
Mathematica Slovaca

Ivan Polický
A sufficient condition for Hamiltonian graphs

Mathematica Slovaca, Vol. 45 (1995), No. 2, 115--119

Persistent URL: http://dml.cz/dmlcz/136641

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/136641
http://project.dml.cz


Matherrotica 
Slovaca 

©1995 
•./• i #-«i MW /H«.-»r-\ *• -. - - . - -- .- . M a t h e m a t i c a l I n s t i t u t e 
Math. Slovaca, 45 (1995), No. 2, 115-119 Slovak A c a d e m y of Sciences 

A S U F F I C I E N T CONDITION 
F O R HAMILTONIAN G R A P H S 

IVAN P O L I Č K Y 

(Communicated by Martin Skoviera) 

A B S T R A C T . Le t G be a simple graph of order n , and let (N(u)) deno te 
the subgraph of G induced by the neighbourhood of a ver tex u. For a non-
adjacent pair of vertices u and v we define an invariant co(u, v) as the num­
ber of componen ts of (N(u)) con taining no neighbour of v. We prove that, if 
d(u) + d(v) -f max{w(«, v),ou(v, u)} > n for each pair of nonadjacen t vertices u 
and v, then G is hamil tonian. 

1. I n t r o d u c t i o n 

In this paper, we consider simple graphs with the vertex set V(G) and the 
edge set E(G). The degree of a vertex v is denoted by dc(v). The neighbour­
hood NG(V) of v is [x : xv G E(G)}. For U C V(G) we denote the graph 
induced by U as (U). 

Let G be a graph, and let u, v be two nonadjacent vertices. Then UOG(U,V) 
will denote the number of components of the graph (NG(U)) which contain no 
vertex of NG(V) . 

To simplify the text, we usually omit the subscripts in symbols dc(v), NG(V) 
and LUG(U, V) if there is no ambiguity. 

A graph is hamiltonian if it contains a cycle through all its vertices. Such a 
cycle is called a hamiltonian cycle. 

In 1960, O r e proved this sufficient condition for hamiltonian graphs: 

THEOREM 1. ([5]) If G is a graph of order n such that d(u) + d(v) > n for 
every pair of nonadjacent vertices u, v G V(G). then G is hamiltonian. 

A s r a t y a n and K h a c h a t r y a n proved a generalization of this theo­
rem based on a property of the neighbourhoods of nonadjacent vertices u and 
v. They considered the subgraph G2(u) of a graph G induced by those vertices 
at distance at most 2 from u. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 05C45. 
K e y w o r d s : Neighbourhood of a vertex, Induced subgraph, Hamiltonicity. 
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THEOREM 2. ([1]) Let G be a graph of order n. Suppose that whenever 

dc(u) < (n — l)/2 and v is a vertex at distance 2 from u, dc(u) + da2^(v) > 

\V(G2(u))\; then G is hamiltonian. 

T i a n gave in [6] a sufficient condition using the cardinalities of neigh­
bourhood unions of independent sets of vertices. This condition generalized the 
condition of O r e as well as the condition of F r a i s s e (see [3]) and the 
condition o f F a u d r e e , G o u l d , J a c o b s o n , and S c h e 1 p (see [2]). 

The degree d(S) of a set S is defined to be I | J N(v) \ . T i a n proved the 

following: vЄS 

THEOREM 3. ([6]) Let G be a graph of order n and connectivity k. Sup­
pose that there exists some t, t < k, such that for every independent set 

*+ i 
S = {^1,^2, • • • >^+i} of cardinality t + 1 we have ^ d(S — {vi}) > t(n — 1); 

then G is hamiltonian. 

2. M a i n resu l t 

THEOREM 4. Let G be a graph of order n. If d(u) + d(v) + max{cO(i^, L>), 

u(v,u)} > n for each pair of nonadjacent vertices u and v of G. then G is 

hamiltonian. 

The proof of Theorem 4 is based on the following two lemmas. 

LEMMA 1. Let G be a graph with a hamiltonian path P = v^2 . . . vn, where 
v1 and vn are nonadjacent vertices such that d(v^ + d(vn) + max{cO(i>i, vn), 
^ ( ^ n 5 ^ i ) } > ^- Then there exists an integer m (1 < m < n — 1) such that 
v1vm+1,vmvn G E(G). 

P r o o f . We prove the case max{cO(^i,L'n), uj(vrt)v1)} = cO(fi, vn). 

Suppose the contrary. Then vn is not adjacent to any vertex of the set A de­
fined as {vm : v1vmjrl^E(G)}. Let B be {vm : v1vmeE(G), v1vm+1^E(G), 
vmvn ^ E(G)}. Note that the last condition says vn is not adjacent to any ver­
tex contained in B. These sets are obviously disjoint, and now we determine 
their cardinalities to obtain an upper bound for the degree of vn. 

The set A has as many vertices as the neighbourhood of v1, therefore \A\ — 
d(v\). To show that \B\ > w(v1,vn), consider the components of (N(v{)) con­
taining no neighbour of vn. Let Ck, 1 < k < oj(v1,vn), be one of them. Choose 
a vertex from V(C/c), the closest to vn along the path P , and denote its sub­
script by i. The vertex vi+\ cannot be adjacent to v1; otherwise it would belong 
to the same component Ck of (iV(i;i)), and V{ would not be the closest to vn 

along P. Clearly, v\Vi G E(G) and ViVn £ E(G), therefore vi belongs to B. 
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Since we can choose a vertex contained in B from each such component, we 
have \B\ > uo(v\,vn). Then 

d(vn) < \V(G)\ - | K } | - \A\ - \B\ < n - 1 - d(v,) - u(vl9vn) 

= n - l -d(vi) -mdix{uj(vuvn), ^(v^vx)} , 

which is a contradiction. 

To prove the other case, max{cO(L'i,L'n), w(vn,vi)} = <jj(vn,vi), only relabel 
the vertices of P in reverse order and use the same argument. • 

LEMMA 2. Let u, v be a pair of nonadjacent vertices of a graph G. Let H be 
the graph induced by a set S of vertices satisfying {u} U NG(u) U {v} U NG(v) C 
S C V(G). Then uG(u, v) = UOH(V, V) , coG(v, u) = U?H(V, U) . 

P r o o f . The neighbourhoods of the vertex u are the same in both graphs 
G and H = (S) for any available set S. Since so are the neighbourhoods of L>, 
the numbers u(u,v) (and u(v,u) too) must be identical in both G and H. • 

P r o o f of T h e o r e m 4. First of all, we show that a graph satisfying 
the hypothesis of the theorem is connected. 

Let G be disconnected, and let G\ be a component of G. Denote G2 = 
G-V(G1)1 k = | F ( G i ) | , / = \V(G2)\. Clearly, k + l = n. 

Let u and v be vertices of maximum degree in G\ and G2, respectively. 
Obviously, mi = d(u) < k — 1 and m2 = d(v) < / — 1 . Now we find upper bounds 
for the numbers ujG(x,y) and uG(y,x), where x is an arbitrary neighbour of 
u, and y is an arbitrary neighbour of v. 

Since d(u) = mi, there exist k — mi — 1 vertices of G± that are not adja­
cent to the vertex u. Then the number of components of (NG(x)) is at most 
(k - mi - 1) + 1 = k - m i . Therefore uG(x, y) < k — rrti. Similarly, u)G(y, x) < 
I -m2. 

Obviously, d(x) < mi and d(y) < m2. Then 

d(x) + d(y) + ma,x{ujG(x,y), u>G(y,x)} < mi + m 2 + max{fc-mi, /—m2} . 

Since k — mx > 1 and / — m2 > 1, we have max{k—mx, /—m2} < (k — mi) + 
(/ — m 2 ) , and so 

d(x) + d(y) + m&x{uG(x,y), uG(y,x)} < k + l = n, 

which is a contradiction. 
We have proved that G is connected. Now assume that G is nonhamiltonian. 

Let P = v\v2 ... Vk be a longest path in G. Consider the graph H = (V(P)). 
Clearly, H cannot be hamiltonian, because for k = n we have H = G and 

for k < n, from the hamiltonicity of H and the connectedness of G, we would 
obtain a contradiction to the maximality of the path P. 
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So vi and Vk are nonadjacent. Since P is a longest path in G, neither vi 
nor Vk can be adjacent in G to a vertex not in V(H). Obviously, dH(v\) = 
dC(^i) , dn(vk) = dG(vk) and, from Lemma 2, u>H(vi,Vk) = CJGC^IJ^fc) an<^ 
^H(^k, vi) = ^C(^k, v i ) . Then 

^H(^i) + d H K ) + m ax {u ; / / ( v 1 , ^ ) , u;# (L>fc,L>i)} 

= <fcO>i) + d G K ) +max{a;G;(ui,T;fc), cjG(vfc,vi)} > n > k. 

This enables us to use Lemma 1 with the hamiltonian path P in the graph H. 
We obtain that there exists some m (1 <m < k-1) such that v iv m +i , v^Vk G 
£"(22). But then v ^ • • • ^m^k^k-i • • • vm+i is a hamiltonian cycle in 22, which 
is a contradiction. • 

Finally we show that there exist infinitely many hamiltonian graphs satisfying 
neither the assumption of Theorem 2 nor those of Theorem 3, whose hamiltonic-
ity can be proved by means of Theorem 4. Let G be the union of two graphs 
22i U2I2 , where 22i = Kn^n — u±vi, n > 3, with the vertex sets {i*i, 1x2, • • •, un}, 
{v 1, L>2,..., vn}, and 222 is an arbitrary graph with the vertex set {u2, • • •, un}. 
Then the vertices v\, V2 are at distance 2 in G , a n d dG(v\) = n—1 < (2n—1)/2, 
but the degree sum condition in Theorem 2 does not hold. Neither the theorem of 
T i a n applies to G because, for each t < n — 1, the set S = {^1,^2, • • •, ^+1} 
does not satisfy the inequality in the theorem. However, ooG(ui,vi) = n — 1; 
UJG(VJ,L>i) = 1 for j > 1 and dG(uj) + UOG(UJ,U\) > n + 1 in both cases, 
dn2(

uj) = 0 and dn2(
uj) > 0, for j > 1. This means the condition in Theo­

rem 4 holds for each pair of nonadjacent vertices of G, and this theorem can be 
used to determine that G is hamiltonian. 
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