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flz1,z9,...,2,) = 0 (mod p)
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(Communicated by Milan Pastéka )

ABSTRACT. In this paper, we find the number N, modulo p of the solutions
of the congruence f(X1,X2,...,Xn) =0 (mod p).

Let f(X1,X5,...,X,) be a polynomial in the n-variables X;, X5,..., X,
with integral coefficients, say

X0 X, X)) =Y diX{i Xy Xe, di#0  (mod p).
1=1

Let p be a prime, p # 2, and denote by N, the number of solutions of the
congruence

f(zy,z9,...,2,) =0 (mod p), T1To...Tp Z0  (mod p). (1)
Put
aiy a2 Ain
a1  Ga22 A2
A= (075 3 O S
am1 Am2 Amn

The aim of this paper is to prove the following theorem, which determines
N,, modulo p.
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STANISLAV JAKUBEC

THEOREM. Let p be a prime, p # 2. The number N, of solutions of congru-
ence (1) satisfies the congruence

dyrdy? .o dvem
N, =(-D)"Mm+ (D" [ 1+ 21 % - Om (mod p) .

tuo! y |
e uylug! . oouy,!

0<u;<p—1
(w1,u2, .Uy )A=0 (mod p—1)
uitugs+-Fum =p—1

Proof. Set

_ f(z1,@2,.. @)
a = E ¢ T2, ,

L1525, Tn
T122...2, 20 (mod p)

2r . . 2W
where ¢, = cos 3 +1sin o and each of x{,xy,...,r, runs through a com-

plete residue system modulo p subject to zyxo...2, £ 0 (mod p).
Clearly, a € Q((p), and we have

TrQ(Cp)/Q(O‘) = (P - 1)NP - ((p - 1)“ - Np) = I)Np - (1’ 1", (2)

Let p be a prime with p =1 (mod [), and let K be a subfield of the field
Q((,) of degree | over Q. Let a be a primitive root modulo p. Let o denote
an automorphism of the field Q((p) such that o((,) = 7. We also set

ﬁl :TrQ(Cp)/K(CP); ﬂi :O"I.’~1([31) for 1= 1.2....1:

p—1
k= pl ; a* =g (mod p).

The numbers [y, 32,...0; are called the Gaussian periods, and it is known
they form a normal integral basis for K/Q.

The following lemma was proved in [1].

LEMMA. There is a number m € K| «|p, such that
(i) Niso(m)=(-1)p,
(ii) o(n) = gr (mod 7'+,

Q. — n ] i i I+1
(i) By = kgjo o)l 7' (mod 7**1).
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From the lemma, in case [ =p—1, K = Q((,), we have:

1 1 p—2

Cz,*1+p+—17r+ IR (mod =?).

If ¢ is an integer not divisible by p, we denote by o, the automorphism such
that o.(¢y) = ¢, . Hence

m

o - S e - 3 Had olitgliz ot (C,)

L1,T2,...,Tn 11,7‘2, L =
rirz... 2,20 (mod p) T122...nZ0 (mod p)

m p— Z .
E Hada ot ““‘( + E ) (mod =) .

T13L24.004Tp i
r1x2... 2, Z0 (mod p)

Therefore
m p—2 a a i j ]
d T 11 @iz _“_,Eam)]f,-(]
v= (14 p)™ <1 + L 72 ‘' 7n ) (mod #”).
IO (G

r122...2,Z0 (mod p)

Multiplying out the product we obtain

v=(L+p)™ Z (]_~|—Fl(l‘l,l'27...,In)T(+F2(331’$27“"‘,17”)7T‘2+”_
XL1,L2,...,Tn
r122...2,Z0 (mod p)

; - n—1 P
A Fp_y(xy, 20, ., 27" ) (mod 7).
By Lemma, we have

By = b 4 ghrk 4 g%k rk 4o 4 gk =Dk (mod 7P);

Trq,)/e(m
hence, if Kk <p—1, then
Trqc,)/@(m ¥Y=0 (mod n*).
This implies
Troie,/e(@)

=1 +p)" Trge,)/Q Z (1 + Fp_i(zy,2g,. .. ,mn)wp_l) (mod =) .

L5200, Ty,
T1T2...0,Z0 (mod p)
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The polynomial Fj,_;(zy,2,...,z,) has the form

AL A A,
Fpﬁl(Il,ZEQ,...,JIn) :K111$22....,C '

where K is a constant independent of z1,zs,..., 2, .
Clearly,
Z Kaas? a4 =0 (mod p)

L1,X2;..3&n
T172...2,Z0 (mod p)

if some A; is not divisible by p — 1, and
Z K;rflxg‘z Lzt =Kp-1" (mod p)

Z1,T2,.. L0
r122...2, 20 (mod p)

The Lemma gives
Ng,)/q(m) = (-1 'p=ngng*m...g" *7  (mod 7*),

which implies

' = —p (mod 7P).
Therefore we obtain
Trq,)/Qla)
: dirdis . dy ,
=(l+p™p-1)""[1-p Z ' Ell‘ui'—u,,,— (mod 7).
0< u27 Cp—1

(u1,uz,...,um )A=0 (mod p—1)
uytue+-Fu,=p—1

and so, from (2), we deduce

pNp —(p—1)"

ddy? .. dvm
—i—‘—z'-——"’—‘ (mod 7).
U U2 .. . Upp-

— m n+1
=(1+p)"(p-1) L—p >
UL, U2, Um
0<u; <p—1
(u1,uz,..., Um JA=0 (mod p—1)
uptuz+-+un=p—1
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and the assertion of Theorem follows.

O

Example 1. Using Theorem 1 we determine the number of solutions of

the congruence
X*+aX +b=0 (modp), ab#0 (mod p).

Clearly,

3
A=111},
0
and so
augbug
N,=3-|1+ Z —_— (mod p) .

| | !
T U1 U2:UZ:

0<u;<p-—1
3u;4u2=0 (mod p—1)
uptugtuz=p—1

Let p=3, X>+aX +b=0 (mod 3), ab# 0 (mod 3).
All solutions of the system

0 S u; < 2,
3u; +up =0 (mod 2),
uy +uz +uz =2

are (up,us,uz) = (1,1,0), hence

ab?

Ny =3~ (1+ giyr

>E2—a (mod 3).

Let p=11, X*4+ X +1=0 (mod 11).

0 <uwu; <10,
3uy +uz =0 (mod 10),
Uy + ug +uz = 10.

All solutions of this system are (uy,us,us) = (1,7,2); (2,4,4); (3,1,6); (5,5,0);

(6.2,2).
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Hence

1 1 1 1 1
71l 2 T 3niel T B0l T g

N11£37(1—{— )El (mod 11).

r

Example 2. In this example, we determine the number N, of solutions
of the congruence
X+ X34+1=0 (modp).

We have
3,0
A=10,31],
0,0
hence

0<uy; <p—-1,
3u; =0 (mod p—1),
3us =0 (mod p—1),
Uy +ux +uz=p-—1.

I. Let p=2 (mod 3). Clearly, this system has no solution, hence

N,=3(-1+(-1)>= -2 (mod p).

Il. Let p =1 (mod 3). Denote k = L_;—i Therefore all the solutions are

(uy, uz,uz)=(0,k,2k); (0,2k, k); (k,0,2k); (2k,0,k); (2k, k,0); (k, 2k.0): (k. k. F).
Hence

__ B 1
N,=-3+ (1 +(—6) + ﬁ) =-8+ [GE (mod p) .

Let 4p = a® 4+ 27b%, a =1 (mod 3). It can be proved (see [1]) that

- =a (modp).

Therefore
N,=a—-8 (mod p).
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