Mathematica Slovaca

Oto Strauch
A new moment problem of distribution functions in the unit interval

Mathematica Slovaca, Vol. 44 (1994), No. 2, 171--211

Persistent URL: http://dml.cz/dmlcz/136608

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/136608
http://project.dml.cz

Mathematica
Slovaca

©1994
Mathematical Institute

Math. Slovaca, 44 (1994), No. 2, 171-211 Slovak Academy of Scicnces

Dedicated to Academician Stefan Schwarz
on the occasion of his 80th birthday

A NEW MOMENT PROBLEM
OF DISTRIBUTION FUNCTIONS
IN THE UNIT INTERVAL'

OTO STRAUCH ?
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ABSTRACT. Given a triple of numbers X1, X2, X3 € [0, 1], one may ask under
which circumstances it is possible to determine a distribution function

g:[0,1] — [0,1] such that

1 1 1
X = /g(x) dz, X2 = /ar;g(;c) dz, X3 = /gz(w) dz .
0 0 0

Necessary and sufficient conditions for existence and uniqueness are established.
As an application we find conditions that a given sequence have a linear or one-

step limiting distribution.

1. Introduction

The purpose of this paper is to illustrate an application of two abstract
methods, called Method A and Method B in the sequel, deriving necessary and
suflicient conditions that a sequence from the unit interval have a linear or
one-step limiting distribution. Method A can be used to find a new limit law of
sequences, and Method B to determine a solution of a suitable moment problem.

ADMNS Subject Classification (1991): Primary 11K06. Secondary 60E05.

Key words: Sequences, Limiting distribution, Moment problem.

I Parts of this paper were delivered at the 9th Czechoslovak Colloquium on Number Theory
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Method A. Applying a general criterion for limit law of sequences to solutions
ol'a moment problem with finitely many solutions, we can select a corresponding
solution, which leads to a special law. The idea is to use the fact [7; Satz 5, that
if a sequence has more than one distribution function, then it has infinitely many
(different in a common point of continuity).

Method B. In many cases we can make the solution of a given moment prob-
lem dependent on the nature of points of a body “corresponding” to the moment
problem. Defining an operation on the set of points, it can be proved that ev-
ery interior point corresponds to infinitely many, and every boundary point to
finitely many solutions of the given moment problem. To do this. a related op-
eration on the set of neighbourhoods of points can be used.

We present here two results concerning distribution functions. We introduce
a new type of criterion (Theorem 3), which characterizes sequences having a
limit law from a class of distribution functions (linear and one-step). This result
can be extended to a large class possessing some polynomial functions, provided
that we' use a corresponding moment problem in a higher dimension.

The second result given here concerns the solutions of our three-dimensional
moment problem. For a classical moment problem [5; p. vii] the solution may
be unique, or there may be more than one solution in which case there are. of
necessity, infinitely many solutions. It is interesting to note that (Theorem 2)
our moment problem has, for some values, exactly two different solutions.

The paper is organized as follows. In Section 2 we give the basic definitions.
In Section 3 we state our criterion and moment problem. As a consequence.
we obtain our limit law for sequences. In Section 4 we prove the main result:
the solution of our moment problem. The proof is elementary, but atyvpical. An
explicit construction of the solution is given.

2. Basic definitions and notations

A distribution function in [0,1] is any g: [0, 1] — [0,1] such that
(i) 9(0)=0, g(1) =1,
(ii) ¢ is nondecreasing,
(iii) g is left continuous on (0,1).
In the following, let
w = (x,)72, be a sequence of real numbers from the interval [0,1]. and
wN = (;17.,,,);7’:1 be the initial segment formed by the first N terms of «'.

For a given wy , the distribution function Fy(z) is

_ #{n <N T, <z}

FN(.T,') N

forall ze€[0,1) and Fy(1)=1.
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If there exists an increasing sequence of natural numbers N;, Ny,... such
that

lim Fy;(z) = g(z)
j—00

for every continuity point z of a given distribution function ¢, then ¢ is called
a distribution function of w.

The sequence w is said to have a limiting distribution g: [0,1] — [0, 1] if the
limiting relation

Jim_ Fy(z) = g(2)

holds at every point x at which g(z) is continuous.

Note that throughout this paper we shall always denote both the row vector
X
(X,X2,X3) and the column vector <X2> by the same letter X .
X3

Define, for every nondecreasing ¢: [0,1] — [0,1], the following operator

Flg) = jg(w) dz, /lxg(w) dz, /192(98) dz

0

For F, we introduce its body
Q= {F(g); 9:[0,1] > [0,1], g nondecreasing} ,

and 0Q denote the boundary of Q.

The equation X = F(g) is referred to as a moment problem.

uz

Figure 1.

1) Sometimes g is referred to as the limit law, and is otherwise known as the asymptotic
distribution function of w,see Schoenberg [4]. Our notation is different from that of
the book [3; p. 53].
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Let (see Fig. 1) g(u1,vy,us,ve) denote the distribution function h(x) defined
by

0 for 0 <z <y,
U2 — Uy U2 — U
= == r+4u; —v —=  for v < < vy,
h(I) vy — U1 T ! Vg — VU1 ! =2 (1)
1 for vo <z <1.

(in any case h(1) =1). Then

1— w2+ %(vz —v1)(u1 + uz)
f(;](ul, ’Ul,UQ,UQ)) = % - %L%(B —uy — 2ug) — évf(Zul +uy) — él'll'g('llg —uy)

1—wvy + %(Uz —v1)(urug + u? + u3)

For varying parameters u;, vy, us, and vs, the point f(g(ul. UpL oL )
(= F(g)) describes surfaces II; —IIg or the curve II; specified by the following
list of formulas:

le{]:(g ; 0< v
I, = {F(
(
(

IN

vy <1, up =0, up=1},
g); vi=0, vo=1, 0<u; <uy <1},
Iy =\ F

)

)

g); v1=0, 0<v <1, up=1, 0<u <1},

Iy ={F(g); 0<v; <1, vo=1, uy =0, 0<uy <1},
)

Hr,:{f(g;111:0,Ogvgél,Ogulzu231’172(1v“2)>%}. @)
II():{f(g)v‘()Svlgla U2:17 OSU1:UQ517 '1[1(1—()1)>_21_}
7 =< F(g); vi =0 l<1)2<1 u1:712=1—i
, T2 ' 2'(12
—F(g); 0<vy <t =1, p=up= 21—\,
o 2’ ’ 201 — 1)

We shall specify the following eight types of distribution functions in this pa-
per: Let uy, v, us, and vy be fixed parameters which satisfy the inequalities
given in the above definition of II;. Then the distribution function
g(uy, vy, us,v2) is said to be of type ¢g(¥). The graphs? of ¢, i = 1..... 6.
have a form depicted in Fig. 2 and 3. In Fig. 3 the areas of rectangles bounded

2) We write ¢{) instead of g(u1,v1,uz,v2) .
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by the graphs of ¢(® and ¢(® are > 1/2. We write ¢(® = ¢(") and ¢(®) = ¢(* ")
in the case = 1/2.

Note that a given distribution function ¢ can sometimes belong to various
types.

Y

g g® g

gV

Figure 2.

g® g(®

Figure 3.

Eliminating the parameters uy, vy, u2, vy, we arrive at the following canon-
ical expressions:

g =g(0, (1= X1)=3(Xy — X3), 1, (1 — X3) + 3(X;s — X3)),

g =y (X1 —/3(X3 — X2),0, X; 4+ 1/3(X3 — X2), 1) ,

g(s)zg(l_guxg—le 01 4 (=X )

27 1-X1 U U301+ X;-2X)
44X 38X, 1)

(3)

3
) — g (X=X o X=X (1-X,)?
! I X 1-X; 1+ X5 —-2X,

1-—
2
©) _ o (X A Xy
g _g(Xlal X3 Xl 1)

1-2X;,01— 2X3,4X)
3

(7*) _ 1 )
g —g(2X3,1 e 2Xa 1),
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1
2
max(%Xl — l 2X1> < X3 < X] , 0< .\'1 < l}

X2 <X§ <Illln(§X12,74X]2_72§‘Yl+%)’ ()SAYI S 1}
1-X,)*
H3:{(leX2~X'3)7 XQZ%_%(I'E‘X 1;)()
5 — 1
42 2 1 4 1
§)&12__3X1+:—<X3<§X1*§~ %S‘HSI}
3

3
Ty = ¢ (X, Xo, Xy): Xy L1 (1= X))
{( 1 2 3)7 2 2 2(1+X3_2Y1)
X2< X <X, 0<A1<{}
I X le 2 -
6 ( 17X2aX’3) XZ—X1—§'X—, Xl \X3<X1 = < ‘{1<]
3

H:(ll_l ,).l ,< L
7 {2’2 6%, Y3)i g < X<y

3. The main results

We now state our main theorems. A starting point of this paper is the fol-
lowing criterion.

THEOREM 1. Let g: [0,1] — [0,1] be a given distribution function. A sequence
w=(z,)>, C [() 1] has the limiting distribution g if and only if

(1) hm N Z Ty = fT dg(z

n=1
N 11
(i)  lim W S | — | = fflév —y| dg(z) dg(y).
m,n=1 00
(ii1) ngréo 71\7 Zl J g(x) dz = f(fq(f) dt) dg(x).
n= 0 0 0
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Applying this to the moment problem, we derive a criterion in Theorem 3.

THEOREM 2. For the moment problem X = F(g), to have only a finite num-
ber of solutions in distribution functions g it is necessary and sufficient that
X € 09, where 02 denotes the boundary of 0. We can express the boundary

) as
o0 = U I, .
1<i<T

In addition, for X € 1I;, © = 1,2,...,6, the moment problem X = F(g) is
uniquely solvable as g = ¢\, and for X € Il; has precisely two solutions of
types g\ and g(7*).

THEOREM 3. Let w = (x,)22, C [0,1] be a sequence with the limits

X =1- lim

N
G S U TR U N

n=1
1 ZN 1 1 ZN
‘X':{ =1 - /\,]I_I.I\l ‘ N Ty — 5 ngIéo m 'xm - :I:nl .
n=1 m,n=1

If X =(X,X2,X3)e U I, then the sequence w has a limit law. These

1<i<t
limiting distributions are given by formulae (3). Moreover, if X € II;, i =
I, 6. then w has a limiting distribution g, and if X € ll7, then w has a

limiting distribution either g™ or ¢\7") | depending on whether

N—oc

N Tn
) 1
lim i Z /9(7)(1,) dt = X1 — X3

n=1 '0
ol

) N T
1 ¢ .
. (7*) 1 v
S Zﬂ ./g (1) di =X, = X

0

Furthermore, X € |J 1l is testable by (4).
1<i<7

We begin proving Theorems 1 and 3, and then we shall turn to the proof of
Theorem 2, since that proof is rather long and difficult, although of an elementary

nature.
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Proof of Theorem 1. The necessity of (i)—(iil) can be verified using
the Helly-Bray theorem. In order to show the sufficiency of (i) - (iii). we apply in
1 ‘
the usual way the notion of L?-discrepancy f(FN(J) — g(.qrr))2 dx of the initial
0

segment wy with regard to g.

Integration by parts gives

1 1 11
/F]%,(r) de=1- /ar dFy(x) — %//}:1# —y| dFy(x)dF\(y).
0 0

0 0

/1 Fn(z)g(x) dz = /19(7") dz — /1</Ig(t) dt> dFx ().

0 0 0 0

It follows that the L?-discrepancy can be written as

1 1 N T

1
/( ﬂN(.T/)_(](CC))2dI:1+/(}2 dr—2/q', (11+—Z/g(f)df
0 0 n=1
N

N
Z N’ Z [y, =

m.n=1

(D)
Limiting (5) as N — oo, and applying (i) - (iii) and the integral identities

//}T —y| dg(x)dg(y) = 2/(/.(1 (lf) dg(x).
00
—2(/9 dx—/‘“)(.')d.z'

4]

to the right, we find that Nlim Fy(z) = g(x) for all the points of
—0C
continuity of g. 0

Proof of Theorem 3. The proof can be developed along the lines of
Method A. According to (6) and applying the rule of integration by parts. it
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can be shown that the moment problem X = F(g) can be rewritten as

1
1-X, = /:r dg(z),

1
1-2X, = /:1;2 dg(z), (7)

—

0
1.

2(X; — X3) = //»r —yl| dg(z) dg(y) -
00

Under the assumption of the existence of limits X7, Xa, and X3, all distribution
functions of w belong to the solution of (7). Since, by hypothesis, X € JQ. we
obtain from Theorem 2 that the moment problem (7) has only a finite nuunber
of solutions in ¢g. Obviously, the sequence w has a limit law. By Theorem 1, the
problem of determining a distribution function that is the limiting distribution
of a given sequence w is reduced to the problem of calculating (1) (iii) for the
solutions of (7). Since (i) and (ii) are satisfied automatically, we need only verify
condition (iii). 0O

4. Proof of Theorem 2

The technique used here to solve our moment problem in Theorem 2 is dif-
ferent from the one used in [1], [5]. We shall work with neighbourhoods of points
in the related body €1 defined in Section 2. For the sake of more clarity, we give
an outline of the proof. We shall prove the theorem in six paragraphs.

In §1 we collected a couple of elementary facts about the body €2 needed for
the proof. We mention (Lemma 1) two affine transformations ® and A, which
we shall define a little later, leaving the body  fixed; (Lemma 2) € is convex
in the directions of co-ordinate axes X5 and X3.%) We shall find (Lemma 3)
projections of the body € to the planes X; x X3 and X x X», and (Lemma 1)
two curve-edges of 1.

The principal technical result is given in §2, which establishes (Lemma 5) the
closedness of 2 under a linear law of composition as follows:

\ A 0) N H . ;

For any finite set of elements X ..., X" in Q. every sum
N
Sa; + BiXY  with vectors a; = a(ui,vi,uiy1,vig1) and  matrices
1==0

) i.e. contains the whole line-segment X + (1 —t)Y, 0 < ¢ <1 when it contains X, V'

and X1 =Y, Xa=Y3 0or X; =Y, Xo=Y2.
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B = B(ui,vi,wit1,viy1) (where u;, v;, w1, viy1 are parameters: « and B
will be defined later) also belongs to €. and each point X € Q. for

N
every N, can be decomposed as X = 3" a; + B; X" into corresponding terms
=0

X0 XN eq.

As a consequence, the following is proved (Lemma 6): If X € int 2. then the
moment problem X = F(g) has infinitely many solutions.

Further, with the help of this decomposition (as w;, vi. u;q;. viy; vary
continuously), we find new surfaces and bodies which are lying in Q and con-
tain X . In this way, we shall form in §3 planar, half-spherical or spherical
neighbourhoods of X in Q.

In §4 we make a general observation about neighbourhoods in €. We shall
N

discuss the transformation O = > a,; + B;O; mapping a sequence O.. ... Ox
i=0

of neighbourhoods O; of X() into the neighbourhood O of X . and its limi-
tation which maps neighbourhoods O; of X(()i), where X0 — ,\'((‘]”. into the
reighbourhood O of X . But every point X of the boundary 9 of 2 would
not possess a spherical neighbourhood in €, and hence in this wayv we have

N , ,
a link between the decomposition X = Y a; + B; X | limits X - X"

=0
1=0

reighbourhoods O; of X(()i) ,and the X € 0Q.

In §5 we shall derive that (Lemma 15) every X € Q can be decomposed

N . .
as X = Y a; + B;X" where X() — X((,"), and X(g'). for specified 7. as-
i=0
sumes values from a set of five points. In accordance with this decomposition.
the boundary 99 can be expressed (Lemma 16) as the F-image of linear and
step distribution functions. In order to remove the restriction on nonsingular
functions, we shall apply the theory of Dini derivatives.

In §6 we complete the proof of Theorem 2 by reduction to the case that Jf)
is the union of F -images of functions of types from Fig. 2 and 3. It remains then
to show that the set of solutions of the moment problem X = F(g). X € 09Q.
is finite.

Let us turn to the details.
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§1. The basic property.

LEMMA 1. Q and OS2 are tnvariant with respect to the transformation group

{Identity, ®,A,® o A},

where

O(Xy, X, X3) = (1 - X, Xo— X, + %, 14+ X3 — 2X1)7
MY X0, Xg) = (1- X, o4, 1-2X,),

Proof. For any monotone g: [0,1] — [0,1], let g: [0,1] — [0, 1] be defined
as

g(z) =A{y € [0,1]; g(y) <=z}),

where A is the Lebesgue measure.
Given F(g) = X, we can compute F(g(z)) = A(X) by using

1 1 1 1
[ = [o)ae. [ aie) = [ ar
0 0 0 0
1 1
//II-UI dg(z)dg(y // lg(x)— q(y)IdrduA4/m ) dz—2 /1( z) dr.
0 0 0 0 0 0

Since the map A is afine and the matrix of A is unimodular, it is obvious that
A(R2) = Q and A(9Q2) = 0. Using g(z) = 1—g(1—=x), we can obtain analogous
results for & . O
LEMMA 2. Any straight line parallel to the Xo or X3 axis mects Q0 al a
coament. )

segment.

Proof. Assuming X; =Y, and Xy, =Y, for X = F(g) and Y = F(f),
where f,g: [0, 1] — [0,1] are nondecreasing, we arrive at

tX+(1-1)Y = (Yl,Xg,/lfg +(1—=t)f*(z)) d )
0

" A can be considered as a transformation g — §. Similarly for & .
») Lemma 2 is referred to as a convexity of { in the X2 and X3 directions.
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Since

1

/(tg(m) +(1=t)f(x) dz < j + (1 =1)f*(x)) do

0
1
< max /qz(x) da, /fz(r) dy
0 0

from continuity one obtains the existence of ¢y € [0, 1] so that

1 1
/(t(,g(a:) + (1~ tu)f(l'))Q do = /(“]2(1) + (1~ f)fz('")) dzr.
0 0
Hence the F-image for nondecreasing h(x) = tog(z) + (1 — to) f(v) takes the

form F(h)=tX + (1 -1t)Y.
The rest follows from the properties of the transformation A. O

LEMMA 3. The orthogonal projections of the body €1 onto the X| x Xy and
X x X3 -planes are equal to

{(X1,X3); X7 <Xs3<X,, 0<X,<1}

and

{(Xl,-X2)§ %X1SX2§X1* ;X]), 0§X1§1}-

respectively.

Proof. Here we consider wy as an N -dimensional vector wy = (ry....
,xyn), where z1,...,2n € [0,1] are ordered according to their magnitude.
thatis 0 < axy <xzy <--- <axy <1.Defining Fy and F asin the introduction.

it is not difficult to verify that

N N
1

F(Fyn) = <1 - % Zq:m 5N Z to L= 5 Z(?n — 1).1',1>.

n=1 n=1 n=1

Since there is no risk of confusion, we shall write F(wy) instead of F(Fv).
For fixed N, consider the set Ay of all wy and the set Qy of all F-images
of wy . Representing 2 and Ay as

Q=closure | J Qu,
1<N<>
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Ay = convex hull{w%)—((),...,O, 1,...,1); 77—(),1,.4.,1\/},
—— N—_——

i times N—i times

we find that

projection Q = closure U projection F (C()nvex hull {w(\'/) ;e =0,1,..., N})
1<N<oo

Since X' = F(wy) consists of linear X; and X3 over wy, and

s (5 (4))

for wy = vuA(\) . then the orthogonal projection of 2 onto the plane X| x X3 is

. N2
closure U convex hull{ <# (—JZ\—,) ); i—O,l,...,N}.

I<N<ox

Finallv. applying transformation A to the above projection, we find the orthog-
onal projection of Q onto X;| x X. O

LEMMA 4. The following curves

{31 Xe,X0): X0 = 2X1(2- X)), Xy = X1, 0< X, <1},

{(V1 X0 X)X = 4X0, Xy = X7, 0< X, <1},
intersect in the points (0,0,0) and (1, %, 1), and they belong to 2. Morcover,
their orthogonal projections coincide with the boundary of the above projections
of Q.9
L
Proof. Putting X = F(g) and assuming that X3 = X, i.e. [g¢%(x) dur
0
k.
= [g(r) da, we have g(x) =0 or 1 for all z € [0,1]; ¢ is a one-jump function.
0
and then we obtain X, = %X1(2 — X ). Applying the transformation A to ¢.

we obtain a constant function ¢, and then we have X, = %Xl and X, = Xf
for X = F(g). O

N

1=0 - gz :

Let us now introduce a new operation on the sequence (X(’))

6) The projections show that the curves are lying in the boundary of 2. Furthermore,
cach planar section of Q by a plane parallel to Xo x X3 and passing through a point from
the curves is lving in a quarter-plane. Thus it seems natural to call these curves curve-edges
of Q.
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§2. The law of composition.

N+1 . S .
Let ((vi,ui)) o, be a finite sequence of points in [0, 1]?. Suppose that

1=

(i) (QJO,U()) = (0,0), (7)N+-17UN+1) = (17 1)3
(i) v; <vipq and w; <wiyyp forall i =0,1,...,N.

Defining a; and B; as
(Vig1—v; ),
— — YT PO 1, 2
ai = a(ui, vi,wiy1,Vig1) = [ (Vig1—vi)ugv; + Q(Uy;-H—Ui) U

(Vig1—v;)u?

B; = B(u;, vi, Uiy1,Vit1)

(ui+1—ui)(vi+1—vi) 0 0
= | vi(wip1—u)(Vir1=vi)  (wipr—ui)(vip1—vi)? 0
2u; (i1 —ui) (Vig1—vi) 0 (wiv1—ui)*(vipe1—1,)

we form the sum

N
X:Z(Li‘i-BiX(i). ((\)

=0

N+1 . .
LEMMA 5. Let ((v,;,u,;))i:(; be a given sequence which satisfies the aborc
assumptions (i) and (ii). Then, for ecvery (X("")],:O C Q and X determined
by (8), we have X € Q, and vice versa: For any X € Q (ie. X = F(g).
. N . ..
g -nondecreasing) a sequence (X(”’)i:() C Q, which satisfies (8). can be found.
In the last assertion we need to add the following assumption

(i) g(v; = 0) <u; < g(v;+0) forall t=1,...,N.

Proof. We shall first demonstrate the second statement of the lemma.

We have X = F(g), where g is nondecreasing and gl(,l,_ i) (vivy4y)
Ty Vit

[ui,ui1] denotes a restriction of g. Then by elementary reasoning one shows

that the graph of g’@' ) has the linear expansion on [0, 1]? given by

77/“7'*1—1
g(x(vig1 — vi) +vi) u; o
: — - if w; < wupyy,
gi(z) = Ujp1 — U Wit1 — Uj (9)
0 if Wy = Ujqq .

for all « € (0,1) (see Fig. 4).
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Uip1

u;

0 v

Figure 4.

Putting X = F(g:) and assuming v; < viy1, u; < u;y;, we find that

H

1 ] Vi
X = /g,(r) dz = - / g(x) dz — i
: / (i1 = ui)(vig1 — vi) J ) Uipy —
1
X’(l) __ A
X, = [ zgi(z) dz
0
] Vit1 Viga
— dr — v,
(wit1 — ui)(vig1 — vi)? /Ig(x) v / 9(x) de
vy vy
1 U;
2 Uit — Uy ’
1
\r(l) _/ 2
Xy = [ gi(x) dzx
0
vig1 Vig1

1

_ /92(x) dz — 2u; / o(z) dr

(U,‘+] — 1ti)2(l)i+1 - 'U,)

vy

u;
+ -
Ui — Uy

(10)
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As a result of these equalities, we have

'”i-t—l Vit Vit1
g(x) dx, / rg(z) dr, / g*(z)de | =a; + B, X"
Vi ;’1 U

which holds also for v; = v; 11 and u; = u;; 1. The equality (8) is shown.
In order to prove the first statement of Lemma 5. one observes that. for

. AN N+1 : G

(1))* ). . 2 There V) -

a given (X )i:() C Q and ((vs, 11,7))7.’:() c [0,1]%, where X' = F(g,).
and ¢; is nondecreasing, one can guarantee the existence of a nondecreasing

g: 10,1} — [0,1] having g¢; as in (9). Indeed, putting

€T — v .
g,;(/ —f—)(uwl —ui)F+u i e <wigg.
9 (vs, 00) = Vi1 = Vi (11)
1y V1 .p
U; if Up = Uigy -
we have (9) forall : =0,1,..., N, and hence the second statement of the lemmna
can be applied to ¢. .
Finally we shall prove the following

LEMMA 6. If X € intQ, then the moment problem X = F(g) has infinitcly
many solutions in distribution functions g .

Proof. We start from (8). Assuming X € intQ, with the help of §l1.
Lemmas 3 and 4, we can find an index 7 such that B; # 0. The expression for
X takes the form

N
X“):B,”(X—a,iv > a_,+B_jX<-f>>, (12)

J=0.j#i

where

-1 —-1 .
B =B (Wi, vi, Uiy, vig1)

1
(wipr—ui)(vip1—vi) 0 0
= = ! 0
- (uip1—u,)(vig1—v,)?2 (wipr—ui)(vig1—0i)?
—2u; 0 1
(i1 —ui)2(Vig1—vi) (wy pr—1,)2 (0, — 1)

Here we consider the right hand side of (12) as a vector-valued function of the

variables (X(J'));V:O‘j# C Q and ((‘Uj,uj))][.t;l C [0,1]2. Calculating the limits

of B,,fl, a;j, Bj as (vi,u;) — (0,0) and (vig1,ui41) — (1.1), we obtain ")
Bfl -1, a; — 0 forall j, B; — 0 forall j#..

7) Here we use the symbols 1 and 0 to denote the unit and zero matrices or vectors.
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C'onsequently,

N

B! <X —a; — }: aj; + BjQ> C int( (13)
=0, i

for any (v;.u;) and (v;yq,u;41) sufficiently near to (0,0) and (1,1), respec-

tively. Thus, we have shown that for (X(-/)){.\/i :

‘ J=0,j# '

N € Q so that (8) is valid. Now, we can represent each XU) | j =0,1,..., N

; C 2 it is possible to compute

in the form XU) = F(gj), and finally, applying construction (11), we infer that
N = F(g). where for different X we get different g. O

For the sake of completeness, it is easy to establish the result that for any
N € int 2, there exists an X € int €2 such that

N
X = Z a; + B; X ,
i=0
hecause in (13) the mapping is contractive. This will prove the existence of a
solution ¢ of X' = F(g) which is obtained from the composition (11), where

gi =g for all © and ¢ is a suitable distribution function.
The purpose of the following two sections is to study neighbourhoods O of
X in the body Q. Here we shall use the notation

O=X+V={X+Y; YeV},
where Vo denotes a suitable set of three-dimensional vectors.

§3. Linear neighbourhoods; Definition and construction.

With the help of operation (8) (as u;, v;, uiy1, v;31 vary continuously).
we can find new surfaces and bodies lying in €, containing X, and forming
neighbourhoods of X in Q. Using local coordinates, we can give the following
classification:

Let a, b, ¢ be non-complanar vectors. Let

lal, [£a], [a,b], [*+a,£b], [£a,=+b,c]
denote the following sets of three-dimensional vectors:
[a) = {au+wu; wel0e]},

(+a] = {au+wu; ue [—&,€]},

[+a, b, ] = {(m + b+ cw + w\ﬂﬁ + 0?2 +w?; u,v € [—e,¢], we, 5]} ,
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where u, v, w are variables, w is a continuously differentiable vector-valued
function such that w —- 0 as v - 0, v = 0, w — 0, and ¢ is a sufficiently

small positive number. The sets
X +a], X+ [td, X+][ab], X+ [ta,+b, X +[ta,+bc]CQ

are called linear neighbourhoods® of X in Q. For the sake of brevity, we call
these neighbourhoods half-line, line, angular, planar and half-spherical neigh-
bourhoods of X in 2, respectively.

We collect several results in our construction of neighbourhoods. We shall
make use of them in subsequent sections.

LEMMA 7. All the following sets

(0,0,0) + [(1,1,1)],
(1,1,1) + [(-1,0,-2)]
(3, 11) + [£(3,1,2), £(3,2,4)]
(1—v,3(1=2%),1—v) + [£(1,0,1)], 0<ov<l,
u,%u,uz) + [:t(l, -%,211:)} , O<u<l,

are linear neighbourhoods in Q.9 Here (0,0,0), (1, %, 1), (%, %, %) .
(1 — v, ‘],‘—(1 —v?),1— v) , (u, %u, uQ) are F -images of the functions from Fig. 5,

respectively.

v

Figure 5.

Proof. We shall not give the details of the proof of Lemma 7; we show
only (%, %, %) + [j:(S, 1,2), :l:(3,2,4)] C Q. Put X = F(g(ur,vi,uz,vy)) . Fig. 1

8) The sets [a],...,[£a,£b,c] depend on given w and ¢, and the formula X + [a],...
...y X + [£a, £b,c] C © indicates that the inclusion is valid for a sufficiently small ¢ > 0.

9) It should be noted that any neighbourhood listed above can be extended to a large
neighbourhood, e.g. in a particular case (0,0,0)+ [(3,1,0),(3,2,0),(1,1,1)] C Q.
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indicates that

X = a(0,0,uy,v1) + B(0,0,uy,v1)(0,0,0)

+
+a(ug, vy, 1, 1) + B(uz, v, 1, 1)(17 %, .1)

= X(uy, vy, uz,v3) (14)
1 — v+ 3(v2 — v1)(ug + ug2)
— % — %115(‘3 —up — 2ug) — évf(2ul +uz) — évlvg(u,g —uy)

1— vy + %(vz — v )(ugug + u? + ul)

Since X = (1,, %, 13) for uy =v; =0, us =vo, =1 and

0X ax
TR i IR el Gt N0
({)X 8JX’

G = (). A}

we have

V= () o g3 -0+ (=5, =5 -5) (2 = 1)

+ (358w —0)+ (5,4, 2) (uz — 1) + wyJ/ul+ vi+ (ug — 1)%+ (v — 1)?,

where w — 0 as vy, u; — 0 and uo, vy — 1. This completes the proof. O

84. Linear neighbourhoods; An operation.
N
We start with the expression X = Z"’i + B; X A basic problem is
=0
to understand how geometric properties of linear neighbourhoods O, of X/,
i = 0.1,..., N, are “reflected” in a related neighbourhood O of X . Since no
clement of the boundary of € admits a spherical neighbourhood in Q then,
when investigating the existence of a reflection, we incidentally answer the
question of characterization of X &€ 0 by means of a suitable decomposi-
N
tion X' = Za,i + B,,-X(i) . The method used to solve this problem is based on
i=0
operation (8) and convexity in Lemma 2. Here is the precise formulation:
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:\,
LEMMA 8. If X = Za,,;+B,-,X<“, and XD 4+V, cQ forall i=0.1...... \.
1=0
then
N
X+ BVica.
1=0

LEMMA 9. If X+V C Q, and V denotes the convex hull of V' in the Xo and
Xy directions (i.e. V' contains the whole line-segment XY whencver XY € 1
and Xy =Y, Xs=Y; or X, =Y, Xo=Ys), then X + V.

Applying Lemmas 8 and 9 to the following situations, we shall now state
explicitly some criteria for X € int Q which will be used in the next section.

LEMMA 10. Suppose there are two planar neighbourhoods of X in Q such that
(i) X + [+ay, +tby], X + [+az, +b] C Q, and
(i1) the vector product (a; x by) X (as X by) has a nonzero first co-ordinatc.

Then X €int 2.

[irst we give a definition which we shall need below.

For X + [+a,+b,c], consider a vector n satisfying n x (¢ x b) = 0 and
rn-c < 0 (scalar product). n is termed a normal vector of the given half-spherical
neighbourhood of X.

LEMMA 11. A sufficient condition that X € intQ s that the following three
conditions be satisfied:
(i) There is a half-spherical neighbourhood of X in Q such that
X + [ta,%b,¢] C Q has a normal vector n with second co-ordinat
different from zero.
(ii) There is a point X € Q with a planar neighbourhood X+ [:d. ‘:H
C Q such that X, = X, , Xy = X3, X, # Xo, and the vector product
a x b has a nonzero second co-ordinate.
(iii) The second co-ordinates of n and X, — X, have mutually opposite
signs.

LEMMA 12. Assumec that

N .
(i) X can be decomposed as X = 5 a; + B; X',
1=0
where X € Q for i=0,1,...,N,
(ii) there is an index i such that X € ini Q.

Then X € int ).
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LEMMA 13. Assume that

N )
(i) X can be decomposed as X = 3 a; + B; X,

i=0
where X0 € Q for i =0,1,...,N,
(ii) there are three indexzes i # j # k # i such that X X0~ x*)
have line neighbourhoods X + [+a], XU 4 [+b], X + [+c] C Q,
(iii) the vectors Bja, Bjb, Byc are non-complanar.
Then X € int Q.
Proof. For the sake of brevity, we shall not give the details of the proof

of Lemmas 10-13, we only note that Lemmas 10 and 11 follow from Lemma 9;
Lemmas 12 and 13 from Lemma 8; and to prove Lemma 13, we make use of the

inclusion

{au+bv+cw; u,v.we [—50,60]}

C {au +bv + cw + wau + Wpt + wew 5 u,v,w € [—€, s]} . (15)

Here a. b, ¢ are non-complanar vectors, w, = wa(u), wp = wp(v), we = w.(w)
are vector-valued continuously differentiable functions on [—¢, €], and

gg =€ — 3¢,

where
max{ |lwqul, lwpv], [wew!|; u,v,w € [~ €]}

min{|al, [B], ||}

o,

|

Lemmas 12 and 13 admit generalizations which involve also a limiting process.
We state explicitly only a version analogous to Lemma 13.

LEMMA 14. Let us suppose that
N .
(i) a given point X € Q can be decomposed as X = > a; + B; X,
=0
where XM € Q for i =0,1,..., N,
(ii) there are three indexes 0 < 4,5,k < N, with |i —j|,]i — k|, |j — k| > 1,
such that the limits

‘Xv(i) - ‘X(()’i) 9 X(J) — Xl()j) ) X(k) - Xl()k)

Y9 Here X = X (uy,vi,ui1,vi01) = F(gi), gi is defined by (9), and the variables

(wicvisuigr,vi41), @ = 0,1,..., N, must satisfy the assumptions (i), (ii), and (iii) of Lemma 5.
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extst as

(0) , (0) _(0) _ (0)
(Wis Vi Uit Vig1) _’(“i ) U ‘rui+1’v‘i+l)’

(0) _(0) _(0)  (0)
(uj,vj,ujen,vi01) = (uj v wgy, vy

(0) , (0)  (0) (0)
(uka“knuk-l—lakarl)_’ (uk ) Uk 7“’k+1?“k+1)*

respectively.
Further, assume that

(iil) the points X(()i) , X((,j) , Xék) have line neighbourhoods

X+ bl X9+ 5], X 4 2 0

(iv) the limits

Bia' - BJb ~
— a, — b
(wiy1 —ui)(vig1 — ;) (i1 —uj)(vjer —v))
By.c -
— ¢,

(Uk+1 — ug)(Ve41 — Vk)

exist, where
(i, Vis Wit 1, Vig1), (g V5> Wit 15 V1) 5 (Wky Uks W1 Ukt
converge as in (ii).
Moreover, suppose that
(v) the vectors a, b, ¢ are non-complanar.

Then the above assumptions (i)—(v) imply that X € int Q.
Proof. If we set
) ) N
Xo=a; + B;XS) +a; + B XS +ar + BX" + S e, + B,X"
n=_0

n#ig.k

then X — X, has the form

X - Xo = B (X(” _ X(gi)) + B, (XU) - Xé”) + By, (X“‘) - X&“) :

According to the assumptions (i) — (v), we shall obtain the existence of a spherical

neighbourhood
0o = O (Wi, Viy Wit 15 Vi 1> Ujs Vjiy Wik 1y Ut 1 Whey Vo Uk 15 Uk 1)
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of Xy in Q.

As a further step, we shall determine, in (16’), that the order of convergence
of X — Xy — 0 is higher than the order of convergence of diameters of Oy to
zero, and consequently, we obtain X € Oy for (u,

(0) ~(0)
to (11,- ""vUA:+1)'

.., Vk+1) sufficiently near

For a detailed proof, we consider the assumption (iii) in the form

N 4 {out o we e}, XG4 {butwpus we el

X(()k‘) + {Cu tweu; u€ [_E’gl}c Q.

By means of Lemma 8 we can write

Xo+ {B,'u/u, + Biwau + Bjbv + Bjwyv + Brew + Brwow ; u, v, w € [—¢, a}} c Q.
(16)
But. according to the limits (iv), this neighbourhood of X can be represented
as
o+ {(u,,;_H —ui)(vipr —vi)au+ (ujp1 — uj)(vjgr — 1_7.,,')51)
(g1 — k) (Vkr — o)W + (Wi — u)(Vig1 — v3)wau
+ (w1 — uj)(vjp1 — vj)wiv + (Ukgr — ur) (Vi1 — Vr)waw s
u,v,w € [~E,€]} cQ,

where

Biw, Bia -
wi = + —-a) —0,
(wig1 = ui)(vigr — vi) (witr = ug)(vig1 — v;)

0) (0) (® 0 v ,
as (Wi i Wiy, Vig1) — (uf ),v,l( ),u£_+)1,v,§+)l) and u — 0. Similarly, we find
wj — 0 and wz; — 0.

Since the variables indexed with ¢, j, k are independent, the wu;,..., vi4y
can be chosen 'V in such a way that they satisfy
(tipr = uwi)(vigr — vi) = (i1 = ui)(Vjp1 —v5) = (Uktr — uk) (Vg1 —vg) =t

') We may suppose that (u;r1 —u;)(vig1 —vi) — 0, otherwise replace X (9 by X(()” in

the decomposition of X, and then we have X — X¢o = B; (X(j) — X(()j)) + By, (X“") — X(g"')) .
Similarly, for j and k.
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Applying (15) to the set

{Elu +bv + dw + wau + wpv + wew; u,v,w € [—€, 5]}

we obtain
O = Xo + t{au + bv+ éw; u,v,w € [, g0l }C Q.
where £y = ¢ — 3¢, and g tends to zero as (u.L-, . 'Uk:+1) N (uf.“) ..... ‘wl)
and € — 0. Therefore, after applying
X — Xy
t .
(167)
Bi (y i (v N ,
== (Xm —X},/)) n % <X<9> —Xg”) N TA (X(“ B X(()m) o

as t — 0, for sufficiently small ¢ one obtains X € Og. This completes the proof
of Lemma 14. 0

It should be noted that the last argument works also in the following case:

LEMMA 14°. In the above lemma assume the following changes:

First, in (ii) replace X0 — ,X(()i) by two limits
X0 X((,i) . or X0 X[()i)

as

(0) _(0) _(0) (D) )
(i, Vi Uig1, Vig1) — (“1: B T ’*’7:+1) ) o7
(0r) (07)  (07)  (07) A
U, i Uiy Vg ) . respectively.

(Wi, Uiy Uig1, Vig1) — ( U

Second, in (iii) replace X(()i) + [£a] by two half-line neighbourhoods
X 4+ 1al, X+ 0] .
Furthermore, in (iv) assume that there exist limits

- B;‘(L"<

B,'(.l -
—a — —a.
(i1 — wi)(Vigr — v;) ’ (wip1 — ui) (Vi1 — vi)

as the variables (uj, Vi, Uit1,v;41) converge in the way described by (17) .

Finally, in (v) add the assumption that bx & is not parallel to the X -aris.

194



A NEW MOMENT PROBLEM OF DISTRIBUTION FUNCTIONS IN THE UNIT INTERVAL

Then the modified assumptions (i)—(v) again imply X € int Q.

Proof. Since we can find a spherical neighbourhood of X applying the
convexity assertion (LLemma 9) to the half-spherical neighbourhoods of X and

N
Xo- =a; + B,j)((()i) +a; + BJ‘X(()J’) + ag + BkX((,k) + Z ap + B,,,X(”') ,

n=0
n#i,j,k

which are constructed as the previous spherical neighbourhood of X (repeating
the arguments used in the proof), we need finally to add in (v) the assumption
about parallelity of b x ¢. O

We will use results of the present paragraph to establish certain necessary
conditions for F(g) € 092.

85. Criteria.

Let g: [0,1] — [0,1] be a given distribution function. Define ') the following
four sets depending on the mapping g¢:

A= the set of points v in which ¢ has a one-side derivative with
0< g (M) < +o0;

B = the set of points v} in which g has a jump discontinuity and
0<ov? <1;

(" = the set of constancy intervals (v(®) v(®)) of g in which ¢ has a value

with 0 < g < 1;

the set of continuity points v(5) of ¢ in which ¢ has Dini derivatives
such that DYg=D"¢g=+4o00,and Dyg=D_g=0.

LEMMA 15. If F(g) € 9Q, there exists a straight line passing through the
following set of points

) 10 (2)
{(r‘”,g(v“))); oD ¢ A} U { (vm)’ g(v® + %+9(v )) C o ¢ B}
(3) 4 (@) (3) 4 @)
U {(U ;U s g(v ;U >> ; (1)(3),'1)(4)) S (v}

U {(1)(5),_(1(11(5))> RCC= D} .

Proof. Consider an arbitrary finite set of elements from A...D. We shall
N
derive, first of all, that F(g) = X can be decomposed as X = Za,; + B; X"

i=0

D

Il

12) Elements belonging to the defined sets will be denoted by fixed letters.
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(setting as usual X — F(gi), where g; is the linear expansion of g’(l,_ visn)
[ !

given by (9)), where X() X((,j) and

(u,v € (0,1)),

x\"e {(0,0,0), (L4, 1), (3,4, 8), (1o 21— 0?1 —0). (u, %u.uf)}

for such ¢ which correspond to the choice of elements from A...D. Further.
with the help of neighbourhoods of these limiting vectors (Lemma 7). the cor-
responding neighbourhood of X can be immediately (Lemmas 14, 14°) found.
We shall complete the proof using the assumption X € 0€2.

To do this, let us discuss the following four cases.

a) Let g be a distribution function that has a non-zero finite left derivative
at v(1) € (0,1]. Suppose that the independent variable point (v;,u;) tends to
fixed (vig1,uiyr) = (v, g(v))). Using these assumptions, the following limit
can be established

Here we shall only show the case Xigi) — %, the cases Xii) — % and Xéi) -

Sl

are completely similar.

Indeed, we can write

g(x) = g(vig1) + 9/(U7t+1)(93 = Vi) +w(@, vig ) (@ — vigy)

for all = € [v,vi4+1], where w(x,v;41) — 0 as & — v;41 . Substituting that into
the formula (10), after some arrangements, we find

1
<.(1(Uv:+1) — g(v) )’

(i)
X:al -
Vir1 — ;)3
Vit1 — U ) (vigr = vi)

{(.‘1<’“i+1) - .‘1(’1/’,:))2(1,*,¢+1 — )

+ g,(l"i+1>2%(7»’11+1 —vi)* + wi (v, ”i+1)é(l‘i+1 — )’
+ 29" (vig1)wa (vi, /U'i+l>%(vi+1 — ;)

= 2(g(vig1) — .(J('Uzﬁ))!/(vwl)%(’WH —v;)?

+ 2(9(“1#1) - !1('”:‘))“3(”1‘-, ”i+1)%(1’i+1 - I'i)g} )
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where

Vig1
1 : . 2
wi(vi, Vit 1) 5 (Vg1 — vi)* = | w(@,vip1)? (@ = vig1)” de,
0
Vig1
N : 2 3,
WZ('U.i,?)i+1‘)§(7)i+1 — vi)3 = / w(z,viy1)(T — vip1)” dx,
v
Vg1
1 : :
ws(vi, vigr) 3 (vig1 —vi)* = / w(z, viy1)(@ — vig1) de,
v;

and. since wi,ws,ws — 0 as v; — v;4;, we finally obtain

i 1 1 : 2 1
X = s {0 + e i) g i)’} =

b) Let us consider the case that g has a jump in v(?) € (0,1). We choose
variable points (vj,u;), (vj41,uj41) such that v; < v < wvipr, uy = gv),

wjivr = g(vjs1), vj, Vi1 — vl and

v —;
I =y,
Vi1 — Uy

where v € (0,1) is an arbitrary constant. Then, if (u;,vj,Uj+1,vj41) runs
through these variables, we have

X0 (1—v,3(1—-2v*,1-v).

¢) Begin with the case when (’1;(3),1)(4)) is any interval of a constant value of
g, where 0 < ¢g < 1. In the same way as we choose the variables
(1. 0) 1, 0541), now select (ug, v, ugy1,vp41) such that v < v < )
< Vg1, U, Upg1 — ¢, and

g — Up
Up41 — Uk

=u.

Then
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For a later application of Lemma 14 in this proof, we note that for neighbour-
ing v® and (1'(3), v(“)) the corresponding variables coincide. In this case we
take (vjpi1,ujp1) = (vk, uk) — (v(z),g) , preferably. Then the difference X — X
in the proof of Lemma 14 can be expressed as

N = Xo = Bi(XO - x") + B, (X0 - x) + By (x0 - x{V)

Vg Vg
+ /(g—uk) dz,/r(g—uk / g-u;c dr
v(2) v(2) v(2)

and the final vector on the right-hand side is O(t?). Thus again the limit in
(16") (X — Xo)/t -0 as t—0.

d) Let us suppose that the distribution function ¢ has the Dini derivatives
Dtg=D"g= +oco and Dyg = D_g = 0 at a continuity point v(®) € (0,1).
Having in mind the geometrical interpretation of the Dini derivatives, by se-
lecting two suitable sequences of variable vectors (us,vs,ugt1,Vs41) ONE can
guarantee the existence of the limits

xX® — (0,0,0) and X0 (1, 1,1).

(S]]

These cases are obtained in the limit when all of the sides of the rectangles
shown in Fig. 6 suitably tend to zero.

(Us+]yus+1) (US+11U'S+1)

(vs,us) (Us;us)

Figure 6.

For our further aims, to apply Lemmas 14 and 14’, we need to establish
the limits in (iv). To do this, we have already found in Lemma 7 the neighbour-
hoods of all limiting vectors from a)-d). When (ui,vi,uit1,vig1),- ..
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(g, Vg, Ugt1,vs4+1) TUn through the variables in a)-d), we verify that

B,’(3,1,2)
(wit1 — ui)(vigr — vi)
Bj(1,v,1)

— (3, 311(]), 6g(v(l))) ,

) (2 (2)
+0)+
(ujtr — J)("z+1 - vj) J+alv ))

Bi(1,3,2 o3 + v 03 4 @
1, 29 ———) )
(ukt1 — Ulc)('Uk+1 — vk) 2

B,(1,1,1) 1, 0® ,2g(v (5)))

(u.,_H —Uu )(1)3+1 — ’l)s
-1, —0® —29( )) .

!

l

(
B,(-1,0,-2) (

R
(ugt1 — us)(Vst1 — Vs)

Finally, the corresponding vector product of limit vectors has the co-ordinate
X; different from zero for all interesting cases. Thus the additional parallelity
assumption in (v) of Lemma 14’ is valid.

As a consequence of these lemmas, using F(g) € 02, we easily obtain that
all the limiting vectors are co-planar and we have therefore shown Lemma 15.
In conclusion, it should only be noted that in cases a)-d) we can choose an
arbitrary finite number of elements from A...D, respectively, and at these
there must exist independently specified variables (wy, vn, Unt1,Vnt1)- ) O

For the sake of more clarity, we shall give a geometrical illustration of this
result in Fig. 7.

0 e o2 W@ @ ) 1

Figure 7.

13) This assumption may be unrealizable if »(?) and (v(3),4(4)) are neighbouring, and
therefore we use (20’) or the note in c).
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Lemma 15 implies the following restriction upon the nature of those distri-
bution functions which can be F-mapped on the surface 0f2.

LEMMA 16. In order that the distribution function g: [0.1] — [0.1] shoutd
satisfy F(g) € 0N, it is necessary that either
(i) g 1is continuous in (0,1) and the part of its graph included in the open
square (0,1)% takes the form of a line-segment in (0,1)? (_see a list
of these graphs in Fig. 2). Eapress it as y = ax +b. If a # 0. then
Flg) possesses a half-spherical neighbourhood having the normal l((/(JI
(b a, )
or
(ii) g is a step-function such that all midpoints of its jumps and intercals of
constancy from the open square (0,1)* lic on a common straight lin:.
Write it as y = ax + b and suppose that at least one step '™ of 1l
graph of g lies in the open square (0,1)?. Then a half-spherical neigh-
bourhood of F(g) can be found, with the normal vector (—b.—a. %) .

Proof. Let F(g) € 09. VVe adopt the notations of Lemma 15 and assune

first that ¢ has a jump in v(, € (0,1). Claim: It is not possible to choose a

sequence of points of type v so that v u( . Suppose, on the contrary.
that

(o9 (6) = (. 0(47))
or

<v(1),_q(v“))) — (’l)f)")) g(l() ?) + ()))
Since, by  Lemma 15, all  of  these (0 g(ethy) and
(11((,2), (v() +0 + (1 UU > must be lying on a fixed straight-line. the on.v

possibility is that

1(2) (2)
g(vy' +0) +g(v
(,,m‘g(,,,(l))) . (v(()?)! (v % (% )) '

This is impossible, and the claim is proved.

1) A step of g consists of a vertical segment associated to a jump of ¢ and the neigh-
bouring interval of constancy of g¢.
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A similar analysis can be done for sequences of v(®, (v v®) and v

. 2) . 2) . .
tending to 1'((] ' Thus, for a given 11(() " there exists a suitable ¢ so that ¢ has.
2 2 2 . . . .
on (1"(,“) - €, u(()‘)) u (’p((,“), 1)(()2) —+ s) , the following properties: ¢ is continuous;

¢ has derivative zero at all points of differentiability; g cannot have a point of
tvpe ¢ and an interval (v, v™) . Since (see Garg [2]) for any continuous
strictly increasing function f which has a zero-derivative almost everywhere )
there exists a residual set of points with DY f = D™ f = 400, Dyf = D_[ =0,
then ¢ is a constant function on (’U(()E\'] — &, '11(()2)) and (v(()z), 1)((,2) +e).

Along the same lines, it can be shown that if ¢ has an interval (v("”, v“))
of constant value of g. 0 < g < 1, the boundary points v and v are the
Jump-points of ¢. In an alternative proof one uses the transformation A from
Lemma 1.

Collecting all these results, we obtain that whenever the function ¢ has at
most one point of type v(?) or an interval of type (1)(3),1)(4)). then ¢ 1s a
step-function.

To complete the possible cases, let us assume that ¢ is continuous in (0, 1).
but has no element of type (’z)(i’),'t;(‘l)) . Then the unit interval can be split into
three sub-intervals, say [0, ¢|, (¢,d), [d, 1], so that g takes the value 0 in [0, ¢],
I in [d.1], and is strictly increasing in (¢, d). If in addition to this, the set of
points 0! is dense in (e, d), then the set of points (U(l),g(v(”)) is also dense

in the graph of gl . ;. and according to Lemma 15, the graph is a line-segment.
I Il(e,d) g p

I ¢ canmot have oM -point in a sub-interval (¢, f) C (¢, d), then the restriction
5/|((‘ /) of ¢ is singular. Making use of Garg’s (above mentioned) theorem,

we may argue that the set of points ©(®) is dense in (e, f). But then, since ¢ is
continnous. the set of points (v'®), g(v(m)) is also dense in the graph of gl(“ r:
Using here Lemma 15, one derives that this graph forms a line-segment. This is
inpossible because of the existence of v(°).

Let us proceed to find an expression for the half-spherical neighbourhoods
ol points F(g) of ¢ specified by (i) and (ii). We start with a decomposition
Fly) = i a; + B; X" constructed as in the proof of Lemma 5.

i=0
In case (1) we may assume that (v;,w;) and (viy1,u;p() are chosen from the
straight-line y = ax + b with suitable i. Then X = (%, l} %) . and we begin

with the construction of that half-spherical neighbourhood

(4.5 3) 4+ [£(3,1,2),£(3,2,4), (0, -1,0)] . (18)

%) such function is said to be singular.
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5

- . . 1 1 . o . .
There is a point (5, 5 5) lying under (%, % %) Since it may be put in the

form
15 1y _ y(lgl3
(3 1603) = X(5.0,3.9),
by virtue of the expression (14) for X (uy, vy, us,v2) and since

0X ,
%:<_§7_%7_g§))7 @:(%’Ti,%)-

—

we find that (%,1—’(’ %) has a planar neighbourhood in €. Summing up the
result and using convexity, provided by Lemma 2, under the lines parallel to the
X -axis, we shall then complete our proof of (18).

Now the decomposition of F(g) and Lemma 8 imply
Flg)+ [£Bi(3,1,2), +B;(3,2.4), Bi(0,~1,0)] C Q. (1)

One easily sees that if (¢, d,e) is a normal vector to (18) (compare the definition
over Lemma 11), then (¢,d,e)B; ! is a normal vector to (19). Since (18) hes
(0,1,—34) as its normal vector, and

— 1 Ujp1 — U Ui — U, l
0,1,-4)B ' = up — v —+ : : -»->
( / Z) ' (Vig1 — vq) < ' I’ 2

(witr —ui)?(v Vit — Ui Vil — U
1

- b.a,—1).
(s~ o =y (D72

then the half-spherical neighbourhood (19) of the image F(g) has a normal
vector (b,a,, —%) as asserted.

Using the same procedure from the above construction, we can now find a
half-spherical neighbourhood of F(g), where‘ g is specified by (ii). Assume that
there are neighbouring v(?) and ( (3) pl° ) We distinguish two cases. depend-

ing on whether v(?) = v or v(3) = ) Observe that the transformation \
transfers immediately the Case U(Q) = 1’(4) to v(?) = v3) 5o that it remains
to consider the case v(?) = v®)  In this case F(g) can be decomposed into

the sum F(g) = Z a; + B; X | where some X) may be put in the form
=0

X = F(g) for a one-step function §. We shall use the representation for ¢
given in (1), where g = g(u,vi,uz,v2), 0 <uy =us <1, 0< vy <1. o= 1.
and we again use the expression (14) that gives X) = X (uy.vy.us. 2). Now

‘ (2 4 0) 4 (2)
let ¥y = ax + b be the line joining the points <'u(3), g™ +0) + gl )\u

2 )
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,(3) (4) (3) (4) -
( :;v ,g(v —;—v )), and y = ar + b joining (1)],1—9—) and

v
vy +1
("

,ul) . Graphically, see Fig. 8.

wy = uy

—
+—
— —_—

0/ o =43 L 1 0o /7 1 =,

Figure 8.
Now we can show that the partial derivatives of X with respect to the

parameters vy, vy, uy, and u, are

0X oX
= —uy(1,vy,uy), =(-14u)(1,1,1+uy),

Ovy 3—1)2
0X oX
m = (1 ——1’1)(%7%(1 +2’U1)7U1)7 -au—z = (1 — U])(%,(2+'U1),U]) A

Moreover, the increments dvy, dve, du;, and dus must satisfy dvy < 0 and
duy < duy, and, in addition, the differential of X becomes

OX OX (9X BX dUQ + du1
X =_—d —d — +— ||
e N (Gul + 3u2> ( 2 )
+ c')X ?;X_ dU2 — du1>
8uz aul 2 '
So we arrive at
" 1—
Fla)+ [i(l,vl,ul), (1,250 20, (0, 2550), (1,1,1+u1)] ca.
(20)
Now we make use of the inner products
i~ i . 1
(_b’_a?%)(lvvlau])zov (_bv—a’%)(lv -;vlvzul) :01
(~i), —a, %) (0, 1 _GU] ,0) <0, (—5, —a, %)(1, 1,14 uy) = % —ur,
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and conclude that (20) will be either a half-spherical neighbourhood of F(g)
with normal vector (—b, —a, %) if % < uy, or a spherical neighbourhood for
up < %

But again the decomposition of F(g), Lemma 8, and

(=b.—a, 3)B;"!

7 L Ui — Uy Uiy — U] 1
= <fb(u,,<+1 — ;) + av oy, —a—= 5 =
Uiyl — U Vit = Ui 2/ (ujpy — )7 (e — )
1

= (~b, —a.1 .
( 2 (uipr — wi)*(vigr —vi)

yield that

Flg) + [iB;(l,vl,ul), iB,-(l, 12”1 ,2u.), B,;((),%.O)} cQo(20)

is a half-spherical neighbourhood of F(g) with the normal vector (—b. —a. %) .
and the proof is complete. O

Having done all this, we may now conclude the proof of Theorem 2.

§6. Completion of the proof.

Let g run through the set of all one-jump and constant distribution functions
with graphs in Fig. 5. Then its F -images, X , form two curve-edges of d€2. That
the moment problem X = F(g) is uniquely solvable in ¢, we have seen in the
proof of Lemma 4. Observe that, for all other g, we have showed a construction
of half-spherical or spherical neighbourhood of F(g) in €. This is given by the
proof of Lemmas 15 and 16.Therefore, henceforth we shall require that ¢ should
not be a one-jump or a constant distribution function.

For brevity, we introduce an upper boundary surface 02 and a lower boundary
surface 92 of € with respect to the plane X; x Xj:

00 = {(X1,sup Xo, X3); X € Q}.
0N = {(Xl,illf)(?,X:}); X e Q}

IHere sup and inf are taken over all X € Q for which X; and X3 are fixed.

The next two lenmas are needed to prove that the upper boundary surface
of Q coincides with F-images of ¢ from Lemma 16, part (i), i.e. of types from
Fig. 2, and for a construction of the lower boundary surface we need a reduction
of g from part (ii) of Lemma 16 to one-step functions in Fig. 3. The finiteness of
the number of solutions X = F(g) in distribution functions ¢ is also established.
for X € 0Q. It should be noted that our argument is very strongly based on
Lemma 11.

201



A NEW MOMENT PROBLEM OF DISTRIBUTION FUNCTIONS IN THE UNIT INTERVAL

LEMMA 17. We have

o0 = U I; .

1<i<4

Proof. Suppose that ¢ satisfies condition (i) and g condition (ii) from
Lemma 16. For the points X = F(g) and X = F(g) we have, according to this
lemma, two half-spherical neighbourhoods in €2, with normal vectors (b, a, —%)
and (,j)’ —a, 15) , respectively. Now we state the result: If X, X €0Q and X, =
N1 Xy = Xy, then X5 > X,. Indeed, let us assume, to the contrary, that
X, < X,. Then the points X and X (or, in the case X, = X, its small
shift) satisfy all the three conditions in Lemma 11, and thus they have spherical
neighbourhoods in €2 this is a contradiction. We thus obtain a separation of
F-images of g which are described in (i) and (ii) of Lemma 16 either to the
upper and lower surfaces of 9€2, respectively, or to the interior of Q.

Now we use that the functions g which satisfy (i) of Lemma 16 can have
only the graphs of types ¢V ... ¢ from Fig. 2. Then, using notations (2), let
11, ... T1; be their F -images in €. By virtue of the expression g(uy, vy, us,v2) in
(1) for g/ ... ¢ we obtain a parametric representation of II;...II;. Elim-
inating parameters from these equations, we obtain the canonical equation of
Il ... 1I; as in (4). One sees immediately that any intersection H; N1I; of two
different surfaces from II; ...II; coincide with the intersection of their bound-
aries. If a point X runs through this common curve, one can also compute
the identity ¢/W = ¢U) at the equation X = ]:(g(")) = f(g(-”). (1 <4,
Jj < 4). In an alternative proof, one uses the normal vectors (b,;,a/,;, —5) and
(bj.aj.—%) to half-spherical neighbourhoods of f(g(i)) and .7-'(51(-7)) , respec-
tively. constructed as in the proof of (i) of Lemma 16. Then the direction vector
considered in Lemma 10 can be found as the vector product

(b,‘r,(lh*%) X (bj,(l,j,“%) .

Applyving F(g;) = Flg;) € 9Q and Lemma 10, we find that the first co-ordinate
of the product must be zero. The only possibility is that a; = a;, and conse-
quently b; = b; and gt = gli) a

In fact, the mapping F specifies a one-to-one correspondence between the
functions of Fig. 2 and the points X of the upper boundary surface of €.

LEMMA 18. We have

O = U I, .

5<i<T
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Proof. Let us consider one-step functions listed in Fig. 3. Their expression
g(uy, vy, uz,v2) in (4) is determined by two collections of conditions v, = 0.
O<ur=us<1,0<vm<lorl0<vi<l1l,0<u =uy <1, vy=1.Using
the F -mapping, we can extend the surfaces II5, 11 (without boundary) to the
following enlarged sets

ng{]:(g); vy =0, 0<u;=uy <1, 0<v2<l}.
ng{f(g); O<v <1, O0<u;=ux <1, 1)2:1}.

respectively. Taking into account expression (14), we can rewrite parametrically

1l—vo+tvous
Il = {<%_%”§(1—1{2)> s 0<uz <1, 0<wy < 1}.

2
l—'1)2+'1,72u2

(I-v1)uy
H9:{<;§(1 uy)— 1”%“1); O<u <1, 0< <1}

(1—v1)u?
Since the parameters us and vy in Ilg can be eliminated as

X, — X 1-X)?
71/2:11__)(1'3, Vo = _(——1)_s (—)1)

the expression for Ilg takes the form

IIg = {(Xl,X‘z,XS) Xy =

[\')I)—l
l\DI)—l
—
+
s
w
|
(3]
p
—

Xi<X3< Xy, 0<X1<1}.

Similarly, in the case Ilg,

and we can write
HQA{()&lvAZ? 3); Xo= X1 — -5
X< X3< X, ()<X1<1}.

Together with Lemma 3, we obtain that the projections of IIy and IIy on the
X1 X X3-plane are the same as the projection of the domain (2.
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Moreover, it is easy to verify that IIg and IIg intersect in a curve

_J(r 1 1 1 1
H"{(z*2 16X3’X3)’ 4<X3<2}’

where % = X1, and we simply deduce that every X € [Ig with X; < % must

lic under Ilg and every X € Il with X; > % must lie under Ilg, in both

cases with respect to the X; x X3 -plane.

Recall that every point from IIg UIlg is the F -image of a one-step function
and we may apply (ii) of Lemma 16, so that then each one has a half-spherical
neighbourhood with a normal vector (—b, —a, %) , where the second co-ordinate
1s negative. But then we make again use of Lemma 11 and conclude that all
the points from IIg lying above IIg and all the points from IIg lying above Ilg
must lie in the interior of Q. We simply write this relation as II3 UII} C intQ,
where

Hg:{f(g); v =0, O0<uy=uy <1, O0< vy <1, vQ(l—u2)<%},

Iy = {}'(g); O<v <1, 0<uy=us <1, vu=1, (1—wv)u; < %}
Just note that an F-image of g belonging to (ii) of Lemma 16 and having
at least two jumps or two intervals of constancy entirely lying within [0, 1]? can
N . )
be expressed as F(g) = 3 a; + B:X® | where X ¢ I for some 7. We can
1=0
visualize this situation as in Fig. 9.

(vig1, uit1)
(vig1, wig1)
(vi, u;) T T
Figure 9.
Now we apply Lemma 12 to get F(9) € int Q. O
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We sum up the above-mentioned results in the following: Every point of th
lower boundary surface of Q0 is the F -irmmage of a one-step  function
g(uy, vy, uz,vs), where either v1 = 0, 0 < up = upy < 1. 0 < o0 < 1 and

% <vp(l—ug),or 0<v; <1l,0<u=uy <1, vy=1 and % < (l—uvp)uy .

To prove the theorem, it remains to establish the finiteness of the nunber of
solutions of X = F(g), where X is a point of the lower boundary surface of €.
In the case X # % such a solution g is the only one because the parameters
Uy, U1, Uz, v2 in g(uy, vy, u2,ve) are uniquely specified by X;. Xy and (210 if
X < %, and by (22) if X; > % The exceptional case X| = L) corresponds
to exactly two solutions of (21) and (22) which form ¢™ and ¢
theorem. It should be noted that the argument in Lemma 10 does not work in

i onr
the case where X € Il7. To see this, using the representations X" = F(¢'"') and
X = ]:(g(w)) , and applying part (1) of Lemma 16, we can find two half-spherical
neighbourhoods of X in Q with normal vectors

o v 2 l 2 o v -2 1
(3)&;; — 1, —8X2, 5), (M3 — 3Ny —8X2. 7) .
Then their vector product has a zero co-ordinate in the first place, and so con-
dition (ii) in Lemma 10 is not satisfied. Thus Theorem 2 is proved. O

5. Concluding remarks

The neighbourhood-constructing technique described above can be used for
solutions of a moment problem in an arbitrary dimension. But in our 3-dimen-
sional case, 1. Korec has informed the author about a simplified construction of
the upper boundary surface of 2, which can be established without the technical
apparatus of neighbourhoods. We shall demonstrate now brieflv the method.

To determine the distribution function g: [0,1] — [0.1] at which a condi-

1
tional maximum can be attained by the integral [.1:_(/(.1') i under the condition
0
1 i
[g(r)dr = X and [¢?(x) do = X3, where X; and X3 are constants. one
0 (]
should form the auxiliary system of linear equations

dg(ay)day + dg(as) dey + dglas) day = 0.
dg(xy)ry doy + dg(r)rs day + dglas)rs day = = (23
dgz(.l.'l Yday + (1;]2(;172) diy + dl(]z(.l';:,) dry = 0.
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Here 0 < up < x3 < @3 < 1 are arbitrary three points of continuity of ¢;
dg(ry). dg(xz), dg(xs) are unknown small increments of ¢g; and & > 0 is
sufficiently small. Write

1 1 1
D= Ty Ty T3
2g(w1) 2g(x2) 2¢g(z3)

a) If 0 < g(xy) < g(zo) < g(zs) < 1, then det D = 0. Indeed, suppose as
contrary, that det D # 0. Then (23) has a solution dg(z,), dg(z2), dg(xs).
Substituting the variations g(z1)+dg(z1), g(z2)+dg(x2), g(xs)+dg(zs) into
the graph of ¢ and rearranging them in ascending order, we obtain a distri-

1 1 1
bution function ¢ with [§(z) dz = Xy, [g*(z) dz = X3 and [2g(x) do >
0 0 0

I
| rg(a) dur; this is a contradiction.
0
b ) If 0= (](:171) < g(xg) < g(xzz) < 1, the only possibility is that 0 = g(x,) <
g(as) < g(wy) < 1, because 0 = g(zy) < g(x2) = g(x3) < 1 gives the solution
(1(/(1 1) = 0; this is a contradiction as in a).

¢) Now, assume that 0 = g(z1) < g(x2) < g(x3) < 1. Let y = ax + b be the
line joining the points (:1:2, q(r_;)) and (:1'3, g(;z:g)) . Then ax; + b < 0, because
in the opposite case we have dg(z;) > 0, and again a contradiction as in a) .

Summing up the results a) —c), we easily obtain that g cannot have a jump

in (0,1), and along the same lines it can be shown that g cannot have an
1
interval of constant value of g, 0 < g < 1. Thus g mazimizing f.’L‘g(.’IJ) da and
0
1

preserving [ g(r) de and [q ) dx is described in Fig. 2.
0 0
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Figure 11. The cuts of Q by planes perpendicular to X3 -axis.




A NEW MOMENT PROBLEM OF DISTRIBUTION FUNCTIONS IN THE UNIT INTERVAL

(1]

REFERENCES

ACHYESER (ACHIESER), N. I.:  The Classical Problem of Moments (Russian), Gos.
Izd. Fiz.-Mat. Literatury, Moscow, 1961.

GARG, K. M.: On singular functions, Rev. Roumaine Math. Pure Appl. XIV (1969),
1441--1452.

KUIPERS, L-—NIEDERREITER, H.: Uniform Distribution of Sequences, John Wiley &
Sons, New York, 1974.

SCHOENBERG, L. J.: The integrability of certain functions and related summability
methods, Amer. Math. Monthly 66 (1959), 361-375.

SHOHAT, J. A—TAMARKIN, J. D.: The Problem of Moments. Mathematical Surveys,
Amer. Math. Soc., Providence, Rhode Island, 1943.

STRAUCH, O.: A new three-dimensional moment problem of distribution functions in
the interval [0,1] (Abstract). In: Conference report of the 9th Czechoslovak Colloguium on
Number Theory (held at Rackova Dolina, the High Tatra, September 1989) (1989), 97- 103,
Masaryk University Faculty of Sciences, Brno.

VAN DER CORPUT, J. G.: Verteilungsfunktionen I, Proc. Akad. Amsterdam 38 (1935),
813-821.

Received March 13, 1991 Mathematical Institute
Revised February 5, 1994 Slavak Academy of Sciences

Stefinikova ul. 49
SK-814 73 Bratislava

Slovakia

211



		webmaster@dml.cz
	2012-08-01T09:08:21+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




