Fourier-Lebesgue coefficient of / defined by 

fU) = ^Jf(t)e-'ljtdt. 

(The integration is taken over T.) 

The following simple lemma will be useful for us. 
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GENERALIZED HERGLOTZ THEOREM IN VECTOR LATTICES 

L E M M A . Let U: C ( T ) —-» Y be an (o)-bounded linear operator. For every a — 
n n 

^2 a cxit we have U(a) — X^a-U (—j) and \U(a)\ < | | a | | | |U | | , where 

\\a\\ = sup \a(t)\ . 
t 

Wc have the following result . 

T H E O R E M 1. (PARSEVAL'S FORMULA ) Let / G C ( T ) and U G L ° ( C ( T ) , Y) . 

77.™ 

^/) = J™E(1-^)/W(---)-
—Iv x 7 

P r o o f . Since / -= lim o~n(f) in the C ( T ) norm, it follows from lemma 
n—>oo 

and the fact t ha t U is (O)-bounded (hence (O)-continuous) t h a t 

u^ = u(}^^)=}^u^(f)) 

-^X^-^h)f(jM-j). 

D 

R e m a r k . T h e fact t h a t t he preceding limit exists is an implicit pa r t of the theo­

rem. It is equivalent to the C- l (Cesaro) summabi l i ty of t he series Yl f(j)U(—J)i 

the members of which are elements of the space Y . If this last series converges, 

then clearly, 

t!(/) = ËЉ')t!"(-j). 

COROLLARY. ( U N I Q U E N E S S THEOREM) If U(j) = 0 for all j G Z , then 

U = 0. 

ParsevaTs formula enables us t o character ize sequences of Fourier coefficients 

of (O)-bounded linear o p e r a t o r s on C ( T ) similarly as in t h e case of linear func­

t i o n a l ([5; 7.3]) 

T H E O R E M 2. Let (y.) be a two-way sequence of elements of Y. Then the 

following two conditions are equivalent: 

(a) There is an operator U G L ° ( C ( T ) , Y ) with \\U\\ < C G Y such that 

U(j)=Vj for all j e Z . 
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MILOSLAV DUCHON 

(b) For all trigonometric polynomials a = Ylaj eU* there holds 

J2 a-jVj I ^ \\a\\c with o < C e Y 

P r o o f . Clearly, (a) implies (b) since 

I l 

lEa-.^hlEa-/^)| 
/ 

= \~~~a-J
U(e~ÍÍt) <l|í!l|-sup £ > >i« 

- I - I 

Conversely, let for {y } C Y and for some C GY 

<C\\a\ 

I I 

Put 

Then 

Ea-j»jpC s ,!pE f l-Je" i j t 

u(І«j-lit)=І°-jУj 
x _ / 7 _ / 

u(Ía-je~i3t)\^c™p\Ía • e •'-jt 

It follows that U is an o-bounded operator on trigonometric polynomials, these 
are dense in C ( T ) , hence U has an o-bounded extension to C ( T ) . Also we 
obtain U(j) — y^ • • 

Let (y-) be a two-way sequence of elements of Y. Put 

Iv 

**(-">*) = £ -
-IV 

LЛ 
лt + i ІУ-І~ 

•ijt N = 1.2, 

and denote by SN(Y) the (o)-bounded linear operator on C(T) defined by 

SN(Y)(f) = ~Jf{t)C7N(Y,t)dt, IeC(T), AT = 1,2 
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If U e L°(C(T),Y) and if y- = U(j), we shall write 

aN(Y,t) = aN(U,t) and SN(Y) = SN(U). 

We have 

SN(Y)(f) = ±- ff(t)aN(Y,t) dt = f Y l - jM^my-j , 

N = 1 ,2 , . . . , / e C ( T ) . 

We may now prove the following. 

THEOREM 3. The members of a two-way sequence (y •) in y Q,re i/ie Fourier 
coefficients of some U £ L°(C(T),Y) with ||U|| < C <= y if and only if 
\\SN(Y)\\ <C, TV = 1 , 2 , . . . . 

P r o o f . 

The necessity: Let y. = U(j) for some U G L ° ( C ( T ) , y ) w i t n ;|[/|| < £ 
Then SN(Y) = 5 iV(U), TV = 1 ,2 , . . . . Recall that \WN(f)\\ < II/II for a n 
/ e C ( T ) . Since, for / e C ( T ) , SN(U)(f) = U(aN(f)), W e have 

| |5 N (Y ) | | = \\SN(U)\\ = s u p { | 5 N ( U ) ( / ) | : / G C ( T ) , | | / | | < I } 

= sup{\U(aN(f))\: / e C C T ) , II/II < i } 

<sup{ |U ( / ) | : / G C ( T ) , ||/|| < i | 

= l|tlll<c 

for N = 1,2,. . . . 

The sufficiency: Take a = Y^ a
7 e'"'* • Then we have 

-i 3 

l N 

Y,V-iaì = ^JĽ{1 - ДГTT^-Л = Ä A ( У ) ( a ) 
-/ -N 

Thus 

\Y.y-jaj\ = Al™00i
5N(y)(«)i < H sup 115̂ (̂ )11 < | | a | | C 7_ 

According to the preceding theorem, there exists U £ F0/^ x 
- , , ,, ,, ^ '(J-h -̂  such that 

V|- = £1(1) and \\U\\ <C. 7 7 

' .) v.; / ii ii |—| 
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2. Fourier-Stieltjes coefficients of vector measures 
of (o) -bounded variation 

Let Y be a complete vector lattice. Recall that T is a compact Hausdorff 

space, and let B(T) be the sigma algebra of Borelian subsets of T. Let m : 

B(T) —> Y be an additive set function which satisfies the condition that for any 

E E B(T) the set 

r k 

G(E) = \ Elm(A-)h (Av^Ak) i s -9(T)-partition of E 
S;=i 

is (o)-bounded. We shall say that m is a vector measure of the (br)-tvpe or of 

(O)-bounded variation, and we shall denote 

v m 
(E) = aup G(E) 

k 

If / is a B(T) -simple function, f(t) = ̂  CIXA (0> w e defin 
І=I 

k 

У/(í)dm(ř) = ^cгm(A; 

and then we extend this integral for bounded Borel functions on T ([3]). 

Denote by BV°(T,Y) the vector space of all measures on T with values in 

Y of O-bounded variation. 

Further, if m E BV°(T, Y), then an element of Y of the form 

m(n) = — f e-[ni dm(t) 
2TT J 

T 

is called the nth Fourier-Stieltjes coefficient of m. 

We shall make use of the following result. 

The general form of the (O)-bounded linear operator U: C(T) —-> Y is given 

by the formula 

U(f)=Jf(t)dm(t), 

where m: B(T) —^ Y is a measure of (O)-bounded variation ([3]). 

Now we can prove the following. 

THEOREM 4. Let Y be a complete vector lattice. Let (yk) be a two-way se­

quence of elements of Y. Then the following two conditions are equivalent: 

(a) There is a measure m: B(T) —>• Y of (o)-bounded variation with 

Um(T) < C E Y such that y, are Fourier-Stieltjes coefficients of m. 
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z. y. = m(j) = — / e ljt dm(t) for all j G 

T 

I 

(b) For all trigonometric polynomials a = ^ a- eljt G p(T) t/iere ZioZds 
- / 

/ 

- / 

/o7* some C £ Y . 

P r o o f . Clearly, (a) implies (b) since 

Ëa-iУi\ = \Y,a-iҺ I *'*ám{t) 

-i - Í
 J 

< Цa|l«m(T) 

by using ([3; p. 407]). 

If we assume (b), then the linear operator U: p(T) —> Y from the proof of 
rFheorem 2 is an (o) -bounded linear operator that admits an extension that is 
an (O)-bounded linear operator on C(T) with ||c7|| < C. But according to ([3; 
Corollary]), there exists a measure m of (O)-bounded variation such that 

ľ ( Я / / ( « > d m ( í ) , / Є C ( T ) 

• Clearly, U(j) = m(j) = y-. 

If ra G B y ° ( T , y ) , then the (formal) series 

X > ( n ) e ^ 
nGZ 

is called the Fourier-Stieltjes series of ra. 

If the measure ra is of the (o)-bounded variation, and y- = ra(j), j G Z, 
we shall wrrite 

crN(y, t) = ^ ( r a , t) and SN(Y) = SN(m) . 

We can now prove the following. 
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THEOREM 5. Let Y be a complete vector lattice. The trigonometric series 

Y,y*einx> y^Y> 

is the Fourier-Stieltjes series of the measure m: B(T) —• Y of the (o)-bounded 
variation, i.e., y. = m(j), j £ Z. if and only if there exists an element 0 < C 
£ Y such that 

\\SN(Y)\\<C, At = 1,2,.. . . 

P r o o f . If there exists a measure m of (o)-bounded variation, m £ 
BV°(T,Y) such that y. = m(j), j £ Z, then, as we know, the equation 

U(f) = J f(t)dm(t), / e C ( T 

defines an (O)-bounded linear operator U: C(T) —• F with ||c7|| < C for some 
0 < C £ Y". Hence, according to Theorem 3, we have 

115^)11 = 115^)11 = | | S J V ( m ) | | < C , At = 1 ,2 , . . . . 

Conversely, if 115 (̂5 )̂11 < C, N = 1, 2 , . . . , for some 0 < C £ F , then, according 
to Theorem 3, there exists an (O)-bounded linear operator U: C(T) —> Y such 
that U(j) = H . But then there exists a measure m of (O)-bounded variation 
such that 

U(f) = j f(t)dm(t), feC(T). 

But \\U\\ = Um(T) < C. Clearly, [/(j) = m(j) = Vj , j £ Z. D 

]t is useful to establish the Parseval formula explicitly also for the Fourier-
Stieltjes series of the measure m of (o) -bounded variation. 

THEOREM 6. Let Y be a complete vector lattice, and let f £ C ( T ) . Then we 
have 

I 
N 

f(t) dm(t) = Um £ 1 - - J ^ _ )f(j)m(-j) 
~*°° -N ^ 

P r o o f . By the Parseval formula from Theorem 1, the last equalitv holds 
f o r / £ C ( T ) . ' D 

It is a very important fact that we have established not only a characterization 
of the Fourier-Stieltjes series of the measure of (o)-bounded variation but also 
a method howr to recapture the measure by means of its Fourier-Stieltjes series. 
Theorem 6 gives a recipe how to recover the measure m . In this sense, we may. 
by abuse of notation, write 
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for m e. BV°(T,Y). 
It is easy to see that if the measure m : B(T) —» Y is positive, then m is of 

the (o) -bounded variation. Hence we may establish the following. 

THEOREM 7. Let Y be a complete vector lattice. The necessary and sufficient 
condition for 

£ y f c e " « 
kez 

to be the Fourier-Stieltjes series of a positive measure m with values in Y is 
that aN(Y,t) > 0 for all N on T. 

P r o o f . 

The necessity: If yk ~ m(k) for a positive measure m , we have 

a-.iv * . _ W l _ J _ L A , o - i i t - V ^ i _ _ _ L _ ^ . _ ^ 0 - i J t »c.o - E(> - s^r)»-.«-w - _(> - ]^i)*(-«e-
- T V v 7 - j V V 7 

= ^ / E ^ - F + l ) e ~ i j ( t " S ) d m W = [KN(*-*) drn(t) > 0 

since m is positive, and Fejer's kernel Kn is nonnegative. So we have aN(Y,t) 
> 0 on T . 

Assuming crN(Y,t) > 0 we obtain 

| 5 N ( Y ) | | = sup J f(t)aN(Y,t) dt = j-J<тN(Y,t)dt = y0, 

and by Theorem 5, 

£»,-el ix 

j<_Z 

is the Fourier-Stieltjes series for some m E 2?V™(T,y). For arbitrary nonnega­
tive / e C(T) 

[ f(t) dm(t) = J im - 1 / /(r)O>(Y, r) dr > 0 , 

hence 

U: f ^ J f(t)dm(t) 

defines a positive linear operator on C(T) into Y which can be extended ([2; 
5.1.2, Theorem]) to the positive linear operator (denoted again by) U defined 
on the complete vector lattice containing characteristic functions cA of Borel 
sets A in T . From the definition ([3; Theorem]), m(A) — U(cA), and it follows 
that m is positive. • 
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It is not unexpected that Theorem 7 gives rise to a representation of posi­
tive definite functions defined in a suitable sense, analogous to those known for 
complex-valued positive definite functions. 

Suppose that (yn), n = 0, ± 1 , ± 2 , . . . , is a two-way sequence of elements in 
a vector lattice Y. Then it is called positive definite if for any sequence (c ) of 
complex numbers having only a finite number of terms different from zero we 
have 

X] Cn^yn-m ^ 0 • 
in, n 

THEOREM 8. Let Y be a complete vector lattice. A necessary and sufficient 
condition for a sequence (yn)n

<)

=_00 CY to be positive definite is that there exists 
a positive measure m: J3(T) —» Y such that y = m(n) for all n . 

P r o o f . Assume y. — rh(j) with m: B(T) —•> Y positive, then 

E C n ^ n - m = / ( E C ™ ^ e i ( n " m ) t ) d m O 
m,n ^ rn.n ' 

= I E c » e i " f dm(i)>0. 
^ n 

Conversely, if the sequence y. is positive definite, and we take c} = e l / f , then 

iV 

m,n 

and it is enough to apply Theorem 7. I] 
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