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ABSTRACT. In this paper, a result in connection with a set of positive Lebesgue
measure in N-dimensional Euclidean space is obtained.

In [2], S. Kurepa proved two theorems, the first of which runs as follows.

THEOREM. Let A C Ry (N-dimensional Fuclidean space) be a set of strictly
positive measure. For any system of p real numbers ay,as,...,a, (o # 0)
there exists a ball K, of radius r with centre at the origin, such that for any
x € K, there are vectors ao(x),a1(x),...,ap(x) in A such that

o= 0@ —ao(@) _ as(2) —ao(z) _  _ ap(z) —ao(z)

a1 (%)) ayp

The proof of the theorem as adopted by S. Kurepa in [2] is lengthy
and involves characteristic functions. In [4], K. C. Ray has shown that both
theorems of [2] admit of shorter proofs.

In [3], M. Pal proved a theorem using a bounded sequence of non-zero real
numbers instead of a system of a finite number of non-zero real numbers as used
by S. Kurepa in [2].

In this paper, we prove a theorem which sharpens the result as proved by
M. Pal in [3].

We prove the theorem using the technique as adopted by K. C. Ray in [4]
with necessary modifications.

Before going into details we state some of the properties of a convex set
in Ry.

I) For a convex set A containing the origin and for 0 < a £ 1, one has
aA C A, where

aA={azx: z € A}.
AMS Subject Classification (1991): Primary 28A05.
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IT) For a convex set A containing the origin and for positive numbers
o, B, with a < 3, one has oA C BA.

IIT) For convex sets A and B with B C A and for any positive number a,
one has aB C aA.

In this context, we note a well-known result [5], viz., if T is a linear trans-
formation in Ry given by

N
l .
xizg a;jT;, 1=1,2,...,N,
i=1

a;; being real numbers, and if E is a measurable set in Ry, then |T'(E)| = 6| E|,
where 6 is the absolute value of the determinant of 7', and |E| denotes the
Lebesgue measure of the set E.

As a corollary of this result, it can be easily deduced that, if o is a non-zero
real number and E is a measure set in Ry, then

|aE| = |o|V| Bl
where |a| denotes the absolute value of the real number «.

NOTATION.

(1) Ble, o] stands for the closed ball with the centre at ¢ and the radius .

(2) If A and B are two sets, then A\ B is the set of points of A which
are not in B.

(3) For a set A and a vector a in Ry, A — a denotes the set of vectors
T — a, where z runs over the set A.

THEOREM. Let A be a closed conver set of positive Lebesgue measure in Ry .
Also let {an} be a bounded sequence of non-zero real numbers, and let {3,} be

an increasing sequence of real numbers with 3, < 1 such that lim G, = 1.
n—oo

Then there exist a sequence {K,} of balls with centres at the origin, a ball
K4 = Bla,r] with a € A, and a sub-sequence {Bn,} of the sequence {B,} so
that for every sequence {z,} of vectors with z,, € K,, there exist vectors

aO(xlam2a'";/BNU/BNz"") € A7

ar(z1,22,.. .5 8Ny, BNy, ---) € A,
k

ap(z1,22,...; 8N, ON,,---) € Ka

such that

1

ﬁN ak(m17m2a--';,BNl)/BNza"') _aO(mlamQa"';/BN1’/BN27"')
k

T =

(75
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and

1
ao(z1,Z2,...; 0Ny, BNgy---) — @ ,3 ak(xl,x2,...;ﬁNl,,BNz,‘..)— a,
k

BN,
k=1,2,....

Proof. Since A is a set of positive measure, there exists a ball Bla,r| =
Ka,a€ A, a#0, such that

[ANKAl > 3K,

Let C = BN K/, where B = A—a and K/, = K4 —a. Then C is a
bounded closed convex set of positive measure containing the origin. Following

Kestelman, we similarly define a sequence of bounded open convex sets
such that

UyDU;DUsD... with [|Un=C,
n=1

|C|V

, where v is a positive number less than 1 such

and Z {|U | — |C|} <

that vV < %

Since {an} is a bounded sequence of real numbers, there exists a positive
number a such that |a,| < a, n=1,2,3,.... Let 6, be the distance between
the sets U, and C, U, being the complement of U, (r = 1,2,3,...). Then

{6+} is a null sequence of positive numbers.

Since lim B, = 1, there exists a sequence {N;} of positive integers with
n—oo

Ni < Ny <---< N, <... such that corresponding to N, we have

. Or
BN, — 1] < m1n<1 ~V 3] ) .

We shall show that
C — oifn,z; +a — Bn,a C U, 1=1,2,....

Here

miEKi=B[0, 26—&]

Now

loiBn, @i — a+ Bn,a| < |ail|Bw,|lzi| + lal(1 — Bn,)

<a26’+|a| —ﬁ+‘5i

oa] 2 T2 T
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Since §; is the distance between C and U/,

6; < |z -yl for every x € C' and every y € U] .

Let x € C'and y; = o8N,z —a+ On,a. Then z — 3, € U; or z —7; € U].
Let z; =z —7; € U;. Then |z — z;| = |y;| < 6;. This leads to a contradiction.

So z —y; ¢ U], and hence = — ¥, € U;. Therefore

C — a;fn,x; +a — Bn,a C U;, i=12,....

Next we show that {K,} is a sequence of balls such that for every sequence
{zn} of vectors with z, € K,,,

-;ﬁNl,,BNz,---)
=BNK)N [(5-C -z + g—a

X(.’L‘l,mz, .

N [(BLNzC — agTy + EIE—a

2

is a set of positive measure.

Now
X(z1,22,-- -3 BN BNy, ... ) N UL
=(BNK,NU;)N (ﬂ 10 a1x1+ﬁNl —a)nﬁjlv—lKg]
n:(ﬁNc a2m2+ﬂ2 )mﬂLNzK;,]m...
=(BNK,4NU)N .ﬂ—m{ (C— a1y, 21 +a— fr,0) N K4 }|
N :ﬂim{(o-azﬂmzz +a - Bn,a) nK;,}] N

It is evident that 1

i

B < % and % > 1, and, on account of (II) and (III),

(BNK4NTh) C (KynUh) € L (k4 non)

and

ﬁ [(C —a;fn,z; +a — ﬂNia) N K.il]
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So,

X(mlaz%"';ﬂNuﬂNz"")ﬂUl

=Lwuno\ | U{L Ao ﬁ((c — aifvzi +a— By,a) N KY) |

i=1

u {%(K;,nUl)\(BannUI)}

_ g
=1kyinm)\

G[{% (K4 NUy) \ﬂ (KAﬁU)}

i=1

u ﬁLNKAnUI)\ﬁ1 (K, N (C — aifiy,i +a — ,BNa))}]

U{%(KAOUl)\(BﬂKA)}]

- [Bxano\ U kanon gt ocanon)]
\ [Q{-;;mﬂv»\gjv—i(m N(C - eubyai +a— Py,a)) )
u{Lyno (Ban)}]

(K, NU;)\ G{——(KAOU)

=1

an

L
1 B
\ ,B—N,(KA n (C — aiﬂN,.xi +a— ﬂNia))}
u{ZEaNT)\ (BnKz)}]

) O(KfqﬂUi)\

v

s

IBL[KAO(U \ (C - a,,BNx,+a——,3Na))}}

u{%(KgnUo\wann}J
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5 [0\ (C - asfiwzi+ 0 = o)) |

i

i=1

u{%(KgnUl) \ (BOKQ)}] .

So,
|X(z1’$2"";ﬂN1’ﬂN2"")l
>|C| - Z [[U] - |C — Bn,cizi + a — Bn,al]
zl'BN
- [Fixanvi -l
- 1
=101 3 [0 - f01] - [ v IKa il - 0]
i=1'BN1 v
2|0l - = Y_[IUil - €] - Ul +[C]
=1
1 — 1 1
|- L 1—1cl = Lo =1+ (1- L)
1= o 2w =101 - il ]+ (1- =)cl
- 1
=lol - % > [wil - lel] - Ze [l - fel] - (= 1)icl
14 =1 12
cl 1ol ol ¢
>io -GG 181G 59
Consequently, the set X (x1,2,...; BN ON,,.-.) is a set of positive measure

for every sequence {z,} of vectors with zn € K.

Hence there are vectors

ao(Z1,T2,- - ; BNy BNyy---) €A,
ak("zlyer";ﬂNluBNz,'") EA’
allz(xl,x%"-;/BNnﬂNz)"')EI(A7 k:1’27

such that
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ao($1,m2,'--;:8N17:3N27"')_a‘

1 1
:ﬂNl [al(m1>x2,'";IBNU/BNz"") _a] — Q1T + ,BNla_a

1 1
= ,BN2 [0,2(-7717:1:2,"';IBNUﬁNzw") _a] —azZz + IBNza—a

1 1
=IBNlai(wlava---;ﬁNU/BNz"")_ ﬂN;a

1 1
:ﬂ_Nza‘g(wlax%'-';ﬁNUﬁNz"") T

ie.
1
IBN ak(xl')w27 e ;;BNUIBNQ, . ) - aO(mI’x27 e ;ﬂNUﬂNza . )
T = k
Qg
and
ao(r17m27'";/BNl’IBN27"')_a= La”:(m].?xz,'”;ﬂN]?ﬁNz"")_ La’
/BNk ﬂNk
k=12,....
This completes the proof. O
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