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ABSTRACT. The problem of consistent choice in a finite disjoint system of non-
cmpty sets is considered. Any pair of chosen elements has to fulfil a given binary
relation of consistency. The width of the system is the maximal cardinality of its
members. The consistent choice problem is N P-complete for width > 2.

A connection between the consistent choice of width 2 and partially ordered
sets with a unary operation of duality is described. Two O(n?) algorithms for
solving the consistent choice of width 2 are proposed on the base of the above

connection. A condition is given under which the algorithms work also for the
width > 2.

1. Introduction

In the real life as well as in the theoretical research, we often meet the problem
ol consistent choice. The consistent choice corresponds to the situation when a
simultancous choice from a disjoint system of non-empty sets is to be performed,
and all the chosen elements have to be pairwise compatible with respect to a
eiven binary symmetric relation of consistency.

The not on of consistent choice was considered in [2]. The connection of the
consistent choice with the problem of satisfiability was described, and the compu-
tational complexity of consistent choice was evaluated. Depending on the width
meoof the given system of sets, the problem of consistent choice from n sets is
solvable in polynomial time O(n?) for m = 2, and it is N P-complete for m > 2.
The consistent choice was used for solving the problem of balanced location on

ANMS Subject Classification (1991): Primary 06A06, 03D 15H; Sccondary 68Q 1 5.
N ev words: partial order, polvnomial algorithm, N P-completeness.



MARTIN GAVALEC

a graph in [3]. An equivalent problem of compatible representatives was studied
by Knuth and Ragunathan in [4].

In this paper, a special duality operation on partially ordered sets and di-
rected graphs is introduced. A relation of the partial order with duality to the
problem of consistent choice is shown, and efficient algorithms for finding a so-
lution of consistent choice are described. The algorithms work for m = 2 and

under special conditions also for m > 2.

2. Consistent choice problem

We shall formulate the ideas from the previous section in the formal mathe-
matical language. For simpler notation of index sets we shall use the convention
by which any natural number n is considered as the set of all smaller natural
numbers, i.e., n={0,1,...,n— 1}.

The problem of consistent choice can be formulated as follows.

DEFINITION 1. Let M = (M,; i € n) be a finite pairwise disjoint system
of non-empty sets, let M = J(M,; i € n), and let P be a symmetric binary
relation on M . Then the pair (M, P) is called a consistency system.

DEFINITION 2. Let (M, P) be a consistency system, let M = [JM. A subsct
C' C M is called a consistent ckoice in (M, P) if

—

(Vien) | M, N C| =1, (
(Vr,yeC) (z,y) € P. (

o

Remark. Equation (2) implies that (2, z) € P holds true for any » € (". This
does not mean that the relation P must necessarily be reflexive. Of course.
if (w,x) ¢ P for some x € A, then this particular element +» must not be
contained in any consistent choice C' in (M, P).

DEFINITION 3. Consistent Choice Problem (abbr. CC'):
Given a consistency system (M. ). is there a consistent choice in (M. 17)7
The consistent choice problem is a special case of the problem of compatible

representatives formulated by Knuth and Ragunathan in [1.

DEFINITION 4. [Problem of Compalible Representatives (abbr. CR):
and o binary relation

Lo Lo | . ; . .
AEESTE ERE o= e s svstens of compatihiee representagives o

Givenaosystent of non-empty sets Moo= (A0 7 7 )

)



PARTIAL ORDER WITH DUALITY AND CONSISTENT CHOICE PROBLEM

Clearly, the problem CC is a special case of CR, for disjoint sets M,, i € n,
and for a symmetric relation P. Under these conditions, there is no substantial
difference between a system of P-compatible representatives X = (z,; i € n)
and a P-consistent choice C'. The following theorem shows that, on the other
hand, the problem CR can be transformed to CC, and therefore, hoth problems

are equivalent.

THEOREM 1. Let M = (M,; i € n) be a system of non-empty sets, and let
P be a binary relation on M = J(M,; i € n). If the system M and the binary
relation P are defined by the conditions: for any i,7 € n and x,y € M

ﬂ:(ﬂi;iEn), (avz)ejﬁZ = z €M,
(0.0, (y,0))€P <= (i <j, (z,y) e P)V (i <i, (y,z) € P)V (i=4, = =1y),

then (M, P) is a yes instance of CR if and only if (./\/l,
Cc.

) s a yes instance of

Proof. It is easy to verify that any X = (z,; i € n) is a system of

compatible representatives in (M, P) if and only if X = {(r,i); 1 E n} is a
consistent choice in (ﬂ,]_)) . O

The computational complexity of CC depends on the cardinality of sets Al
in M. Let us denote
width M = max |M,].
1EN

DEFINITION 5. For natural m, Consistent m-Choice Problem (abbr. CC )
is the problem CC with the additional condition

width M = m..

Remark. For any instance (M, P) of the problem CC, we may assume, with-
out loss of generality, that |M;] = m for any ¢ € n. If it is not the case,
we can formally extend the set A, by sufficiently many elements & such that
(o) ¢ I’. This extension has no effect on the solvability of (M. 1?).

It was proved in [2] that the well-known problem of m-Satisfiability for

conjunctive hoolean formulas polynomially transforms to C'C, . By Cook’s
theovera [Fo m-Satisfiability s NI-complete for m > 2. Thercfore. €C) s
\ -complete for m > 20 as well.

Ou the other hand. the problem CCL polynomially O(n?) transforms to the
problem of 2-Satisfiubility, and as a conscquence, the problem C1C, is solvable
Dopolvinomial time O(n?).

\nother formulation ol the problem can be found in Section 3. The problem
CCL s presented in the langnage of directed graphs with a duality operation.
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[n Section 4, we show that the problem CC, is equivalent to the problem of
finding a maximal filter in a partial ordered set with a duality operation.

The above equivalency directly induces two algorithms for C'C', ., which are
described in Section 5. The first algorithm works with the transitive and reflex-
ive closure of the relation P, the second one uses the backtracking method of
depth 1. Both algorithms are of complexity O(n?).

3. Directed graphs with duality

Solving the problem CC, in a consistency system (M. P). we shall assume.
in accordance with the remark after Definition 5, that |M.| = 2 holds true for
any ¢ € n. This specific situation can be alternatively described by a unarv
operation f: x — 7 such that any M, is of the form M, = {r.7} for some
re M.

If C is a consistent choice in (M, P), then condition (1) can be replaced by
the following condition (3). For any = € M,

reC <= 1T¢C. (3)

The consistency relation P induces some implications between the elements
of A . Namely, if for some z.y c M,

(r,y) ¢ P (4

is true, then the elements z, y cannot be contained simultancously in ", Thus.
as a consequence of (3), condition (4) induces the following two implications:
relC = yel, .
(D)
yeC = TeC.

The implications expressed in (5) can be coded by a binary relation A on
M . We define the relation A as follows. For z,y € M we put

(r,7) € A < (x,y) ¢ P, “
(y,7) € A & (z,y) ¢ P.

[t follows from the symmetry of P that both formulas in (6) are equivalent.
Slightly modifying the notation, we get the duality condition for the rela-
tion A: for any x,y € M,

(r,y) € A <= (g, 7)€ A. (7
[f the relation P is reflexive, then for any « € M,
(r,7) ¢ A. (8)
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Finally, if C is a consistent choice in (M, P), then, by (3) and (5), condi-
tion (2) can be replaced by condition (9). For any z,y € M,

(xeC, (z,y) e A) = yeC. (9)
The above considerations are summarized by the next two definitions.

DEFINITION 6. A digraph with duality is a triple (M, A, f) such that

(i) (M, A) is a digraph with the vertex set M and the arrow set A,
(i) f: r — T is a unary operation on M ,
(iii) (VaeM) [T #z, T =],
(iv) (Va,yeM)[(z,y) € A < (,7) € A].

DEFINITION 7. A consistent choice in (M, A, f) is a subset C C M such that
(1) (VeeM)[z € C <= T ¢ C],
(i1) (Va,yell) [(x €C, (z.y) € A) = Yy € C'] .

Our corsiderations show that the triple (M, A, f) and the consistent choice
(" in (M, P) satisfy the following theorem.

THEOREM 2. Let (M, P) be a consistency system of width 2, let f be the
corresponding unary operation on M , and let the relation A be defined by (6).
Then the triple (M, A, f) is a digraph with duality, and any subset C C M is a
consistent choice in (M, P) if and only if C is a consistent choice in (M, A, f).

Special cases of the digraphs with duality are analysed in the next section.

4. Partial order with duality

A consistent choice in a digraph with duality (M, A, f) can be found quite
casily if the relation A has some special properties. The simplest case is the

situation when the relation A is reflexive, transitive and antisymmetric, i.e.,
when A is a partial order on M.

DEFINITION 8. A partial order with duality is a triple (M, A, f), such that

(i) (M, A, f) is a digraph with duality,
(i) A is a partial order on M.

DEFINITION 9. Let (M, A, f) be a partial order with duality. A subset F C M

is called a filter in (M, A, f) if, in the notation F = {z; x € F}, the following
conditions are fulfilled:

(i) FNF=0,
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(ii) F is upward closed, i.e.,
(Vo,yeM) [(z € F, (z,y) € A) = y€ F].

The filter F is a mazimal filter in (M, A, f), if moreover,
(iii) FUF =M.

THEOREM 3. Let (M, A, f) be a partial order with duality. A subset ' C M 1s
a consistent choice in (M, A, f) if and only if C' is a mazimal filter in (M. A, f).

Proof. A straightforward verification shows that conditions 9 (i). (iii) are
equivalent to condition 7 (i), and condition 9 (ii) is equivalent to 7 (ii). C

The next theorem describes a simple method for constructing a maximal filter
in a partial order with duality. The method is based on a subsequent extending
of a given filter and does not require any backtracking.

THEOREM 4. Let (M, A,f_) be a partial order with duality, let F be a filter in
(M,A,f). Ifr € M— (FUF) and (z,%) ¢ A, then the set F, = FU{y e M:

(x,y) € A} is a filter in (M, A, f).

Proof. We have ITL = FU {@; (y,7) € A}. If there exists an element
z € F_EﬂP_’w, then we shall distinguish four cases: z € FNF, 2 € F—-F. ¢ F—F.
z € M — (F UF)A The first case is in contradiction with condition 9 (i). In the
second case, we have z € F, (z,7) € A, which implies T € F. Similarly. in
the third case, we obtain # € F. Thus, both cases are in contradiction with the
assumption x € M — (FUF) . In the last case, we have (r,z).(z.7) € 4 and. by
the transitivity of A, (z,7) € A. This is in contradiction with the assumption
(x,7) ¢ A. Therefore, F, N F = 0 holds true. The upward closeness of I is
evident. O

THEOREM 5. If (M, A, f) is a partial order with duality, then any filter I i
(M. A, f) can be extended to a maximal filter in (M, A, f).

COROLLARY. Any partial order with duality is a yes instance of CC,.

Proof of Theorem 5. Let [ be a filter in (M. A f) I 7 ds not a
maximal filter. then there is an clement &+ e A - ([’ U [) I o) ¢4
then Focan be extended to F I (o) € AL thens by the antisyimmetry of 1
the assumption (F.0) € A would imply 2 = 7. which is in contradiction with

Definition 5(iii). Thus it (o) o A then (rear) 40 must hold trnes and the
filter I7 can be extended to /0 The process of extending will continue vl
maximal filter is obtained

Defintion 9 and Theorews 3 and Tean he applicd also b the simnarion vy

the relation U is retlexive and transitive. hut not necessariiv antisvinmet e,

this case. the method deseribed in Theorems 3. Fand 5 can he nsed witly

change. Theorem 5 will e modiiied in the following wav

SR
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THEOREM 6. Let (M, A, f) be a digraph with duality, and let the relation A be
reflexive and transitive. If there is an element © € M such that (z,%), (T,z) € A,
then there is mo consistent choice in (M, A, f). If such an element © & M does
not exist, then any filter in (M, A, f) can be extended to a mazimal filter.

Proof. Clearly, if (z,T),(Z,2) € A, then no consistent choice exists. Fur-
ther, the antisymmetry of A was used in the proof of Theorem 5 only at one
place. to exclude the situation when (z,7),(Z,z) € A. The rest of the proof

remains without change. O

The general situation, when the digraph with duality (M, A, f) has no special
properties, can be solved using the transitive and reflexive closure. The transitive
and reflexive closure @ of the relation A consists of all loops and of all finite
compositions of arrows from A, i.e., for any z,y € M,

(ry) el = (r=y)

V(3zy,...,z €M) [z =1z, y =1, (Viek)(z,z,,,) € Al.
(10)
It is evident that @ is a reflexive and transitive relation with the property: for
any @,y € M,
(2,y) €Q <= (7,7) € Q. (11)

Morcover, if C' is a consistent choice in (M, A, f), then for any z,y € M,
(xGC,(az,y)GQ)ﬁyGC. (12)

A solution of a general case is described by Theorem 6 and by the following
theorem.

THEOREM 7. Let (M, A, f) be a digraph with duality, let Q be the transitive
and reflexive closure of A. A subset C C M is a consistent choice in (M, A, f)
if and only if C is a mazimal filter in (M,Q, f).

Proof. The assertion of the theorem immediately follows from (11), (12).
O

5. Algorithms for consistent choice of width 2

In this section. we desceribe two O(n?) algorithms for solving the problem
¢, The fivst algorithm concerns the reflexive and transitive cigraphs with
duality. the second one s used in a general situation. The algorithms are based
o Pheorers U and T ool the provious section. with cortain modilications i the

creoal e
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ALGORITHM A, :
Consistent Choice in Reflexive and Transitive Digraphs with Duality

Input: A digraph with duality (M, A, f), where A is a reflexive and transitive
relation.

Output:
if SOL = true, then (' is a consistent choice (i.e., a maximal filter;
in (M,A,f),

if SOL = false, then there is no consistent choice in (M. 1. f).

Remark. We assume that the set M is linearly ordered, and there is a pro-
cedure min R which can find the minimal element in any non-cmpty subset
R € M. The set variable R represents the subset A — (('v U 7(7‘). the boolean
variable SOL indicates the existence of a solution.

procedure (input, output);
begin
C:=0; SOL:= true; R:= M ;
while (R # () and SOL = true) do
x:=min R,
if (z,7) € A then x :=7;
if (x,7) € A then
SOL := false;
else
for all y € R do
if (r.y) € A then O :=CU{y};
enddo;
R:=M-(CuC);
endif;
enddo:

end.

The main cycle of the algorithm A, will be performed at most n times,
hecause in any run of the main cyele. at least two elements (namely. the elements
roor) are taken away from R = Al — (C"UC"). The only exception is the case
SOL = false. when A, stops ar once. 'The inner evele runs at most 20 times,
. . . y . . 9 N .
I'herefore. the algorithm Al stops in time O(n=). The correctness of .41 Wil
proved in the previous section (Theorems 3 6).

If the relation 4 is not rellexive and transitive. then the aleovithm A can
bhe used in (M.Q. f). where @ is the transitive and reflexive closure of o1 This
procedure gives the correct result for (M4 f) in view of Theorem 70 However,

this approach is not very advantageous. as the construction of the transitive
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closure is done, in general, in time O(n**) (by [5]). We shall apply a special
approach to keep the computational complexity at level O(n?).

The algorithm A, is modified to the algorithm A, , which constructs only the
arrows of @, that are actually necessary in the current computation. A, uses
a “depth-first search” procedure, Suce, which produces the output sequence of
all successors of a given element x in the digraph (M, A). Such a procedure is
described in [6], and its computational complexity is O(|M| + |A]).

We assume that the work of the procedure Suce is organized in such a way that
the procedure creates a walk s = (s(0),s(1),...,s(k)) in the digraph (M, A4),
which begins at @ = s(0) and which is systematically extended in order to find
all successors of z. In accordance with [6], the created walk s uses the arcs from
A in both directions and has the following properties:

(TD) any arc is used for the first time in the direction of its orientation,

(T1) any arc is used at most once in each direction,

(T2) any discovering arc (an arc leading to a vertex not yet visited) can be
used in the opposite direction only when there is no other possibility,

(T3) if an arc leads to a vertex already visited before, then, in the next step,
the arc is used in the opposite direction.

Each time when a new successor y is discovered, i.e., if

y=sk),  (Viek)y#s(l),

then Succ stops and gives the output (s, k). The next call of the procedure Succ
uses (s, k) as the input and produces an extension s’ D s, of the length k¥’ > k,
such that s’(k’) is the next discovered successor of z. The search is finished
when the walk returns to its beginning, i.e., when s(k) = z.

Succ uses the set variable R = M — (C U 6) as the third parameter and
restricts the search to the arrows that are in R. In this way, the total time
consumed by all calls of Succ is bounded by O(|M]|+ |A]) = O(n?).

In A,, the successors of the considered element z are being compared with
the dual element T in order to verify the condition

(z,7) ¢ Q. (11)

The verification runs parallely in two dual branches, starting in = and in =.
The search stops if one branch successfully verifies condition (11}, or, if both
branches fail.

In the first case, the successful element x, as well as all its successors, are
put into C'. If both branches fail, the computation stops with the response SOL
= false.
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ALGORITHM A, :
Consistent Choice of width 2 (general case)

[nput: A digraph with duality (M, A, f).
Output:
if SOL = true, then C is a consistent choice in (A, A, f).
if SOL = false, then there is no consistent choice in (A, A, f).

Remark. The algorithm uses the procedure Suce described above. The vari-
ables R, SOL have the same meaning as in the algorithm A, . The set variables
C,, C, are used in two parallel branches of the computation for temporary
keeping the discovered successors of z and T, respectively. The boolean vari-
ables OK,, OK, indicate that condition (11) or the dual condition has not been
violated, up to the current step. The variables END,, END, signalize that the
“depth-first search” in the corresponding branch has come to the end.

procedure (input, output);
begin
C,C,Cy:=0; SOL:= true; R:= M ;
while (R # 0 and SOL = true) do
z:=min R; OK,, OK, := true; END,, END, := false:
ki ky:=0; 5,(0):=1z; 5,(0):=7;
while (non( END, = true and OK, = true) and
non( END, = true and OK, = true) and
non( OK| = false and OK, = false)) do
(sy,ky) := Succ(sy, k;, R); (s,,ky) := Succ(s,, ky, R):
yp = s1(ky); Yy = sy(ky);
Cpi=C ufy}; Cpi=CyU{y,};
if y, = v then END, := true;
if y, =T then END, := true;
if y, =7 then OK, := false;
if y, = = then OK, := false;
enddo;
if (OK, = false and OK, = false) then
SOL := false;
else
if (END, = true and OK, = true) then C, (", := (",
if (END, = truc and OK, = true) then C'.(') := (',
endif;
enddo;
end.
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6. Algorithms for determinate consistent choice

The algorithms proposed in the previous Section 5 are based on the duality
operation f introduced in Section 3, for consistent choice of width 2. For their
application to the case of width m > 2, the algorithms and the notion of duality
must be modified. As we have mentioned in the introduction, tne consistent
choice prob.em is N P-complete in the case m > 2, therefore the modified version
will be restricted to a special case of determinate digraphs described in this
section. The main results are presented in Theorems 10 and 12.

The notion of duality will be modified to pseudoduality in the following way.
DEFINITION 10. Let M = (M,; i € n) be a finite disjoint system of non-
empty sets, let M = [J(M,; ¢ € n). For any i € n, x,y € M,, x # y, we say
that the element y is pseudodual to z. The set of all elements pseudodual to z
will be denoted by = = M, — {z}.

By the definition, the relation of pseudoduality is irreflexive and symmetrical.
If width M = 2, then the dual element Z is the only element in z,i.e., T = {Z}.
If width M =m > 2, then any T consists of m — 1 elements.

The function g: x — I represents the pseudoduality as a multivalued unary
operation on Al, in the sense of the following definition.

DEFINITION 11. A digraph with pseudoduality is a triple (M, A, g), such that

(1) (M, A) is a digraph with the vertex set M and the arrow set A,

(ii) g: a+ — r is a multivalued unary operation on A,

(iii) (VeeM) x ¢ 7,

(iv) (VeyeM)[rcy < ye x|
The relation A is called determinate in (M, A, g), if moreover,

(v) (Va,yeM)(Vy'ey)(Fa'eq) [(r,y) € A = (y,a') € A}.
DEFINITION 12. A consistent choice in (M, A, g) is a subset C' C M such
that

(i) (VesM)[reC < znC =10,

(i) (Va,yebl) [(;1: e O, (x,y) € A) == y e C] .

DEFINITION 13. Let (M, A, g) be a digraph with pseudoduality.

(1) An clement @ € M is called contradictory if
By, y'eM) [y €y, (x,y),(x.y) € A,
(i) An clement o € M is called strongly contradictory, if

(Jx'ex) [(.1',,;1,") S A] .
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By the notation Contr, SContr, respectively, we denote the sets of all contra-
dictory elements or strongly contradictory elements in M . The basic properties
of the sets Contr, SContr are presented in the following lemma.

LEMMA 1. Let (M, A, g) be a digraph with pseudoduality. Then the following
implications hold true:
(i) of the relation A is transitive, then the set Contr is downward closcd.
(i) if the relation A is transitive and determinate, then Contr C SContr.

Proof.

(i) Let @,z € M, x € Contr, (z,2) € A. Then there are y.y’" € M such that
y €y, (z,y),(z,y") € A. By the transitivity of A, we have (z.y).(z.y') € .
le., z € Contr.

(ii) Let = € Contr, then there are y,y' € M, y' €y, (z.y).(r.y) € 4. By
Definition 11 (v), there is 2’ € 2 such that (y',2’) € A. By the transitivity of 1.
we get (z,2') € A, ie., x € SContr. o
DEFINITION 14. Let (M, A,g) be a digraph with pseudoduality. A subset
F C M is called a pseudofilter in (M, A.g) if, in the notation F = Uir:
x € F'}, the following conditions are fulfilled:

(i) FNF =0,

(ii) F' is upward closed, i.e.,

(Va,yeM) [(.’17 €F (r,y)€A) = ye I]

The pseudofilter F is a mazimal pseudofilter in (M, A, g) if. moreover.
(iii) FUF = M.

LEMMA 2. Let (M, A,g) be a digraph with pseudoduality, let ' be a pscudofil-
ter in (M, A, g). If the relation A is determinate, then F is downward closcd.
i.e.,

(Vz,yed) [(y € F.(z,y) € A) = z¢€ 17} .

Proof. Let y € IT’, (z,y) € A. Then, by the definition of F and by the
symmetry of pseudoduality, there is ¥’ € F such that y’ € y. By the determi-
nateness of A, there is 2z’ € 2 such that (y',z') € A. The upward closeness of
I" implies that = € F, therefore = € . "
THEOREM 8. Let (M, A, g) be a digraph with pseudoduality. A subsct (" C ]
is a consistent choice in (M, A, g) if and only if C' is a maximal pscudofilter in
(M, A, g).

Proof. We show that the implication

(VeeM)[z € C = TN C =0
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is equivalent to the condition C'N C=0.

Let 7N C = 0 be fulfilled for all 2 € C, then we have C N C = C N
UHe: veC=U{anC; zeC}=0.

Let C'N (~“~: @, then for any € C we have £ N C = 0 hecause of the
inclusion 2 C C.

Similarly, we show that the converse implication

(VzeM)[x ¢ C = zNC #0]
is equivaleat to the condition C'U C=M. _

Let 70 C # 0 holds true for any « ¢ C, then there is y € C, y € . Using
the symmetry property 11 (iv), we have x € y, therefore x € 5

Let CUC = M. If z ¢ C,then x € C, and there is yeC,zcy,s0y €T,
therefore 2N C # 0.

We have proved that condition 12 (i) is equivalent to the conjunction
of 14(i), (ii1). Conditions 12 (ii) and 14 (ii) are identical, therefore the proof
of the thecrem is complete. a

The following theorem is a modification of Theorem 4 and describes a way of

constructing a maximal pseudofilter by subsequent extending the given pseud-
ofilter.
THEOREM 9. Let (M, A,g) be a digraph with pseudoduality, let A be a reflex-
ive. transitive and determinate relation on M, and let I be a pseudofilter in
(M, Ajg). If v € M— (FUF) and = ¢ SContr, then the set F, = FU{y € M;
(r.y) € A} . 18 a pseudofilter in (M, A, f).

Proof. By Definition 14, we have F = FU U{U, (z,y) = A} Let us
assume that z is an element in F, ﬁF Slmllarly as in the proof of Theorem 4, we
shall distinguish four cases: z € FﬁF, € F— F zeF— F,ze M- (]' UF)
The first case is in contradiction with 14 (i).

In the second case, we have z € F and z € U{ﬂ, (z,y) € A}, i.e., there is
y € M such that (r,y) € A, z € y. By the determinateness of A, thereis «’ € r
such that (':,J ) € A, and by the upward closeness of F', we get «’ € F'. which
implies r € F'. This is in contradiction with the assumption r € M — (F' U 17)

In the third case, we have z € F and (z,z) € A. By Lemma 2, F is downward
closed and therefore x € IT’, which leads to the same contradiction.

In the fourth case, (z,z) € A holds true, and there is an element y € M
such that = € y. (x,y) € A. By the determinateness of A, there is an element
"€ 7 such that (z,27) € A. By the transitivity of A, we get (z.2') € A, i.c.,
£ € SContr.

All the four cases lead to a contradiction, therefore F, N F = () must be
true. The upward closeness of F is a consequence of the transltlwtv of A. 0O
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THEOREM 10. Let (M, A, g) be a digraph with pseudoduality, let A be a refler-
we, transitive and determinate relation on M . Then the problem of consistent
choice in (M, A, g) is solvable by the pseudodual version of the algorithm A, .

Proof. It is easy to see that, analogously to Theorem 6, if there is an
element x € M such that all elements in {x} Uz are strongly contradictory.
then there is no consistent choice in (M, A,g). If @ ¢ SContr. or if there is
x' € T such that 2’ ¢ SContr, then, by Theorem 9, the following pseudodual
version A} will find a solution. O

ALGORITHM Aj:

Consistent Choice in Reflevive, Transitive and Determinate Digraphs with
Pseudoduality

Input: A digraph with pseudoduality (A, A,g), where A is a reflexive.
transitive and determinate relation.

Output:
if SOL = true, then C is a consistent choice (i.e., a maximal filter)
in (M, A,q),

if SOL = false, then there is no consistent choice in (A, A.g).

Remark. Similarly sa in A, we assume that the set M is linearly ordered.
and the algorithm can find the minimal element in any non-empty subset of /.
The condition x € SContr used in the algorithim can be verified in < m steps
by checking if (x,2') € A for some element 2/ € .

procedure (input, output);
begin
C:=0; C:=0;: SOL := true; R:= M ;
while (R # (0 and SOL = true) do
r:=minR;
if = € SContr then
if & — SContr =1 then
SOL = falsc :
else
= min(r - SConlr);
endif;
endif;



PARTIAL ORDER WITH DUALITY AND CONSISTENT CHOICE PROBLEM

if SOL = true then
for all y € R do
if (z,y) € A then C:=CU{y}; C:=CUJ;

enddo;
R:=M-(CuC);
endif;

enddo;
end.

THEOREM 11. Let (M, A,qg) be a digraph with duality, let the relation A be
reflexive and determinate on M . Then the transitive and reflexive closure Q of
A s determinate on M .

Proof. Let z,y € M, (z,y) € Q, and let 4 € §. Then there exist elements
L&y, L, € M such that © =z, y = 2, and (Vi€k)(z;,z,, ;) € A. By
repeated use of Definition 11 (v), we get the elements (), z},...,z} such that
. =y, (Viek) z; € 2, and (Viek) (2], ,,z;) € A. We denote z’ := z(,. Then
r' €7 and (y',z') € Q hold true. The proof is complete. O

THEOREM 12. Let (M, A,g) be a digraph with pseudoduality, let A be a re-
flexive and determinate relation on M . Then the problem of comsistent choice
in (M, A,g) is solvable by the pseudodual version of the algorithm A, .

Proof. The pseudodual version of A,, denoted by A5, is similar to the
pseudodual version A of the algorithm A, . Let us denote m = max |Z| + 1.
T€E

Instead of two parallel branches of computation used in A,, the algorithm A/,
performs the search of successors in < m parallel branches beginning in all
elements in {z} UZ. Any branch is OK until it is discovered that its starting
point is strictly contradictory.

When the first OK branch comes to end of the search, then all elements of
the branch are added to C', and all elements pseudodual to them are added
to (. If, in some cycle, all branches are not OK, then the consistent choice in
(M, A, g) does not exist, and the algorithm stops. d
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