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ON A MEASURABLE SET 

MUKUL PAL — MRITYUNJOY NATH 

(Communicated by Ladislav Misfit) 

ABSTRACT. In this paper, a result in connection with a set of positive Lebesgue 
measure in N-dimensional Euclidean space is obtained. 

In [2], S. K u r e p a proved two theorems, the first of which runs as follows. 

THEOREM. Let A C R/v (N-dimensional Euclidean space) be a set of strictly 
positive measure. For any system of p real numbers a\,a2,..., a p (a^ ^ 0) 
there exists a ball Kr of radius r with centre at the origin, such that for any 
x E Kr there are vectors ao (# ) , a i (x ) , . . . ,ap(x) in A such that 

_ ai(x) - a0(x) _ a2(x) - a0(x) _ _ ap(x) - a0(x) 

cYi a2 ap 

The proof of the theorem as adopted by S. K u r e p a in [2] is lengthy 
and involves characteristic functions. In [4], K. C. R a y has shown that both 
theorems of [2] admit of shorter proofs. 

In [3], M. P a l proved a theorem using a bounded sequence of non-zero real 
numbers instead of a system of a finite number of non-zero real numbers as used 
by S. K u r e p a in [2]. 

In this paper, we prove a theorem which sharpens the result as proved by 
M. P a l in [3]. 

We prove the theorem using the technique as adopted by K. C R a y in [4] 
with necessary modifications. 

Before going into details we state some of the properties of a convex set 
in RN. 

I) For a convex set A containing the origin and for 0 < a _ 1, one has 
a A C A, where 

aA — {ax : x E A} . 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 28A05. 
K e y w o r d s : N-dimensional Euclidean space, Lebesgue measure, convex set, linear 

transformation. 
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II) For a convex set A containing the origin and for positive numbers 
a, j3, with a < (3, one has a A C {3 A. 

Ill) For convex sets A and B with B C A and for any positive number a, 
one has aB C aA. 

In this context, we note a well-known result [5], viz., if T is a linear trans­
formation in RN given by 

N 
xi — / J

 aij xj , 2 = 1 , _ , . . . , T V , 

i = i 

a^j being real numbers, and if _? is a measurable set in R/v , then |T(_7)| = 6|_i7|, 
where 6 is the absolute value of the determinant of T , and \E\ denotes the 
Lebesgue measure of the set E. 

As a corollary of this result, it can be easily deduced that, if a is a non-zero 
real number and E is a measure set in RJV, then 

\aE\ = \a\N\E\, 

where \a\ denotes the absolute value of the real number a. 

N O T A T I O N . 

(1) _?[c, g] stands for the closed ball with the centre at c and the radius g. 
(2) If A and B are two sets, then A \ B is the set of points of A which 

are not in B. 
(3) For a set A and a vector a in R^r, A — a denotes the set of vectors 

x — a, where x runs over the set A. 

THEOREM. Let A be a closed convex set of positive Lebesgue measure in R v̂ • 
Also let {an} be a bounded sequence of non-zero real numbers, and let {(3n} be 
an increasing sequence of real numbers with (3n _ 1 such that lim f3n = 1. 

n—»oo 

Then there exist a sequence {Kn} of balls with centres at the origin, a ball 
KA = B[a,r] with a G A, and a sub-sequence {(3Ni} of the sequence {/3n} so 
that for every sequence {xn} of vectors with xn G Kn there exist vectors 

ak(xi,x2,- ..;0Nl,0N2,. •.) G A, 

al(xux2,...',pNl,pN2,...) G KA 

such that 

ûfc(жi, X2ì • • • ; Дvi, ßN2,..-)- ao(~l, _2, • • • *, ßNг, ßN2, • • •) 
I à _ _ 
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and 

a>o{xi,X2,...]PNl,/3N2,...) -a = - — a f c ( x i , X 2 , . . . ; l 5 j v 1 , / 5 j v 2 » - - 0 - ~o—a » 

* = 1,2 

P r o o f . Since A is a set of posi t ive measu re , t h e r e exis ts a ball B[a, r] = 
__~A, a € A, a y - 0 , such t h a t 

|_4ntfA|>f|KA|. 

Let C = B H K'A, where B = _4 - a and i_"^ = KA - a. Then C is a 
bounded closed convex set of positive measure containing the origin. Following 
K e s t e l m a n , we similarly define a sequence of bounded open convex sets 
such that 

oo 

Ui D U2 D Us D • . . with p i Un = C , 
n = l 

oo \C\uN 

and J2 {\Un\ — |C|} < — A — ' w n e r e v ls a positive number less than 1 such 
n = l 4 

that vN < 4 . 
5 

Since { a n } is a bounded sequence of real numbers, there exists a positive 
number a such that | a n | < a , n = 1 , 2 , 3 , . . . . Let 6r be the distance between 
the sets Ur and C, Ur being the complement of Ur ( r = 1 ,2 ,3 , . . . ). Then 
{6r} is a null sequence of positive numbers. 

Since lim (3n = 1, there exists a sequence {Ni} of positive integers with 
n — • o o 

_Vi < N2 < * * • < -Vn < • • • such that corresponding to _Vr we have 

|/3TV_ - 1| < min 

We shall show that 

C - OLif3NiXi + a - / ^ a C C7», i = 1, 2 , . . . . 

Here 

x ť Є Xѓ = ß 

Now 

o —. 
' 2a 

lai/Злг.^i - a + /3лfťa| ^ |ai | |Äv ť | |жi| + | a | ( l -/?лгť) 

< a _ Ĺ + | a | _ _ _ _ - Һ + k-S-
< a 2 a + | a | 2 | a | 2 + 2 ° г ' 
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Since Si is the distance between C and U[, 

Si — \x — y\ for every x G C and every y E U[. 

Let x G C 'and ^ = ctifiNiXi — a + PN^- Then x — y{ E Ui 01 x — y{ e U[. 

Let Zi = x — yi £ U[. Then |x — zi| = |yj < ^ . This leads to a contradiction. 

So x — Iji £ U[, and hence x — y{ G Ui. Therefore 

C - aif3NiXi +a- /3Nia C U;, i = 1,2,. . . . 

Next we show that {Kn} is a sequence of balls such that for every sequence 
{xn} of vectors with xn G Kn, 

X(xx,x2,... -,(3Nl, f3N2,...) 

= < * n ^ > n [(/tc - «-** + jN-a~a)n ikK'A-
П Kèc -a 2 X 2 + / ia -û )n /Ä Ą n 

is a set of positive measure. 

Now 

X(xux2,...; j3Nl, /3jv2, • • •) n Ui 

^ B n ^ n [ / i ) n [ ( i c - ^ + r - f l ) n ^ 
n [ ( ^ - ^ 2 + ^ a - a ) n ^ ] n -

= (B n ̂  n vx) n [^-{(C - a i/3^1 + a - pNla) n K'A]\ 

n [ ^ { ( C - a2Av2z2 + a - /3N2a) n i^}] n ... . 

It is evident that - = — < — and — > 1, and, on account of (II) and (III), 

(BnK'AnUi) c (K'Anux) c±(K'Anu{) 

and 

ў - [(C - aфNiXi + a~ ßNia) П K'A] c-±-(UгП K'A) C ̂ (Ui П K'A) 
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So, 

X(xux2j ...\f3Nl,(3N2,...)nU1 

V oo 

i ( ^ n U ! ) \ \j{±-(K'AnU1)\-±-((C-ai/3Nixi+a-f3Nla)nK'A)} 
i=l 

u{l(K'Anu1)\(BnK'Anu1)} 

OO r 

U {l(K'Anu1)\-±-(K'AnUi)} 
i=l 

U {j^{K'A n Ur) \-±-(K'An(C- ai/3NiXi + a- 0Nia))} 

u{±(K'Anu1)\(BnK'A)} 
OO 

i(^nr/1)\U{ I:(^
ní /i)\^:(^ní/ i)} 

= ±(K'Anu1)\ 

i=l 

oo 

\j{-±-(K'A n Ui) \-J-(K'An(C- aipNiXi + a- (3Nia))} 
1 = 1 * * 

u{l(K'Anu1)\(BnK'A)} 

OO OO 

= njN-{K'AnUi)X u { / ^ n t / i ) 
í = i L i = l 

Df}(K'AnUi)\ 
i=l 

\-^(K'An(C- ai0NiXi +a- pNia))} 

u{l(K'AnU1)\(BHK'A)} 

U 4- [K'A П {UІ \ (C - aißNiXi +a- ßNia)) 
i = l ßNІ 

u{l(K'Anu1)\(BnK'A)} 
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So, 

DC\ 
oo 

M -=-- [ \ (C - oчßNiXi + a - ßNia)] ) 
i = i ÞNi 

ujJйní/^fßnĄ)} 

\X(xi, x2,...; fiNl, /?/v2,.. .)| 
0 0 

= ici - E ér 0̂ 1 - i c - ̂ a i X i + a - ^ a 0 
i=l PNl 

L | ^ n U i | - | c | 
= |C |-Ěár[ l l 7 ' l - l C f l ]- 4rl^nU i |- |C| 

i=i l^jv, \.v 

00 

^ M - ^ E [ I ^ I - I C O - > ^ I + I C I 
i = l 

0 0 

= M - ^ E [ I ^ I - I Í 7 0 - ^ [ I ^ I - N + ( 1 - ^ ) ^ I 
ž = l 

0 0 

= Id - > EO^I -1̂ 1] - > tl̂ il - |c|l - (-L -1) |C| 
ѓ = l 

>|C| __ _ __ _ __ = _ZІ ? 0 

Consequently, the set X(xi, x2,...; /3jVi 5 /5/v2, • • •) is a set of positive measure 
for every sequence {xn} of vectors with $n E Kn. 

Hence there are vectors 

ao(xi,x2,...;ßNl,ßN2,...)
 є A , 

Qk(xi,x2,... \ßNl,ßN2,...) Є A, 

aк

к(xi,x2,...;ßNl,ßN2,...)ЄKA, к = l,2,. 

such that 
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a 0 (x i , x 2 , . . . ; f3Nl, /3/v2,...)- a 

= 0 [ al( a ?l» a ;2'---^Nl '^2J---) ~°] _ a l X l + -Q a - a 

= 75—[a 2 (x i ,x 2 , . . . ;/3jVi,/3jv2,...) - a] - a 2 x 2 + --5—a - a 
P/v2 Pjv2 

I.Є. 

# k 

-5—aj(ari,a:2,...;^jvi,r5jv2,...) ~ 75— a 

PjVi PjVi 
= -g—al(x 1,X2,...\/3N l,/3N 2,...) - -g—a 

-7-—a fc(xi, æ 2 , . . . ; ßNl, ßN2,...)- a 0 (x i , ж 2 , . . . ; /Зjv̂ , /Зjү2,...) 

a k 

аnd 

a0(a;i,X2,...;/3iv1,/3N2,---) - a = --—afe(rci,x2,...;/^.v.,/3;v2, • • •) - - j—a, 

fc = l , 2 . . . . . 

This completes the proof. • 
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