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DIOPHANTINE INEQUALITIES IN 

IMAGINARY QUADRATIC NUMBER FIELDS 

ROBERT F. TICHY 

(Communicated by Stanislav Jakubec) 

A B S T R A C T . Some e lementary diophantine approximation results in imaginary 
quadrat ic number fields are proved. This generalizes results of J . F . K o k s m a , 
K . M a h l e r , and E . H l a w k a . 

1. In t roduc t ion 

J . F . K o k s m a [2] and K . M a h l e r [4] have proved some diophantine ap­
proximation results for square roots of real positive integers. In [1] E . H 1 a w k a 
extended these results to Gaussian integers. For instance, one theorem says that 
a complex rational number rj £ Q(i) can be approximated by square roots 
y/z of Gaussian integers z £ Z(i) very badly, or rj — y/z £ Z(i). In the fol­
lowing we prove a generalization of this property to nth roots of numbers in 
an imaginary quadratic number field Q ( i V a ) . We use the notation y/z for 

the principle value of the nth root, i.e. y/z = y/rlcos — + i sin — j with 

ip = a rg2 , r = \z\ and — 7r < argz < IT. Furthermore for every rj £ C we 

define ||r/|| = min{|?/ — z\ : z £ Z ( i \ / c i ) } , where Z(\ \/d) denotes the ring of 

integers in Q(i \/d.) . 

2. A n e lementary lower b o u n d 

THEOREM 1. Let rj £ Q(i y/d) , and n > 2 be a positive integer. Then there 

exists a positive constant C = C(n,d,rj) such that either rj - y/z e Z{\y/d) or 

C 

vЯ >-fe 

AIMS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 11J17. 
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for all z£l(iy/d) \ {0}. 

P r o o f . Trivially, the result is true if 77 — tfz G Z(iy/d) or if there exists a 

constant C\ > 0 such that ||/7— yfz || > C\ for all z G Z(i yd) with the exception 

of at most finitely many z. Hence we can assume that there is a sequence {zi} 

in Z ( i V a ) ( |zi | —» 00) with the property: 

For every e > 0 there exists a Z > 1 and a sequence â  G Z(i y/d) such that 

for all Zi with |z^| > Z 

0 < | I 7 - ^/£i + :ri| <e. (1) 

Let £ denote a primitive n th root of unity. We will show for k = 1 , . . . , n — 1 

?7 + z — £ f e ^ ^ 0 . (2) 

We suppose that 77 + Xi — £k ^fzl = 0 for some k G { 1 , . . . , n — 1}. Hence we 
obtain from (1) 

|1 ~Ck\\v + Xi\ < e. 

Setting 77 = — with p, g G Z(iy/d) and (p, g) = 1, we derive 

IP + ^ i l < jY~T7| ' (3) 

Choosing £ = , .— yields p + qxi = 0, since p, g, x^ G Z(i y/d). Thus 77 + Xi 

= 0, and from (1) we have 

l ^ l < i V f < 1 ' <4> 
z|g| 

a contradiction to \zi\ > 1. Hence (2) is proved. 

Now we set again 77 = — with p, g G 7s(iy/d) and (p, g) = 1. We obtain 

n - l 

krn^+x*-^^)H(p+^)n-^?ni- (5) 
k=o 

Since cO = (p + g;r7;)
n ~ z^gn is a non-zero integer in the quadratic number field 

Q(iy/d) , we have 

M >CQ = y/d+l. (6) 
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Furthermore we get 

\V - €k yfii + *i\ < \ri + Xi- V ^ | + | v ^ l l 1 ~ f*| <£+ v ^ N | ! - ^ | - (7) 

Combining (5), (6) and (7) yields 

Co . 1 - ex 
\n + Xi- ýzi | > — > 

kl" П (e+ VNI--£fcl) \я\пЫ~^ П |i-£fcl ,ол 
fc=i fc=i (8) 

l - є i 
I I I I П " 1 ' 

| f/ | n n|2:ѓ | n 

n-1 
where e\ is a suitable positive number. (Note that the formula Ĵ [ ( l — ^k) 

fc=i 

= n has been used here.) Choosing C(n) d, 77) = min< C2, • , n

 1 > , where 

I I9i n J 

\TJ- ^/z + x\ > C2 

for all z not contained in the sequence {zi} with \zi\ > Z , proves the theorem. 

3. C o n c l u d i n g remarks 

We establish a converse inequality to Theorem 1 for square roots. We need 
the following lemma (cf. [3]). 

LEMMA 1. Let Q(\Vd) be an imaginary quadratic field and 9 ^ Q(i\/d) . 

Then there exist infinitely many pairs (p,q) of integers in Q( i\ ja) with q 7-= 0 

and \q\ ~+ oc such that 

e-P 
1 

for some positive constant ci = c.\ (d) . 

< - - - -

From this lemma one can deduce the following inhomogeneous diophantine 
approximation result by standard arguments: 

PROPOSITION 1. Let Q(\yfd) be an imaginary quadratic field and 9 £ 

Q ( i v d ) , 7/ arbitrary. Then there exist infinitely many pairs (x,y) of integers 

in Q(i Vd) with x / O , Rex > 0, Imx > 0. and \x\ —+ oc such that 

16x — y — 771 < —— 
\x\ 
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for some positive constant C2 = 02(d). 

P r o o f . Set 6 = — H -5- with p and r/ relatively prime and with \6\ < ci 

in Lemma 1 and choose q\ E Z(i vrf) such that 

b r a - g i l < 
W + i 

(9) 

Set £ = (1 + i) 5 a n d let |xo, 2/01 b e a solution of the diophantine equation 
_ 

px — qy — q\. Then all solutions are of the form x = XQ + qX, y = yo + pX with 

A G Z ( i v
/ c i ) . 

Take an arbitrary <5 > 0, and choose A such that 

l ( x 0 - É ( l + ő ) | g | ) + A < 
V c í + 1 

(Ю) 

With x = XQ + qX we obtain 

| R e ( x - Ш + ,Ş)|g|)|<УД + ï 
[91 » 

| l m ( x - í ( l + í ) | g | ) | < - ^ - - M 

T l : 

Thus we get 0 < \q\ ^ d + 1 6 < Rex < |g| ( (1+6) R e £ + * d + l J and similarly 

for the imaginary parts. From this we immediately derive 

\q\\6\<\x\<\q\^^±l(2 + 8). T2Ì 

Hence we have 

\6x — y — rj\ = px ~qy 
+ r] 

I - m + бx_ 
q2 

, Vd+ 1 1 , |x| 
< —т + c i — 

2 !</! 9 <T 

and inserting (12) yields Proposition 1. 

Using Proposition 1 and following the lines of H 1 a w k a [1; Satz 1], one can 
show 

PROPOSITION 2. Let Q( i\/d) be an imaginary quadraMc number field, and 

9 tf: Q ( i V a ) . Then there exist infinitely many integers z of Q ( i V a ) with 

Kez > 0, I m z > 0. |z | —> oc such that 

| | 0 - V ^ | | < T T 

/or some positive constant c^ = C3(d). 
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